23.12.2012 Views

Herrmann Staudinger: From Organic to Macromolecular Chemistry

Herrmann Staudinger: From Organic to Macromolecular Chemistry

Herrmann Staudinger: From Organic to Macromolecular Chemistry

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

R<br />

O<br />

R = CH 3; CO 2CH 3<br />

O<br />

O<br />

<strong>Herrmann</strong> <strong>Staudinger</strong>:<br />

<strong>From</strong> <strong>Organic</strong> <strong>to</strong><br />

<strong>Macromolecular</strong> <strong>Chemistry</strong><br />

April, 11, 2011<br />

Christian Grünanger<br />

η sp<br />

c<br />

= K m • M<br />

R 1<br />

O<br />

R 2<br />

H H<br />

R3 R4


International His<strong>to</strong>ric Landmark of <strong>Chemistry</strong><br />

Origin of Polymeric Sciences<br />

review: Mühlhaupt, R. Angew. Chem. Int. Ed. 2004, 43, 1054-1063.


1903:<br />

1903-1907:<br />

1907-1912:<br />

* March 23, 1881 in Worms<br />

Overview<br />

PhD from University of Halle<br />

Habilitation with J. Thiele at<br />

University of Strasbourg<br />

Asstistant Professor at<br />

Technical University of Karlsruhe<br />

1912-1926: Professor at ETH Zürich<br />

1926-1956:<br />

Professor at Albert-Ludwigs-<br />

University, Freiburg<br />

+ September 8, 1965 in Freiburg<br />

malonate addition <strong>to</strong><br />

unsaturated compounds<br />

ketene chemistry<br />

oxalyl chloride,<br />

aliphatic diazo compounds,<br />

carbene reactions,<br />

new organophosphorus compounds,<br />

biofunctional small molecules,<br />

preparation and polymerization of<br />

isoprene and butadiene<br />

development of the concept<br />

of macromolecules


1905:<br />

1907:<br />

Ketenes: Isolation and Identification<br />

Ph<br />

Cl<br />

Ph<br />

O<br />

Cl<br />

Zn<br />

<strong>Staudinger</strong>, H. Ber. Dtsch. Chem. Ges. 1905, 38, 1735 - 1739.<br />

Ph<br />

Ph<br />

C O<br />

Ph<br />

N<br />

Ph<br />

Ph<br />

Ph<br />

C O<br />

also describes !-lac<strong>to</strong>nes and cyclobutanones<br />

<strong>Staudinger</strong>, H. Justus Liebigs Ann. Chem. 1907, 356, 51-123.<br />

