21.12.2012 Views

Synopsis of Biological Data on the Chum Salmon, Oncorhynchus keta

Synopsis of Biological Data on the Chum Salmon, Oncorhynchus keta

Synopsis of Biological Data on the Chum Salmon, Oncorhynchus keta

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

leF/S 41<br />

salm<strong>on</strong> - 1,23(01),009,03<br />

GICAL DATA ON THE<br />

F THE INTERIOR<br />

) 1792<br />

rcular 315


UNITED STATES DEPARTMENT OF THE INTERIOR<br />

Walter J. Hickel, Secretary<br />

Russell E. Train, Under Secretary<br />

Leslie L. Glasgow, Assistant Secretary<br />

for Fish and Wildlife, Parks, and Marine Resources<br />

Charles H. Meacham, Commissi<strong>on</strong>er, U.S. FISH AND WILDLIFE SERVICE<br />

Philip M. Roedel, Director, BUREAU OF COMMERCIAL FISHERIES<br />

<str<strong>on</strong>g>Synopsis</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Biological</str<strong>on</strong>g> <str<strong>on</strong>g>Data</str<strong>on</strong>g><br />

<strong>on</strong> <strong>the</strong> <strong>Chum</strong> Salm<strong>on</strong>,<br />

<strong>Oncorhynchus</strong> <strong>keta</strong> {Walbaum} 1792<br />

By<br />

RICHARD G. BAKKALA<br />

FAO Species <str<strong>on</strong>g>Synopsis</str<strong>on</strong>g> No. 41<br />

Circular 315<br />

Washingt<strong>on</strong>, D.C.<br />

March 1970


CONTENTS<br />

Introducti<strong>on</strong> •• . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................. .<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

Identity. . . . . . . . . . . . . . . . . . . . . . . . . . . . ............. .<br />

1.1<br />

1.2<br />

1.3<br />

Nomenclature.<br />

Tax<strong>on</strong>omy.<br />

Morphology.<br />

Distributi<strong>on</strong> .••<br />

2.1<br />

2.2<br />

2.3<br />

2.4<br />

Total areas •.•..•.•••••<br />

Differential distributi<strong>on</strong> .••.<br />

Determinants <str<strong>on</strong>g>of</str<strong>on</strong>g> distributi<strong>on</strong>.<br />

Hybridizati<strong>on</strong> •••••.•.•..<br />

Bi<strong>on</strong>omics and life history<br />

3.1<br />

3.2<br />

3.3<br />

3.4<br />

3.5<br />

Reproducti<strong>on</strong> .•<br />

Preadult phase.<br />

Adult phas e .<br />

utriti<strong>on</strong> and growth<br />

Behavior ••.••..•<br />

Populati<strong>on</strong> ...<br />

4.1<br />

4.2<br />

4.3<br />

4.4<br />

4.5<br />

4.6<br />

Structure ....••.••..••....••<br />

Abundance and density (<str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong>)<br />

Natality and recruitment<br />

Mortality and morbidity ...••.•..<br />

Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> •....••••••••••<br />

Populati<strong>on</strong> in community and ecosystem<br />

Fishery, ............................................. • ..<br />

5.1<br />

5.2<br />

5.3<br />

5.4<br />

Fishing equipment.<br />

Fishing areas .•••<br />

Fishing seas<strong>on</strong>s .•<br />

Fishing operati<strong>on</strong>s and results<br />

Protecti<strong>on</strong> and management . . . . . . . . . . . . . . .............. .<br />

6.1<br />

6.2<br />

6.3<br />

6.4<br />

6.5<br />

Regulatory (legislative) measures .•..••.•••.•••••••••<br />

C<strong>on</strong>trol or alterati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> physical features <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> envir<strong>on</strong>ment.<br />

C<strong>on</strong>trol or alterati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical features <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> envir<strong>on</strong>ment.<br />

C<strong>on</strong>trol or alterati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> biological features <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> envir<strong>on</strong>ment.<br />

Artificial stocking ....•••••.•••.••••••••••••••.•••••<br />

P<strong>on</strong>d fish culture ......................................... .<br />

