23.12.2012 Views

Electron diffraction: SAED and CBED - CIME - EPFL

Electron diffraction: SAED and CBED - CIME - EPFL

Electron diffraction: SAED and CBED - CIME - EPFL

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Electron</strong> <strong>diffraction</strong>: <strong>SAED</strong> <strong>and</strong> <strong>CBED</strong><br />

P. Stadelmann<br />

<strong>CIME</strong>-<strong>EPFL</strong><br />

Bât. MX-C, Station 12<br />

CH-1015 Lausanne<br />

Switzerl<strong>and</strong><br />

Pierre.Stadelmann@epfl.ch<br />

30 janvier 2009<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong><br />

<strong>Electron</strong> <strong>diffraction</strong> : important concepts<br />

1 Elastic scattering.<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong>


<strong>Electron</strong> <strong>diffraction</strong> : important concepts<br />

1 Elastic scattering.<br />

2 Ewald sphere.<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong><br />

<strong>Electron</strong> <strong>diffraction</strong> : important concepts<br />

1 Elastic scattering.<br />

2 Ewald sphere.<br />

3 Crystal lattice & reciprocal lattice.<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong>


<strong>Electron</strong> <strong>diffraction</strong> : important concepts<br />

1 Elastic scattering.<br />

2 Ewald sphere.<br />

3 Crystal lattice & reciprocal lattice.<br />

4 Structure factor.<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong><br />

<strong>Electron</strong> <strong>diffraction</strong> : elastic scattering<br />

Assumptions =⇒ elastic scattering<br />

�ki : incident wavevector<br />

�kg : scattered wavevector<br />

�g : reciprocal lattice vector<br />

�sg : deviation from exact Bragg condition<br />

1 Energy conservation : |�kg| = |�ki|.<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong>


<strong>Electron</strong> <strong>diffraction</strong> : elastic scattering<br />

Assumptions =⇒ elastic scattering<br />

�ki : incident wavevector<br />

�kg : scattered wavevector<br />

�g : reciprocal lattice vector<br />

�sg : deviation from exact Bragg condition<br />

1 Energy conservation : |�kg| = |�ki|.<br />

2 Momentum transfer : �ki +�g + �sg = �kg.<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong><br />

X-Ray <strong>diffraction</strong> : Ewald sphere picture<br />

�sg = 0<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong>


X-Ray <strong>diffraction</strong> : Bragg law<br />

With energy conservation <strong>and</strong> momentum transfer (�sg = 0) :<br />

=⇒ Bragg law :<br />

|�ki +�g| = |�kg|<br />

k 2<br />

i + 2 × ki × g × cos(�ki,�g)+g 2 = k 2 g<br />

2ki × cos(�ki,�g) =−g<br />

2ki × cos(90 o − θB) =−g<br />

2<br />

λ × sin(θB) =g = 1<br />

dg<br />

2 × dhkl × sin(θB) =λ<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong><br />

<strong>Electron</strong> difrraction : Ewald sphere picture<br />

Two beams at Bragg condition : �sg = 0<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong>


Relrod shape<br />

Why<br />

Answer :<br />

� �2 sin(πζ)<br />

πζ<br />

= sinc 2 (ζ) ?<br />

Specimen is in a box b(x, y, z) given by :<br />

� � � �<br />

x y<br />

b(x, y, z) =rect rect<br />

naa nbb<br />

rect<br />

� �<br />

y<br />

ncc<br />

−→ relrod is the Fourier transform ˜B(ξ, ψ, ζ) of b(x, y, z) :<br />

relrod(ξ, ψ, ζ)) = ˜B(ξ, ψ, ζ) ˜B ∗ (ξ, ψ, ζ)<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong><br />

Relrod shape<br />

Since na <strong>and</strong> nb are very large <strong>and</strong> nc pretty small (why ?) :<br />