Ph<br />

Ph<br />

Ph<br />

N<br />

O<br />

Ph<br />

ZnCl 2


Ketenes: Importance for !-Lactam Synthesis<br />

1928: A. Fleming: Discovery of Penicillin<br />

R<br />

O<br />

H<br />

N<br />

O<br />

H<br />

N<br />

S<br />

Me<br />

Me<br />

COOH<br />

Penicilin core structure<br />

S<br />

Me<br />

O N Me<br />

O<br />

COOH<br />

Benzylpenicillin, Penicillin G<br />

O<br />

H<br />

N<br />

H<br />

N<br />

H<br />

S<br />

Me<br />

O N Me<br />

O<br />

COOH<br />

Phenoxymethylpenicillin, Penicillin V<br />

H<br />

R 2<br />

O<br />

H<br />

N<br />

O<br />

H<br />

N<br />

S<br />

COOH<br />

R 1<br />

Cephalosporin core structure<br />

NC<br />

O<br />

H<br />

N<br />

H<br />

S<br />

N<br />

O<br />

COOH<br />

Cefacetril<br />

NH 2<br />

O<br />

H<br />

N<br />

O<br />

Cefradine<br />

H<br />

N<br />

S<br />

O<br />

COOH<br />

O


Ph<br />

First synthetic penicillin structure<br />

O<br />

N<br />

N<br />

O<br />

S<br />

O<br />

Cl<br />

Me<br />

Me<br />

COOMe<br />

Et 3N<br />

(13% yield)<br />

!-Lactams in Total Synthesis<br />

O<br />

N<br />

O<br />

O<br />

Ph<br />

S<br />

N<br />

(rac.)<br />

Me<br />

Me<br />

1) H 2O<br />

2) CH 2N 2<br />

COOMe<br />

KMnO4 AcOH/dioxane/H2O (82% yield)<br />

MeO<br />

O<br />

O<br />

N<br />

O<br />

O<br />

O<br />

H<br />

N<br />

O<br />

Ph<br />

S<br />

Me<br />

O O<br />

N<br />

Ph<br />

S<br />

N<br />

biologically inactive<br />

Me<br />

COOMe<br />

biologically inactive<br />

Sheehan, J. C.; Buhle, E. L.; Corey, E. J.; Laubach, G. D.; Ryan, J. J. J. Am. Chem. Soc. 1950, 72, 3828-3829.<br />

Me<br />

Me<br />

COOMe


Me<br />

MeO<br />

!-Lactams in Total Synthesis<br />

Synthetic Studies on Ecteinascidin-743<br />

OMe<br />

OBn<br />

DBU, THF<br />

CHO<br />

75%<br />

(25% start. mat.)<br />

1. BnNH 2, PhH<br />

2. Et3N, CH2Cl2 Ph<br />

O<br />

Ph<br />

N<br />

O<br />

COCl<br />

(99% yield)<br />

Me<br />

MeO<br />

OMe H<br />

OBn<br />

Bn<br />

N<br />

OMe H<br />

Jin, W.; Me<strong>to</strong>bo, S.; Williams, R. M.; Org. Lett. 2003, 5, 2095-2098.<br />

Me<br />

MeO<br />

NH<br />

CO 2Me<br />

H<br />

O<br />

Ph<br />

OBn<br />

Bn<br />

N<br />

Ph<br />

N<br />

H<br />

O<br />

O<br />

O<br />

1. Pd(OH) 2, H 2 (60psi)<br />

MeOH/THF<br />

2. MeO 2CCHO, MeOH<br />

(84% yield)<br />

Me<br />

MeO<br />

HO<br />

MeO<br />

Me<br />

O<br />

O<br />

OMe H<br />

OBn<br />

AcO<br />

O<br />

O<br />

Bn<br />

N<br />

N<br />

NH<br />

S<br />

H<br />

Me<br />

MeO<br />

H<br />

O<br />

H<br />

N<br />

O<br />

OBn<br />

H<br />

HO<br />

H<br />

OH<br />

NHMe<br />

NMe<br />

H<br />

OMe H<br />

OBn<br />

OMe<br />

Bn<br />

N<br />

NH<br />

CO 2Me<br />

Me OMe<br />

OH<br />

Me<br />

H<br />

O


!-Lactams in Total Synthesis<br />

Synthetic Studies on Ecteinascidin-743<br />

Me<br />

MeO<br />

H 2O work-up<br />

-BnNH 2<br />

OMe H<br />

OBn<br />

Bn<br />

N<br />

N<br />

H<br />

O<br />

O<br />

OBn<br />

H<br />

Me<br />

MeO<br />

NHMe<br />

MeO<br />

Me OMe<br />

OBn<br />

OH<br />

LiBEt 3H, THF<br />

0°C, 10 min.<br />

(49% yield)<br />

Jin, W.; Me<strong>to</strong>bo, S.; Williams, R. M.; Org. Lett. 2003, 5, 2095-2098.<br />