Literature cited .............................................. .<br />

iii<br />

1<br />

1<br />

1<br />

5<br />

8<br />

8<br />

9<br />

10<br />

11<br />

12<br />

12<br />

24<br />

28<br />

29<br />

39<br />

42<br />

42<br />

46<br />

50<br />

51<br />

57<br />

59<br />

60<br />

60<br />

64<br />

65<br />

65<br />

73<br />

7 3<br />

73<br />

74<br />

74<br />

74<br />

76<br />

76


<str<strong>on</strong>g>Synopsis</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Biological</str<strong>on</strong>g> <str<strong>on</strong>g>Data</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Chum</strong> Salm<strong>on</strong>,<br />

<strong>Oncorhynchus</strong> keto (Walbaum) 1792<br />

By<br />

RICHARD G. BAKKALA, Fishery Biologi t<br />

Bureau <str<strong>on</strong>g>of</str<strong>on</strong>g> Commercial Fisheries <str<strong>on</strong>g>Biological</str<strong>on</strong>g> Laboratory<br />

Seattle, Washingt<strong>on</strong> 98102<br />

ABSTRACT<br />

Informati<strong>on</strong> presented <strong>on</strong> <strong>the</strong> chum salm<strong>on</strong> includes nomenclature, tax<strong>on</strong>omy,<br />

morphology, distributi<strong>on</strong>, ecology and life history, populati<strong>on</strong> dynamic , h h ry,<br />

and protecti<strong>on</strong> and management.<br />

INTRODUCTION<br />

The Fisheries Biology Branch <str<strong>on</strong>g>of</str<strong>on</strong>g> FAO has<br />

formed a "<str<strong>on</strong>g>Synopsis</str<strong>on</strong>g> Associati<strong>on</strong>," composed<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> fishery agencies willing to c<strong>on</strong>tribute to <strong>the</strong><br />

preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> synopses <strong>on</strong> fishes and o<strong>the</strong>r<br />

aquatic organisms <str<strong>on</strong>g>of</str<strong>on</strong>g> commercial value.<br />

Several organizati<strong>on</strong>s, including <strong>the</strong> U.S, Fish<br />

and Wildlife Service, Bureau <str<strong>on</strong>g>of</str<strong>on</strong>g> Commercial<br />

Fisheries, have agreed to collaborate with FAO<br />

in this undertaking. Synopses prepared by<br />

Bureau pers<strong>on</strong>nel will be published in <strong>the</strong><br />

circular series and will follow <strong>the</strong> format prescribed<br />

by Rosa (1965).<br />

The primary purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> this series is to make<br />

existing informati<strong>on</strong> rea d i 1 y available to<br />

fishery scientists according to a standard<br />

format, and <strong>the</strong>reby to draw attenti<strong>on</strong> to gaps<br />

in knowledge. It is hoped that synopses in this<br />

series will be useful to scientists initiating<br />

investigati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> species c<strong>on</strong>cerned, or <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

related <strong>on</strong>es, as a means <str<strong>on</strong>g>of</str<strong>on</strong>g>exchange<str<strong>on</strong>g>of</str<strong>on</strong>g>knowledge<br />

am<strong>on</strong>g thos e already working <strong>on</strong> <strong>the</strong><br />

species and as <strong>the</strong> basis for comparative study<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> fishery resources.<br />

The c hum salm<strong>on</strong> (<strong>Oncorhynchus</strong> <strong>keta</strong>l<br />

pawns in five countries (<strong>the</strong> United States,<br />

Canada, Japan, Korea, and <strong>the</strong> U.S.S.R.) and<br />

is most abundant <strong>on</strong> <strong>the</strong> Asian c<strong>on</strong>tinent; <strong>the</strong>refore,<br />

a complete synopsis <strong>on</strong> its biology should<br />

be based <strong>on</strong> studies from all five countries. I<br />

tried to achieve this aim as nearly as possible.<br />

My review <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> literature vas restricted,<br />

however, to <strong>the</strong> stUdies published in Engli h<br />

or to <strong>the</strong> Japanese and Russian studies that<br />

had been translated into English. C<strong>on</strong>sequently<br />

Orne important informati<strong>on</strong> has undoubtedly<br />

been omitted, and I hope that it will be added<br />

to <strong>the</strong> synopsis when it is updated in <strong>the</strong> future.<br />