˜B(ξ, ψ, ζ) =sinc(naaξ)sinc(nbbψ)sinc(nccζ) ≈ δ(ξ)δ(ψ)sinc(nccζ<br />

˜B(ξ, ψ, ζ) ≈ δ(ξ)δ(ψ)sinc(nccζ)<br />

(See Mathematica notebook relrodShape.nb).<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong>


Relrod shape : a = b = c = 0.5 nm<br />

t = 1 nm<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

- 2 - 1 1 2<br />

2 / t<br />

(see Mathematica notebook relrodShape.nb).<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong><br />

Crystal lattice : [u, v, w] indices<br />

z<br />

[0, 0, 1]<br />

[0, 0, 0]<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong><br />

[0, 1, 1]<br />

[0, 1, 0]<br />

y<br />

[1, 0, 1]<br />

[1, 0, 0]<br />

[1, 1, 0]<br />

x<br />

- 1<br />

� nm


ED reciprocal space : lattice of relrods<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong><br />

(h,k,l) lattice planes (view down [0, 0, 1])<br />

(0, 1, 0)<br />

y<br />

(1, 0, 0)<br />

(h, k, l)?<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong><br />

x


Stereographic projection : cubic<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong><br />

(h,k,l) lattice planes : triclinic<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong>


Stereographic projection : triclinic<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong><br />

Structure factors<br />

The structure factor gives the scattering strength of (h,k,l)<br />

planes.<br />

where :<br />

Fhkl = ∑<br />

i=atomes<br />

fi(shkl)e (2πı(hxi+kyi+lzi))<br />

1 fi(shkl) is the atomic scattering amplitude.<br />

2 (xi, yi, zi) are the fractional coordinates of atom i<br />

(0 ≤ xi < 1).<br />

3 shkl = sin(θ B)<br />

λ<br />

= 1<br />

2d hkl .<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong>


Atomic scattering amplitude<br />

(0,0,1)<br />

(0,0,2)<br />

(0,0,4)<br />

Question : why is the atomic scattering amplitude decreasing with s ?<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong><br />

Examples : extinction rules<br />

Simple cubic : (hkl) no condition.<br />

1 atom at (0, 0, 0).<br />

−→ Fhkl = fi(shkl)<br />

Body centered cubic : (hkl) : h + k + l = 2n<br />

2 atoms at (0,0,0) <strong>and</strong> ( 1<br />

2<br />

, 1<br />

2<br />

1 , 2 ).<br />

Fhkl = fi(shkl)<br />

�<br />

1 + e πı(h+k+l)�<br />

Face centered cubic : (hkl) all even or odd.<br />

4 atoms at (0, 0, 0), (0, 1 1 1 1<br />

2 , 2 ), (1<br />

2 , 0, 2 ), (1<br />

2 , 2 , 0)<br />

�<br />

Fhkl = fi(shkl) 1 + e πı(h+k) + e πı(h+l) + e πı(k+l)�<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong>


FCC extinction rules : ZOLZ [001]<br />

ZOLZ (zeroth order Laue zone : �g ·�u = 0)<br />

h k l Fhkl<br />

0 0 2 4<br />

2 0 0 4<br />

-2 0 0 4<br />

0 2 0 4<br />

0 -2 0 4<br />

2 2 0 4<br />

2 -2 0 4<br />

...<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong><br />

<strong>SAED</strong> : two beams <strong>and</strong> exact Bragg condition<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong>


<strong>SAED</strong> : two beams <strong>and</strong> near Bragg condition<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong><br />

�sg deviation from exact Bragg condition<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong>


�sg deviation from exact Bragg condition<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong><br />

Diffracted intensity<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong>


Intensity : two beams <strong>and</strong> exact Bragg cond.<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong><br />

Intensity : two beams <strong>and</strong> near Bragg cond.<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong>


Diffraction with // beam : exact Bragg cond.<br />

How does the intensity changes with specimen thickness ?<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong><br />