N<br />

O<br />

O<br />

OBn<br />

NHMe<br />

OMe<br />

HO Me<br />

Me<br />

MeO<br />

-H 2O<br />

MeO<br />

HO<br />

MeO<br />

OBn<br />

Me<br />

O<br />

Li<br />

BnN O<br />

Me<br />

MeO<br />

O<br />

AcO<br />

N<br />

O<br />

O<br />

OBn<br />

H<br />

MeO<br />

O<br />

OBn<br />

NH<br />

S<br />

H<br />

H<br />

N<br />

NHMe<br />

Me OMe<br />

N<br />

O<br />

OBn<br />

HO<br />

H<br />

OH<br />

NMe<br />

H<br />

NMe<br />

OMe<br />

OH<br />

OMe<br />

Me<br />

HO Me


H<br />

O<br />

!-Lactams in Total Synthesis<br />

Synthetic Studies on Ecteinascidin-743 - Origin of Diastereoselectivity<br />

Ar<br />

BnNH 2<br />

Me<br />

MeO<br />

Bn<br />

H<br />

N<br />

Ar<br />

OMe<br />

OBn<br />

CHO<br />

O<br />

C<br />

H N<br />

O<br />

1. BnNH 2, PhH<br />

2. Et3N, CH2Cl2 Ph<br />

O<br />

Ph<br />

N<br />

O<br />

COCl<br />

Ph<br />

O<br />

(99% yield)<br />

Ph<br />

Bn<br />

H<br />

N<br />

Me<br />

MeO<br />

Ar H<br />

O<br />

OMe H<br />

Ph<br />

OBn<br />

O<br />

N<br />

4 " conrota<strong>to</strong>ry<br />

for mechanistic studies: Venturini, A.; González, J. J. Org. Chem. 2002, 67, 9089-9092.<br />

Ph<br />

O<br />

Bn<br />

N<br />

Ph<br />

N<br />

Ph<br />

H<br />

O<br />

O<br />

O<br />

Bn O<br />

N<br />

Ar<br />

Ph<br />

N<br />

O<br />

O<br />

Ph


Me<br />

I<br />

I<br />

Me<br />

Cl 3C<br />

O<br />

Cyclobutanones in Total Synthesis<br />

Cl<br />

Zn-Cu<br />

POCl 3, Et 2O, 20 °C<br />

(80% yield)<br />

RuO 2 (cat), NaIO 4,<br />

CH 3CN/CCl 4/H 2O (1.5:1:1), 20 °C<br />

Me<br />

Me<br />

H<br />

(93% yield over 2 steps)<br />

O<br />

O<br />

OTBDMS<br />

DME/HMPA,<br />

LHMDS (2x), -60 °C<br />

(68% yield)<br />

Cl<br />

Cl<br />

O<br />

HOOC<br />

HOOC<br />

TBDMSO<br />

Me<br />

Me<br />

H<br />

Me<br />

Me<br />

H<br />

MeO 2C<br />

n-BuLi, THF, -78 °C,<br />

then Ac 2O, -78 °C ! 20 °C<br />

LiAlH 4,<br />

THF, "<br />

(91% yield)<br />

Me<br />

Me<br />

H<br />

(2.5:1)<br />

HO<br />

HO<br />

Me<br />

Me<br />

H<br />

HF, CH 3CN, 20 °C<br />

(79% yield)<br />

Cl<br />

AcO<br />

Me<br />

Me<br />

H<br />

not isolated<br />

TMSI,<br />

CHCl 3, 20 °C<br />

O<br />

(75% yield)<br />

O<br />

Me<br />

Me<br />

H<br />

(+)-Bakkenolide A<br />

Brocksom, T. J.; Coelho, F.; Deprés, J.-P.; Greene, A. E.; Freire de Lima, M. E.; Hamelin, O.; Hartmann, B.; Kanazawa, A. M.;<br />

Wang, Y. J. Am. Chem. Soc. 2002, 124, 15313-15325.


R 1 R 2<br />

Reactivity of Ketenes with Alkenes<br />

R 3<br />

O<br />

C<br />

Huisgen, R.; Mayr, H. Tet. Lett., 1975, 16, 2969-2972.<br />

R 4<br />

R 1<br />

O<br />

R 2<br />

H H<br />

R3 R4 LUMO of ketene: antarafacial<br />

HOMO of alkene: suprafacial<br />

R 1<br />

R 2<br />

H<br />

H<br />

O<br />

R3 R4


Coffee break?


Isolation of Coffee and Pepper flavors<br />

!1914-1918 due <strong>to</strong> shortage of coffee during WWI<br />

Coffee: Isolation of 70 compounds<br />

O<br />

SH<br />

O<br />

Reichstein, T.; <strong>Staudinger</strong>, H. Angew. Chem. 1950, 62, 292.<br />

Johns<strong>to</strong>n, W. R.; Frey, C. N.; J. Am. Chem. Soc. 1938, 60, 1624-1627.<br />

OH<br />

Pepper: Search for surrogates<br />

O<br />

N<br />

O<br />

piperine (!10% in natural pepper)<br />

a) <strong>Staudinger</strong>, H.; Schneider, H. Ber. Dtsch. Chem. Ges. 1923, 56, 699-711.<br />

b) <strong>Staudinger</strong>, H.; Müller, F.; Ber. Dtsch. Chem. Ges. 1923, 56, 711-715.<br />

