Speedfax 2017

12.01.2021 Views

Technical Harmonics / K-factor Ratings Typical Symptoms of Harmonic Problems b Distribution / lighting transformers overheating even when measured load current is within transformer rating b Neutral cable / bus overheating even with balanced load b Fuses blowing and circuit breakers tripping at currents within rating Effect Of Harmonics On Transformers Non-sinusoidal current generates extra losses and heating of transformer coils thus reducing efficiency and shortening the life expectancy of the transformer. Coil losses increase with the higher harmonic frequencies due to higher eddy current loss in the conductors. Furthermore, on a balanced linear power system, the phase currents are 120 degrees out of phase and offset one another in the neutral conductor. But with the “Triplen” harmonics (multiple of 3) the phase currents are in phase and they are additive in this neutral conductor. This may cause installations with non-linear loads to double either the size or number of neutral conductors. Table 17.5 Type K4 K13 K20 K30 Linear Load 100% 100% 100% 100% K-Factor Ratings Non- Linear Load 50% 100% 125% 150% Total K- Factor Load Valve 4.0 13.0 20.0 30.0 Measurement of Harmonics For existing installations, the extent of the harmonics can be measured with appropriate instruments commonly referred to as “Power Harmonic Analyzers”. This service is offered by many consulting service organizations. For new construction, such information may not be obtainable. For such situations, it is best to assume the worse case condition based on experience with the type and mix of loads. Sizing Transformers for Non-Linear Loads ANSI / IEEE C57.110-2008 has a procedure for de-rating standard distribution transformers for non-linear loading. However this is not the only approach. A transformer with the appropriate K-Factor specifically designed for non-linear loads can be specified. K-Factors K-Factor is a ratio between the additional losses due to harmonics and the eddy losses at 60 Hz. It is used to specify transformers for non-linear loads. Note that K-Factor transformers do not eliminate harmonic distortion; they withstand the non-linear load condition without overheating. Calculating K-Factor Loads 1. List the kVA value for each load category to be supplied. Next, assign a K-factor designation that corresponds to the relative level of harmonics drawn by each type of load. Refer to Table 17.7. Table 17.7 Description Estimating K-Factor Loads Incandescent Lighting Electric Resistance Heating Motors (without solid state drives) Control Transformers / Electromagnetic Control Devices Motor-Generators (without solid state drives) Standard Distribution Transformers Electric Discharge Lighting (HID) UPS with Optional Input Filter Welders Induction Heating Equipment PLCs and Solid State Controls Telecommunications Equipment (PBX) UPS without Input Filtering Multiwire Receptacle Circuits in General Care Areas of Health Care Facilities, Schools, etc. Multiwire Receptacle Circuits Supplying Testing Equipment on an Assembly Line Main-Frame Computer Loads Solid State Motor Drives (variable speed drives) Multiwire Receptacle Circuits in Critical Care Areas in Hospitals Multiwire Receptacle Circuits in Industrial, Medical and Educational Laboratories Multiwire Receptacle Circuits in Commercial Office Spaces Small Main-Frames (mini and micro) Typical loads and K-Factor values for estimating purposes only. 2. Multiply the kVA of each load or load category times the Index of Load K-rating (I LK ) that corresponds to the assigned K-factor rating. This result is an indexed kVA-I LK value. KVA x I LK = kVA-I LK . 3. Tabulate the total connected load kVA for all load categories to be supplied. 4. Next, add-up the kVA-I LK values for all loads or load categories to be supplied by the transformer. 5. Divide the grand total kVA-I LK value by the total kVA load to be supplied. This will give an average I LK for that combination of loads. Total kVA-I LK / Total kVA = average I LK . 6. From Table 17.7 find the K-factor rating whose I LK is equal to or greater than the calculated I LK . K-Factor K1 K4 K13 K20 Selection I LK 0.00 25.82 57.74 80.94 K30 123.54 TECHNICAL T T-16 Siemens Industry, Inc. SPEEDFAX Product Catalog