IDENTITY<br />

1.1 Nomenclature<br />

1.11 Valid name<br />

<strong>Oncorhynchus</strong> <strong>keta</strong> ( "albaum) Jord n an Gilbert<br />

(1882: 305, fig, 1).<br />

1.12 Syn<strong>on</strong>ymy<br />

Adapted from Jordan and Ev rm nn (1 9 ,.<br />

Salmo <strong>keta</strong> vel kayko Walbaum (1792 72).<br />

Salm lagocephalus Pallas (1811: 372).<br />

Salmojap<strong>on</strong>ensis Pallas (1811: 32).<br />

Salmo c<strong>on</strong>suetus Richard <strong>on</strong> (l 54: 1 7).<br />

Salmo dermatinus Richards<strong>on</strong> (l 54: 16 ).<br />

Salmo canis Suckley (18 2: 9).<br />

Oncorhynchu lasocephalu G u her<br />

161).<br />

<strong>Oncorhynchus</strong> <strong>keta</strong> Jordan nd Gllb r (<br />

305).<br />

1.2 Tax<strong>on</strong>omy<br />

1.21 Affmlhe (Accord n<br />

1947)<br />

Supragenerlc<br />

Phylum<br />

Subphylum<br />

Supercla<br />

Sene<br />

CI<br />

ubc all<br />

Or er<br />

Suborder<br />

Famlly<br />

B r ,


Figure 1.--The chum salm<strong>on</strong>, <strong>Oncorhynchus</strong> <strong>keta</strong> (Walb urn). (Photo r h counesy tl<strong>on</strong>al Fi h rman)<br />

Generic<br />

<strong>Oncorhynchus</strong> Suckley, 1861 (1862: 313)<br />

Genotype:<br />

Salmo scouleri (Richards<strong>on</strong>)<br />

The generic name is derived from Greek<br />

Onkos (hook) and rhynchos (snout).<br />

The generic c<strong>on</strong>cept used here is that <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Jordan and Evermann (1896):<br />

"Body el<strong>on</strong>gate, subfusiform, or compressed.<br />

Mouth wide; <strong>the</strong> maxillary l<strong>on</strong>g,<br />

lanceolate, usually extending bey<strong>on</strong>d <strong>the</strong><br />

eye; jaws with moderate teeth, which become<br />

in <strong>the</strong> adult male enormously enlarged<br />

in fr<strong>on</strong>t. Vomer l<strong>on</strong>g and narrow,<br />

flat, with a series <str<strong>on</strong>g>of</str<strong>on</strong>g> teeth both <strong>on</strong> <strong>the</strong><br />

head and <strong>the</strong> shaft, <strong>the</strong> latter series comparatively<br />

short and weak; palatines with<br />

a series <str<strong>on</strong>g>of</str<strong>on</strong>g> teeth; t<strong>on</strong>gue with a marginal<br />

series <strong>on</strong> each side; teeth <strong>on</strong> vomer and<br />

t<strong>on</strong>gue <str<strong>on</strong>g>of</str<strong>on</strong>g>ten lost with age; no teeth <strong>on</strong> <strong>the</strong><br />

hyoid b<strong>on</strong>e. Branchiostegals more or less<br />

increased in number. Scales moderate or<br />

sma 11. Dorsal fin moderate; anal fin<br />

comparatively el<strong>on</strong>gate, <str<strong>on</strong>g>of</str<strong>on</strong>g> 14 to 20 rays.<br />

Pyloric appendages in increased number.<br />

Gill rakers ra<strong>the</strong>r numerous. Ova large.<br />

Sexual peculiarities very str<strong>on</strong>gly developed;<br />

<strong>the</strong> snout in <strong>the</strong> adult males in summer<br />

and fall greatly distorted; <strong>the</strong> premaxillaries<br />

prol<strong>on</strong>ged, hooking over <strong>the</strong><br />

lower jaw, which in turn is greatly el<strong>on</strong>gate<br />

and somewhat hooked at tip; <strong>the</strong> teeth<br />

<strong>on</strong> <strong>the</strong>se b<strong>on</strong>es also greatly enlarged. The<br />

body becomes deep and compressed; a<br />

fleshy hump is developed before <strong>the</strong> dor­<br />

&al fin, and <strong>the</strong> scales <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> back become<br />

embedded in <strong>the</strong> flesh; <strong>the</strong> flesh, which is<br />

red and rich in spring, becomes dry and<br />

poor. Salm<strong>on</strong>, mostly <str<strong>on</strong>g>of</str<strong>on</strong>g> large size, ascending<br />