O<br />

O<br />

O<br />

O<br />

N<br />

O<br />

O<br />

N<br />

N<br />

O<br />

H 2S<br />

<strong>Staudinger</strong>'s surrogates


MeO<br />

Identification of Pyrethrins as active ingredients of<br />

Dalmatian insect-powder<br />

O<br />

O<br />

OH<br />

HO<br />

R<br />

O<br />

R = CH 3; CO 2CH 3<br />

O<br />

O<br />

OH<br />

a) <strong>Staudinger</strong>, H.; Ruzicka, L. Helv. Chim. Acta 1924, 7, 201-211.<br />

b) <strong>Staudinger</strong>, H.; Ruzicka, L. Helv. Chim. Acta 1924, 7, 212-235.<br />

O<br />

NaOH (aq.)<br />

O<br />

O<br />

OH<br />

HO<br />

O


OH<br />

O<br />

chrysanthemic acid<br />

Identification of Pyrethrins<br />

H 2 (only 1 mol consumed!),<br />

O<br />

m.p.: 132-132.5 °C<br />

not known<br />

OH<br />

O<br />

chrysanthemic acid<br />

NH 2<br />

Pd<br />

NH 3<br />

Br 2 (only 1 mol consumed)<br />

Br Br<br />

a) <strong>Staudinger</strong>, H.; Ruzicka, L. Helv. Chim. Acta 1924, 7, 201-211.<br />

b) <strong>Staudinger</strong>, H.; Ruzicka, L. Helv. Chim. Acta 1924, 7, 212-235.<br />

O<br />

SOCl 2<br />

O<br />

OH<br />

Cl<br />

O<br />

OH<br />

H 2N<br />

KMnO 4<br />

Br 2<br />

O<br />

H<br />

N<br />

m.p.: 82-83 °C<br />

not known


OH<br />

O<br />

chrysanthemic acid<br />

Identification of Pyrethrins<br />

OMe<br />

O<br />

chrysanthemic acidmethyl<br />

ester<br />

a) <strong>Staudinger</strong>, H.; Ruzicka, L. Helv. Chim. Acta 1924, 7, 201-211.<br />

b) <strong>Staudinger</strong>, H.; Ruzicka, L. Helv. Chim. Acta 1924, 7, 212-235.<br />

O 3<br />

16 h, CH 2Cl 2<br />

O 3<br />

16 h, CH 2Cl 2<br />

O<br />

BnOH<br />

OBn<br />

OBn<br />

O<br />

HO<br />

OH<br />

O O<br />

trans-caronic acid<br />

known<br />

charactarized<br />

from acetal structure<br />

HO<br />

O<br />

O<br />

OMe<br />

trans-caronic acidmethyl<br />

ester<br />

known


1919:<br />

The <strong>Staudinger</strong> reaction: early development<br />

Ph3P + N2C Ph3P N N C<br />

Ph 3P + N 3<br />

+<br />

N 2<br />

Ph 3P N<br />

a) <strong>Staudinger</strong>, H.; Meyer, J. Helv. Chim. Acta., 1919, 2, 619-635.<br />

b) <strong>Staudinger</strong>, H.; Meyer, J. Helv. Chim. Acta., 1919, 2, 635-646.<br />

c) <strong>Staudinger</strong>, H.; Hauser, E. Helv. Chim. Acta., 1921, 4, 861-886.<br />