Technical Table 1 Copper Conductors Aluminum Conductors Copper-Clad Aluminum Conductors 60°C 75°C 90°C 60°C 75°C 90°C Size (140°F) (167°F) (194°F) (140°F) (167°F) (194°F) Size Types Types Types Types Types Types TBS TBS, SA SA, SIS, SIS THHN AWG RHW FEP RHW THHW AWG Kcmil THW FEPB THHW THW-2, THWN-2, Kcmil THWN RHH THW RHH, RHW-2 XHHW THHN THWN USE-2 TW USE THHW TW XHHW XHH, XHHW UF ZW XHHW UF USE XHHW-2, ZW-2 0018 — — 014 — — — — 0016 — — 018 — — — — 0014 b 015 020 025 — — — — 0012 b 020 025 030 015 020 a 025 a 12 0010 b 030 035 040 025 030 a 035 a 10 0008 040 050 055 035 040 045 8 0006 055 065 075 040 050 055 6 0004 070 085 095 055 065 075 4 0003 085 100 115 065 075 085 3 0002 095 115 130 075 090 100 2 0001 110 130 145 085 100 115 1 0000 1 ⁄0 125 150 170 100 120 135 0000 1 ⁄0 0000 2 ⁄0 145 175 195 115 135 150 0000 2 ⁄0 0000 3 ⁄0 165 200 225 130 155 175 0000 3 ⁄0 0000 4 ⁄0 195 230 260 150 180 205 0000 4 ⁄0 250 215 255 290 170 205 230 250 300 240 285 320 195 230 260 300 350 260 310 350 210 250 280 350 400 280 335 380 225 270 305 400 500 320 380 430 260 310 350 500 600 350 420 475 285 340 385 600 700 385 460 520 315 375 425 700 750 400 475 535 320 385 435 750 800 410 490 555 330 395 440 800 900 435 520 585 355 425 480 900 1000 455 545 615 375 445 500 1000 1250 495 590 665 405 485 545 1250 1500 525 625 705 435 520 585 1500 1750 545 650 735 455 545 615 1750 2000 555 665 750 470 560 630 2000 General NEC Table 310.15(B)(16) (formerly Table 310.16) Allowable Ampacities of Insulated Conductors Rated Up to and Including 2000 Volts, 60°C Through 90°C (140°F Through 194°F), Not More Than Three Current-Carrying Conductors in Raceway, Cable, or Earth (Directly Buried), Based on Ambient Temperature of 30°C (86°F) a Table 2 Correction Factors for Ambient Temperature Over 30°C (86°F) Based on NEC Table 310.15(B)(2)(A) Ambient For ambient temperature over 30°C, (86°F) multiply the ampacities shown above by the appropriate factor Ambient Temperature°C shown below. Temperature°F 10 or less 1.29 1.20 1.15 1.29 1.20 1.15 50 or less 11-15 1.22 1.15 1.12 1.22 1.15 1.12 51-59 16-20 1.15 1.11 1.08 1.15 1.11 1.08 60-68 21–25 1.08 1.05 1.04 1.08 1.05 1.04 69–77 26–30 1.00 1.00 1.00 1.00 1.00 1.00 78–86 31–35 .91 .94 .96 .91 .94 .96 87–95 36–40 .82 .88 .91 .82 .88 .91 96–104 41–45 .71 .82 .87 .71 .82 .87 105–113 46–50 .58 .75 .82 .58 .75 .82 114–122 51–55 .41 .67 .76 .41 .67 .76 123–131 56–60 — 0.58 .71 — 0.58 .71 132–140 61-65 — 0.47 0.65 — 0.47 0.65 141-149 66-70 — 0.33 0.58 — 0.33 0.58 150-158 71-75 — — 0.50 — — 0.50 159-167 76-80 — — 0.41 — — 0.41 168-176 81-85 — — 0.29 — — 0.29 177-185 T TECHNICAL aRefer to 310.15(B)(2) for the ampacity correction factors where the ambient temperature is other than 30°C (86°F) bRefer to 240.4(D) for conductor overcurrent protection limitations. Siemens Industry, Inc. SPEEDFAX Product Catalog T-17