<strong>the</strong> rivers tributary to <strong>the</strong> North<br />

2<br />

Pac 1 fl c in<br />

pawnmg m th<br />

Sp ciflC<br />

orth Amenca and ASi ,<br />

fall. "<br />

The type sp Clm n 1 Salmo <strong>keta</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 'albaum<br />

(1792: 72) from <strong>the</strong> Kamchatka Rw r. The<br />

orlgmal escnpti<strong>on</strong>, a Cited by 0 ada (1960)<br />

lS:<br />

S lmo <strong>keta</strong> VEL KA YKO W ALBA<br />

D. 14. P. 15. v. 11. A. 1<br />

" Caput breve, obtu urn. Corpu lmmac ­<br />

ulatum. Ca a Lunata. Caro alba.<br />

Squamae argenteae. Dorsum viri escens .<br />

Capitur copiose in flumlninbu Kamtschatkae.<br />

"Salmo <strong>keta</strong> VEL KA YKO, Krascheinnikow,<br />

l.c. pag. 181. Salm<strong>on</strong>em Tarkam<br />

magnitudine aliquatenus superat: Caput<br />

obl<strong>on</strong>gum, planum. Rostrum resimum.<br />

Dentes, post quam aliquam in in flumine<br />

moratus est, car<strong>on</strong>is slrniles fuint. Lingua<br />

acuta. C a ud a parum bifurca. Dorsum<br />

atro-viride, latera & abdomen similiter<br />

colorata ac alEs selm<strong>on</strong>ibus sed absque<br />

maculis. "<br />

Species diagnosis according to Clemens and<br />

Wilby (1946):<br />

"Body el<strong>on</strong>gate, somewhat compressed;<br />

caudal peduncle slender. Head c<strong>on</strong>ical;<br />

mouth terminal; teeth c<strong>on</strong>ical, str<strong>on</strong>gly<br />

developed, becoming fang-like in mature<br />

males; branchiostegals, 10 to 16; rakers<br />

<strong>on</strong> first gill arch, 19 to 26, short, stout,<br />

smooth, widely spaced. Fins: dorsal (1),<br />

10 to 13; adipose, small, slender, fleshy;<br />

anal, 13 to 17; pelvic, abdominal, each<br />

with fleshy appendage at base; caudal,<br />

e rna r gina t e. Lateral line: slightly decurved,<br />

<strong>the</strong>n straight. Scales: cycloid; in<br />

first row above lateral line, 130 to 153;


<strong>on</strong> lateral line, 126 to 151. Pyloric caeca:<br />

140 to 185. Colour: metallic blue <strong>on</strong> dorsal<br />

surface with occasi<strong>on</strong>al black specklings;<br />

no black spots; black tinge <strong>on</strong> tips<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> pectoral, anal and caudal fins, especially<br />

in male; in maturing adults in fresh<br />

water irregular reddish to dusky streaks<br />

or bars across sides <str<strong>on</strong>g>of</str<strong>on</strong>g> body, white <strong>on</strong><br />

tips <str<strong>on</strong>g>of</str<strong>on</strong>g> pelvic and anal fins. Flesh pale<br />

pink. Young with parr marks as slender<br />

bars, scarcely extending below lateral<br />

line and green iridescence <strong>on</strong> back.<br />

"Length to 3 feet 2 inches.<br />

"Distinguished by <strong>the</strong> absence <str<strong>on</strong>g>of</str<strong>on</strong>g> large<br />

black spots from <strong>the</strong> body and <strong>the</strong> fins,<br />

<strong>the</strong> slender caudal peduncle, <strong>the</strong> tips <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

all fins except dorsal tinged with black,<br />

<strong>the</strong> s e r i e s <str<strong>on</strong>g>of</str<strong>on</strong>g> dusky streaks or bars<br />

across <strong>the</strong> sides <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>bodyinmature<br />

adults in fresh water, <strong>the</strong> 20 to 26 smooth<br />

widely spaced rakers <strong>on</strong> <strong>the</strong> first gill<br />

arch, and <strong>the</strong> large number <str<strong>on</strong>g>of</str<strong>on</strong>g> pyloric<br />