+<br />

N 2<br />

-N 2<br />

H 2O<br />

Ph 3P C<br />

Ph 3P O +<br />

H 2N


The <strong>Staudinger</strong> reaction: mechanism and applications<br />

R 1 N N N<br />

N PX 3<br />

R 1<br />

Iminophosphorane<br />

(aza-ylide)<br />

R 1 N N N<br />

PX 3 R 1 N N N<br />

PX 3<br />

phosphazide<br />

H2O - X3P O R1 NH staudinger<br />

2<br />

R 2<br />

O<br />

OH<br />

- X3P O<br />

R 2<br />

O<br />

X<br />

- X3P O<br />

-<br />

R 2<br />

O<br />

R 3<br />

X 3P O<br />

O R 2<br />

NH<br />

R1 X R 2<br />

N<br />

R1 R 3 R 2<br />

N<br />

R1 reduction<br />

aza-Wittig<br />

reaction<br />

R 1<br />

N<br />

N N<br />

PHX 3<br />

electrophilic trap<br />

O<br />

Ph<br />

N R<br />

P<br />

1<br />

Ph Ph<br />

O<br />

P<br />

Ph<br />

-N 2 N PX 3<br />

R 1<br />

H 2O<br />

OMe<br />

N R 1<br />

staudinger<br />

ligation<br />

Iminophosphorane<br />

(aza-ylide)<br />

- CH 3O -<br />

O<br />

N<br />

H<br />

P O<br />

Ph Ph<br />

R 1


O<br />

TsO<br />

MeI, CaCO 3,<br />

aq. CH 3CN<br />

(74% yield)<br />

Ph<br />

PMBO<br />

<strong>Staudinger</strong> reduction: Synthetic application<br />

O<br />

a) n-BuLi, 1,3-dithiane, THF;<br />

b) vinylmagnesium bromide,<br />

CuI, THF<br />

PMBO<br />

TMSOTf, Et 3N<br />

CH 2Cl 2<br />

(96% yield)<br />

O<br />

O<br />

(63% yield)<br />

CHO<br />

OTMS<br />

Ph<br />

Ph<br />

BF 3•OEt 2<br />

CH 2Cl 2, -78°C<br />

(89% yield)<br />

PdCl 2, Cu(OAc) 2•H 2O,<br />

AcNMe 2/H 2O (7:1)<br />

(77% yield)<br />

Yokokawa, F.; Asano, T.; Shioiri, T. Org. Lett. 2002, 2, 4169-4172.<br />

OH<br />

S<br />

S<br />

PMBO<br />

O<br />

PMBO<br />

KH, PMBCl,<br />

n-Bu 4NI, THF<br />

(86% yield)<br />

OH<br />

dr: 88:12<br />

O<br />

O<br />

O<br />

PMBO<br />

S<br />

a) Et2BOMe, NaBH4, THF;<br />

Ph<br />

Ph<br />

S<br />

b) 2,2 - dimethoxy propane,<br />

PPTs<br />

(59% yield)<br />

+ (9% all syn)