Intensity : two beams, Al, no absorption<br />

Note that the diffracted beam is out of phase by π<br />

2 .<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong>


Intensity : two beams, Al, with absorption<br />

Note that the diffracted beam is out of phase by π<br />

2 .<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong><br />

Intensity : rocking curves, two beams, Al, with<br />

absorption<br />

Specimen thickness 50, 100, 150, 200 nm.<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong>


Intensity : electron channeling (why ?)<br />

Channeling highly dependent of specimen orientation →<br />

ALCHEMI.<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong><br />

[uvw] zone axis <strong>diffraction</strong><br />

�ki parallel à [uvw].<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong>


Al [001] zone axis <strong>diffraction</strong><br />

P. Stadelmann �ki parallel <strong>CIME</strong>-<strong>EPFL</strong> à Bât. [001]. MX-C, Station Note 12 CH-1015 (hkl) Lausanne all even <strong>Electron</strong> Switzerl<strong>and</strong> or <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

odd. <strong>SAED</strong> <strong>and</strong> <strong>CBED</strong><br />

[uvw] zone axis pattern : 3-D <strong>diffraction</strong><br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong>


Laue zone planes : side view<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong><br />

<strong>SAED</strong> on zone axis<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong>


Indexing Zone Axis Pattern (ZAP)<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong><br />

<strong>SAED</strong> summary : good news<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong>


<strong>SAED</strong> : bad news 1<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong><br />

<strong>SAED</strong> : bad news 2<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong>


<strong>SAED</strong> : conclusions<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong><br />

How to overcome <strong>SAED</strong> limitations ?<br />

1 Conical illumination → full rocking curve at once.<br />

2 Focused beam → very small irradiated area.<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong>


<strong>CBED</strong> : important concepts<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong><br />

<strong>CBED</strong> : accessible information<br />

Advantages :<br />

1 Intensities.<br />

2 Symmetries.<br />

3 Very precise alignment of <strong>diffraction</strong> conditions.<br />

4 Very small volume (≤ 20 nm 3 ).<br />

Problems :<br />

1 Contamination.<br />

2 Dynamical behavior → thick specimen.<br />

3 Longer calculations.<br />

4 Energy filtering necessary.<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong>


<strong>CBED</strong> : rays scheme<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong><br />

<strong>CBED</strong> disks<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong>


<strong>CBED</strong> disks : excess/deficiency lines<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong><br />

<strong>CBED</strong> : rocking curve<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong>


<strong>CBED</strong> : rocking curve<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong><br />

<strong>CBED</strong> : lines <strong>and</strong> fringes<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong>


<strong>CBED</strong> : HOLZ lines<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong><br />

<strong>CBED</strong> : ZAP HOLZ lines<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong>


<strong>CBED</strong> : convergence angle effect<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong><br />

<strong>CBED</strong> : convergence angle effect<br />

Why increasing incident beam convergence is very useful ?<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong>


LA<strong>CBED</strong> : Large Angle <strong>CBED</strong><br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong><br />

LA<strong>CBED</strong> : overlap of disks<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong>


LA<strong>CBED</strong> : spherical aberration effect<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong><br />

LA<strong>CBED</strong> : superposition of information<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong>


LA<strong>CBED</strong> : <strong>SAED</strong> aperture<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong><br />

LA<strong>CBED</strong> : deficiency lines<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong>


LA<strong>CBED</strong> : dark field<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong><br />

LA<strong>CBED</strong> : independence of Δh<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong>


LA<strong>CBED</strong> : energy filtering<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong><br />

LA<strong>CBED</strong> : crystal direction mapping<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong>


LA<strong>CBED</strong> : conclusions<br />

P. Stadelmann <strong>CIME</strong>-<strong>EPFL</strong> Bât. MX-C, Station 12 CH-1015 Lausanne <strong>Electron</strong> Switzerl<strong>and</strong> <strong>diffraction</strong>: Pierre.Stadelmann@epfl.ch<br />

<strong>SAED</strong> <strong>and</strong> <strong>CBED</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!