22.12.2012 Views

3. FOOD ChEMISTRy & bIOTEChNOLOGy 3.1. Lectures

3. FOOD ChEMISTRy & bIOTEChNOLOGy 3.1. Lectures

3. FOOD ChEMISTRy & bIOTEChNOLOGy 3.1. Lectures

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chem. Listy, 102, s265–s1311 (2008) Food Chemistry & Biotechnology<br />

pharmacological activity. This evidence was clearly described<br />

in lipid theory advanced by Meyer and Overton. According<br />

to this theory, log P is a measure of hydrophobicity which is<br />

important for the penetration and distribution of the drug, but<br />

also for the interaction of drug with receptors. Therefore, it<br />

can be suggested that lipophilic properties have to be checked<br />

for designing of potent antifungal agents as they are deciding<br />

factors for its activity.<br />

Fig. 2. Plot of residual values against the experimentally observed<br />

log 1/c MIC values<br />

Conclusions<br />

QSAR analysis was performed to estimate the quantitative<br />

effects of the lipophilicity parameter, logP, of the different<br />

substituted 2-amino and 2-methylbenzimidazole derivatives<br />

on their antifungal activity against Saccharomyces<br />

cerevisiae. log P values were calculated for each molecule,<br />

and high-quality mathematical model relating the inhibitory<br />

activity, log 1/c MIC , and log P was defined . . For the estimation<br />

of the predictive ability of this model, the cross-validation<br />

statistical technique was applied. Comparison of the linear,<br />

quadratic and cubic relationships showed that the cubic equation<br />

was the most appropriate for prediction of antifungal<br />

activity of the investigated class of molecules. It is concluded<br />

that strong influence of the partition coefficient, log P, is<br />

important for the inhibitory activity and this parameter is usually<br />

related to pharmacological activity. The obtained mathematical<br />

model was used to predict antifungal activity of the<br />

benzimidazoles investigated and close agreement between<br />

experimental and predicted values was obtained. It indicates<br />

that this model can be successfully applied to predict the antifungal<br />

activity of these class of molecules.<br />

This work has been supported by Ministry of Science<br />

and Environment Protection of the Republic of Serbia as are<br />

the part of the project No. 142028<br />

REFEREnCES<br />

1. Goker H., Alp M., Yildiz S.: Molecules 10, 1377 (2000).<br />

2. nguyen P. T. M., Baldeck J. D., Olsson J., Marquis R. E.:<br />

Oral Microbiol. Immunol. 20, 93 (2005).<br />

s756<br />

<strong>3.</strong> Podunavac-Kuzmanović S. O., Leovac V. M., Perišić-Janjić<br />

n. U., Rogan J., Balaž J.: J. Serb. Chem. Soc. 64, 381<br />

(1999).<br />

4. Podunavac-Kuzmanović S. O., Cvetković D.: J. Serb.<br />

Chem. Soc. 75, 381 (2007).<br />

5. Ayhan-Kilcigil G., Altanlar n.: Turk. J. Chem. 30, 223<br />

(2006).<br />

6. Boiani M., Gonzalez M.: J. Med. Chem. 5, 409 (2005).<br />

7. Garuti L., Roberti M., Cermelli C.: Bioorg. Medicinal<br />

Chem. Letter 9, 2525 (1999).<br />

8. Kazimierczuk Z., Upcroft J. A., Upcroft P., Gorska A., Starosciak<br />

B., Laudy A.: Acta Biochim. Polon. 49, 185 (2002).<br />

9. Akbay A., Oren I., Temiz-Arpaci O., Aki-Sener E., Yalcin I.:<br />

Arzneim.-Forcsh./Drug Res. 53, 266 (2003).<br />

10. Bevan D.: QSAR and Drug Design. network Science,<br />

http://www.netsci.org/Science/Compchem/feature12.html.<br />

11. QSAR, The Australian Computational Chemistry via the<br />

InternetProject,www.chem.swin.edu.au/modukes/mod4/<br />

index.html.<br />

12. Hansch C.: J. Med. Chem. 19, 1 (1976).<br />

1<strong>3.</strong> Vasanthanathan P., Lakshmi M., Babu M. A., Gupta A. K.,<br />

Kaskhedikar S. G.: Chem. Pharm. Bull. 54, 583 (2006).<br />

14. Melagraki G., Afantitis A., Sarimveis H., Igglessi-Markopoulou<br />

O., Supuran C. T.: Bioorg. Med. Chem. 14, 1108<br />

(2006).<br />

15. Podunavac-Kuzmanović S. O., Markov S. L., Barna D. J.:<br />

J. Theor. Comp. Chem. 6, 687 (2007).<br />

16. Podunavac-Kuzmanović, S. O., Barna, D. J., Cvetković<br />

D. M.: Acta Periodica Technol. 38, 139 (2007).<br />

17. Leo A., Hansch C., Elkins D.: Chem. Rev. 71, 525 (1971).<br />

18. nasal A., Siluk D., Kaliszan R.: Curr. Med. Chem. 10, 381<br />

(2003).<br />

19. Tiperciuc B, Sarbu C.: J. Liq. Chrom. Rel. Technol. 29,<br />

2257 (2006).<br />

20. Perišić-Janjić n. U., Podunavac-Kuzmanović S. O.: J.<br />

Planar Chromatogr. 21, 135 (2008).<br />

21. Perišić-Janjić n. U., Podunavac-Kuzmanović S. O., Balaž,<br />

J. S., Vlaović Dj.: J. Planar Chromatogr. 13, 123 (2000).<br />

22. Slawik T., Paw B.: J.Liq. Chromatogr. 27, 1043 (2004).<br />

2<strong>3.</strong> Vlaović Đ., Čanadanović-Brunet J., Balaž J., Juranić I., Đoković<br />

D., Mackenzie K.: Biosci. Biotech. Biochem. 56, 199<br />

(1992).<br />

24. national Committee for Clinical Laboratory Standards,<br />

nCCLS Approval Standard Document M2-A7. Vilanova,<br />

Pa, U.S.A. 2000.<br />

25. national Committee for Clinical Laboratory Standards,<br />

NCCLS Approval Standard Document M7-A5. Vilanova,<br />

Pa, U.S.A. 2000.<br />

26. CS. Chem. Office, Version 7.0, Cambridge Soft Corporation,<br />

100 Cambridge Park Drive, Cambridge, MA 02140-<br />

2317, U.S.A. 2001.<br />

27. www.ncss.com.<br />

28. Lien E.J.: Side Effects and Drug Design. Marcel Dekker,<br />

new York 1987.<br />

29. Jalali-Heravi M., Kyani A.: J. Chem. Inf. Comput. Sci. 44,<br />

1328 (2004).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!