O<br />

PMBO<br />

<strong>Staudinger</strong> reduction: Synthetic application<br />

O<br />

O<br />

a) OsO 4, NMO, aq. ace<strong>to</strong>ne;<br />

b) NaIO 4, pH 7, buffer, THF;<br />

c) Cp 2TiCH 2AlClMe 2, THF<br />

(72% yield)<br />

a) MsCl, Et 3N, DMAP, CH 2Cl 2<br />

b) n-Bu 4NN 3, DMF, 100 °C<br />

(68% yield)<br />

Ph<br />

PPTs, MeOH<br />

OPMB<br />

O<br />

MeO H<br />

OPMB<br />

O<br />

MeO H<br />

(85% yield)<br />

OPMB<br />

O<br />

MeO H<br />

OMe<br />

OMe<br />

OMe<br />

O<br />

MeO H<br />

Yokokawa, F.; Asano, T.; Shioiri, T. Org. Lett. 2002, 2, 4169-4172.<br />

N<br />

N 3<br />

OTBDPS<br />

O<br />

OPMB<br />

OH<br />

Ph<br />

a) OsO 4, NMO, aq. ace<strong>to</strong>ne;<br />

NaH, MeI,<br />

THF<br />

(98% yield)<br />

b) TBDPSCl, Et 3N, DMAP, CH 2Cl 2<br />

N<br />

Ph 3P,<br />

(94% yield)<br />

aq. THF, 55°C<br />

(68% yield)<br />

O<br />

(!)-Hennoxazole A<br />

OPMB<br />

O<br />

MeO H<br />

O<br />

MeO H<br />

OMe<br />

OPMB<br />

O<br />

MeO H<br />

OPMB<br />

NH 2<br />

OTBDPS<br />

OMe<br />

OMe<br />

OH<br />

Ph<br />

OTBDPS


R 2<br />

Ph<br />

O<br />

P<br />

Ph<br />

OMe<br />

The <strong>Staudinger</strong> Ligation: Introduction<br />

N 3 R 1<br />

electrophilic trap<br />

O<br />

OMe<br />

P N R1 N R<br />

P<br />

Ph<br />

Ph<br />

1<br />

- CH3O Ph Ph<br />

-<br />

H2O R2 R2 R2 Clue: Coupling of abiotic reagents (phosphines and azides)<br />

under biocompatible conditions<br />

Phosphine oxide and R 2 is only present and<br />

covalently bound at reaction position<br />

Allows examination of biological processes<br />

O<br />

O<br />

N<br />

H<br />

P O<br />

Ph Ph<br />

R 1


HN<br />

HN<br />

O<br />

S<br />

S<br />

NH<br />

H<br />

N<br />

H<br />

N<br />

O<br />

Biotin water soluble linker<br />

NH<br />

<strong>Staudinger</strong> ligation on cell surfaces<br />

introduced by unnatural<br />

sialic acid biosynthesis<br />

O<br />

3<br />

N 3<br />

O<br />

Ph 2P<br />

O O<br />

O<br />

H<br />

N<br />

Ph 2P<br />

Saxon, E.; Ber<strong>to</strong>zzi, C. R. Science 2000, 287, 2007-2010.<br />

O<br />

3<br />

H<br />

N<br />

O<br />

HO<br />

H<br />

N<br />

O<br />

OH<br />

OMe<br />

HN<br />

HO<br />

O<br />

O<br />

OH<br />

O<br />

HO<br />

H<br />

N<br />

O<br />

CO 2 -<br />

OH<br />

HO<br />

O<br />

OH<br />

O<br />

CO 2 -<br />

O


<strong>Staudinger</strong> ligation on cell surfaces<br />

Saxon, E.; Ber<strong>to</strong>zzi, C. R. Science 2000, 287, 2007-2010.


Pyrolysis of 6-membered rings: one of the first<br />

industrial routes <strong>to</strong> 1,3-dienes<br />

! (Pt wire)<br />

2-3 mbar<br />

(60% yield)<br />

<strong>Staudinger</strong>, H.; Klever, H. W. Ber. Dtsch. Chem. Ges. 1911, 44, 2212-2215.


efore ca. 1920-1930:<br />

Definition of the word "polymer"<br />

1833: Berzelius [a] : compounds of the same chemical composition<br />

that exhibit very different properties. = isomers, homologues<br />

a) Berzelius, J. Jahresber. Fortsch. Phys. Wissensch. 1833, 12, 63.<br />

b) Berthelot, P. E. M. Bull. Soc. Chim. Fr. 1866, 6, 268.<br />

1866: Berthelot [b] reports the formation of the "polymers"<br />

benzene and styrene upon heating acetylene<br />

The concept of macromolecules was not accepted<br />

ca. 1930: The community accepted <strong>Staudinger</strong>s concept of macromolecules<br />

polymers = macromolecules


natural rubber:<br />

bakelite:<br />

OH<br />

1920: known polymers - structure unknown<br />

n<br />

OH<br />

OH<br />

n<br />

vulcanized rubber:<br />

S<br />

S<br />

S<br />

S<br />

n<br />

S S<br />

n<br />

and others


Proposed wrong structures and misleading experiments<br />

1902: Harries' proposal for natural rubber. [a] self-assembly of dimethylcyclooctadiene<br />

O 3<br />

1914: Pickles' bromination of natural rubber. [b] First proposal of covalent bonds<br />

between isoprene monomer molecules. Underestimation of molecular weight.<br />

n<br />

1923: Brills cristallographic work on silk fibroin [c] :<br />

protein molecules M = 500 - 600 g/mol<br />

a) Harries, C. Ber. Dtsch. Chem. Ges. 1902, 35, 3256.<br />

b) Pickles, S. S. J. Chem. Soc. 1910, 97, 1085.<br />

c) Brill, R. Justus Liebigs Ann. Chem. 1923, 434, 204.<br />

Br 2<br />

O<br />

Br<br />

Br<br />

O<br />

n


1922 [a] :<br />

First experimental evidence<br />

H 2 (100 bar)<br />

Pt, 270 °C<br />

n n<br />

n ?<br />

a) <strong>Staudinger</strong>, H.; Fritschi, J. Helv. Chim. Acta 1922, 5, 785-806.<br />