Technical<br />

Table 1<br />

Copper Conductors<br />

Aluminum Conductors<br />

Copper-Clad Aluminum Conductors<br />

60°C 75°C 90°C 60°C 75°C 90°C<br />

Size (140°F) (167°F) (194°F) (140°F) (167°F) (194°F) Size<br />

Types Types Types Types Types Types<br />

TBS<br />

TBS,<br />

SA<br />

SA, SIS,<br />

SIS<br />

THHN<br />

AWG RHW FEP RHW THHW AWG<br />

Kcmil THW FEPB THHW THW-2, THWN-2, Kcmil<br />

THWN RHH THW RHH, RHW-2<br />

XHHW THHN THWN USE-2<br />

TW USE THHW TW XHHW XHH, XHHW<br />

UF ZW XHHW UF USE XHHW-2, ZW-2<br />

0018 — — 014 — — — —<br />

0016 — — 018 — — — —<br />

0014 b 015 020 025 — — — —<br />

0012 b 020 025 030 015 020 a 025 a 12<br />

0010 b 030 035 040 025 030 a 035 a 10<br />

0008 040 050 055 035 040 045 8<br />

0006 055 065 075 040 050 055 6<br />

0004 070 085 095 055 065 075 4<br />

0003 085 100 115 065 075 085 3<br />

0002 095 115 130 075 090 100 2<br />

0001 110 130 145 085 100 115 1<br />

0000 1 ⁄0 125 150 170 100 120 135 0000 1 ⁄0<br />

0000 2 ⁄0 145 175 195 115 135 150 0000 2 ⁄0<br />

0000 3 ⁄0 165 200 225 130 155 175 0000 3 ⁄0<br />

0000 4 ⁄0 195 230 260 150 180 205 0000 4 ⁄0<br />

250 215 255 290 170 205 230 250<br />

300 240 285 320 195 230 260 300<br />

350 260 310 350 210 250 280 350<br />

400 280 335 380 225 270 305 400<br />

500 320 380 430 260 310 350 500<br />

600 350 420 475 285 340 385 600<br />

700 385 460 520 315 375 425 700<br />

750 400 475 535 320 385 435 750<br />

800 410 490 555 330 395 440 800<br />

900 435 520 585 355 425 480 900<br />

1000 455 545 615 375 445 500 1000<br />

1250 495 590 665 405 485 545 1250<br />

1500 525 625 705 435 520 585 1500<br />

1750 545 650 735 455 545 615 1750<br />

2000 555 665 750 470 560 630 2000<br />

General<br />

NEC Table 310.15(B)(16) (formerly Table 310.16) Allowable Ampacities of Insulated Conductors Rated Up to and Including<br />

2000 Volts, 60°C Through 90°C (140°F Through 194°F), Not More Than Three Current-Carrying Conductors in Raceway,<br />

Cable, or Earth (Directly Buried), Based on Ambient Temperature of 30°C (86°F) a<br />

Table 2<br />

Correction Factors for Ambient Temperature Over 30°C (86°F) Based on NEC Table 310.15(B)(2)(A)<br />

Ambient For ambient temperature over 30°C, (86°F) multiply the ampacities shown above by the appropriate factor Ambient<br />

Temperature°C shown below. Temperature°F<br />

10 or less 1.29 1.20 1.15 1.29 1.20 1.15 50 or less<br />

11-15 1.22 1.15 1.12 1.22 1.15 1.12 51-59<br />

16-20 1.15 1.11 1.08 1.15 1.11 1.08 60-68<br />

21–25 1.08 1.05 1.04 1.08 1.05 1.04 69–77<br />

26–30 1.00 1.00 1.00 1.00 1.00 1.00 78–86<br />

31–35 .91 .94 .96 .91 .94 .96 87–95<br />

36–40 .82 .88 .91 .82 .88 .91 96–104<br />

41–45 .71 .82 .87 .71 .82 .87 105–113<br />

46–50 .58 .75 .82 .58 .75 .82 114–122<br />

51–55 .41 .67 .76 .41 .67 .76 123–131<br />

56–60 — 0.58 .71 — 0.58 .71 132–140<br />

61-65 — 0.47 0.65 — 0.47 0.65 141-149<br />

66-70 — 0.33 0.58 — 0.33 0.58 150-158<br />

71-75 — — 0.50 — — 0.50 159-167<br />

76-80 — — 0.41 — — 0.41 168-176<br />

81-85 — — 0.29 — — 0.29 177-185<br />

T TECHNICAL<br />

aRefer to 310.15(B)(2) for the ampacity correction factors<br />

where the ambient temperature is other than 30°C (86°F)<br />

bRefer to 240.4(D) for conductor overcurrent protection<br />

limitations.<br />

Siemens Industry, Inc. SPEEDFAX Product Catalog T-17

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!