H<br />

H<br />

similar characteristics


Final evidence: <strong>Staudinger</strong>s viscosity law<br />

for molecules in highly diluted solution (no interaction of molecules):<br />

Einsteins viscosity law: ! sp = K c • N L<br />

M<br />

for one and the same substance in different concentrations:<br />

! sp<br />

c<br />

= K'<br />

<strong>Staudinger</strong>, H.; Heuer, W. Ber. Dtsch. Chem. Ges. 1930, 63, 222-234.<br />

"<br />

! sp = specific viscosity<br />

K = constant (depending on solvent, substance)<br />

N L = Avogadro (Loschmidt) - constant<br />

" = volume of particle<br />

Glucose<br />

NL M " K = K'<br />

c (g/mol) ! sp ! sp/c<br />

1.00<br />

2.11<br />

4.63<br />

10.20<br />

15.72<br />

20.14<br />

24.03<br />

0.027<br />

0.062<br />

0.131<br />

0.316<br />

0.619<br />

0.901<br />

1.216<br />

0.027<br />

0.029<br />

0.028<br />

0.031<br />

0.039<br />

0.045<br />

0.056<br />

association<br />

of<br />

molecules


Final evidence: <strong>Staudinger</strong>s viscosity law<br />

for polystyrene (polymerized by heating, M W > 10000:<br />

! sp<br />

c<br />

= K'<br />

<strong>Staudinger</strong>, H.; Heuer, W. Ber. Dtsch. Chem. Ges. 1930, 63, 222-234.<br />

polystyrene<br />

c (g/mol) ! sp ! sp/c<br />

0.125<br />

0.25<br />

0.5<br />

0.75<br />

1.0<br />

1.5<br />

2.0<br />

Einsteins viscosity law: ! sp = K c • N L<br />

M<br />

"<br />

0.54<br />

1.21<br />

3.05<br />

5.69<br />

9.25<br />

31.00<br />

59.5<br />

4.32<br />

4.84<br />

6.10<br />

7.58<br />

9.25<br />

20.66<br />

29.75<br />

association ?<br />

! sp = specific viscosity<br />

K = constant (depending on solvent, substance)<br />

N L = Avogadro (Loschmidt) - constant<br />

" = volume of particle<br />

what is the volume of a macromolecule?


Final evidence: <strong>Staudinger</strong>s viscosity law<br />

r<br />

h<br />

h = length of molecule<br />

r = "radius" of chain<br />

1/2 h<br />

2r<br />

<strong>Staudinger</strong>, H.; Heuer, W. Ber. Dtsch. Chem. Ges. 1930, 63, 222-234.<br />

macromolecule considered <strong>to</strong> be a cylinder:<br />

" = r 2 # h ! sp = K c • N L • r 2 # h<br />

M<br />

! sp = K c • N L<br />

M<br />

! sp = K' c does not apply!<br />

macromolecule allowed <strong>to</strong> move in volume:<br />

" = 1<br />

2 r # h2 ! sp = K c • NL • r # h2<br />

2 M<br />

! sp = K' c h = K m • c • M<br />

! sp<br />

c<br />

= K m • M does apply!<br />

"


Final evidence: <strong>Staudinger</strong>s viscosity law<br />

polystyrenes, polymerized by heating<br />

n<br />

polymerization<br />

conditions<br />

6 h 260 °C<br />

12 h 150 °C<br />

53 d 100 °C<br />

17 d 65 °C<br />

cold<br />

<strong>Staudinger</strong>, H.; Heuer, W. Ber. Dtsch. Chem. Ges. 1930, 63, 222-234.<br />

! sp<br />

c<br />

3.365<br />

12.26<br />

22.6<br />

30.3<br />

56.0<br />

! sp<br />

c<br />

M<br />

(K m = 0.25 • 10 -3 )<br />

13400<br />

49000<br />

90500<br />

121000<br />

200000<br />

= K m • M


1953: Nobel prize in <strong>Chemistry</strong>


for help with this talk: Marina<br />

Acknowledgements<br />

for the exciting time at Caltech: Brian, S<strong>to</strong>ltz Lab, Reisman Lab

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!