caeca. The young are readily recognized<br />

by <strong>the</strong> slender parr marks, scarcely extending<br />

below <strong>the</strong> lateral line, and <strong>the</strong><br />

green iridescence <strong>on</strong> <strong>the</strong> back."<br />

The following key to <strong>the</strong> species <str<strong>on</strong>g>of</str<strong>on</strong>g> Oncorh<br />

ynchus in North America is from Rounsefell<br />

( 1962).<br />

"A. Lateral-line scales 160-198 (average<br />

about 184); branchiostegals 9-15; pyloric<br />

caeca 95- 224 (average about<br />

136); anal rays 16-20 (complete<br />

count); gill rakers 24-34 (average<br />

about 29.7) with minute teeth; large<br />

black spots tending to oval <strong>on</strong> back<br />

and <strong>on</strong> entire caudal fin; young without<br />

parr marks; mouth lining dark;<br />

very pr<strong>on</strong>ounced hump <strong>on</strong> breeding<br />

males; mature at 2 years <str<strong>on</strong>g>of</str<strong>on</strong>g> age;<br />

obligatory anadromous; l<strong>on</strong>g sea migrati<strong>on</strong>s;<br />

abundant far <str<strong>on</strong>g>of</str<strong>on</strong>g>fshore; usually<br />

less than 2,000 ova--------<strong>Oncorhynchus</strong><br />

gorbuscha, pink salm<strong>on</strong>.<br />

AA. Lateral-line scales 124-165; branchiostegals<br />

10-19; pyloric caeca 45-<br />

254; anal rays 15-22 (complete<br />

count); gill rakers 19-39; no black<br />

spots <strong>on</strong> lower lobe <str<strong>on</strong>g>of</str<strong>on</strong>g> caudal fin,<br />

may be black speckling <strong>on</strong> dorsal<br />

edge <str<strong>on</strong>g>of</str<strong>on</strong>g> upper lobe; young with distinct<br />

parr marks; mature normally<br />

at ages 3-8, usually more than 2,500<br />

ova.<br />

B. Pyloric caeca 85- 254; lateral-line<br />

scales 130-165; branchiostegals 10-<br />

19; anal rays 16- 22 (complete count);<br />

gill rakers 19- 28.<br />

3<br />

C. Lateral-line scales 130-147 (average<br />

about 139 ); branchiostegals 10-16;<br />

pyloric caeca 140-254 (average about<br />

205); anal rays 16-20 (complete<br />

count); gill rakers 19-26 (average<br />

about 22), rakers wide apart and<br />

without teeth; caudal peduncle slender;<br />

parr marks short, elliptical or<br />

oval, extending little, if any, below<br />

lateral line; no black speckling <strong>on</strong><br />

back or fins; breeding color anterior<br />

t wo-thirds <str<strong>on</strong>g>of</str<strong>on</strong>g> sides with bold jagged<br />

reddish line, posterior third <str<strong>on</strong>g>of</str<strong>on</strong>g> sides<br />

with jagged black line; mouth lining<br />

dark; obligatory anadromous, l<strong>on</strong>g<br />

sea migrati<strong>on</strong>s, abundant far <str<strong>on</strong>g>of</str<strong>on</strong>g>fshore-----<strong>Oncorhynchus</strong><br />

<strong>keta</strong>, chum<br />

salm<strong>on</strong>. --<br />

CC. Lateral-line scales 130-165 (average<br />

about 146); branchiostegals 13-19;<br />

pyloric caeca 85-244 (average about<br />

158); anal rays 16-22 (complete<br />

count); gill rakers 20-28 (average<br />

about 24), rakers wide apart with<br />

large teeth; caudal peduncle stout;<br />

parr marks large vertical bars almost<br />

bisected by lateral line; small<br />

black speckling <strong>on</strong> back, dorsal fin,<br />

and upper lobe <str<strong>on</strong>g>of</str<strong>on</strong>g> caudal fin, sometimes<br />

extending <strong>on</strong>to adipos e fin and<br />

lower lobe <str<strong>on</strong>g>of</str<strong>on</strong>g> caudal and faintly <strong>on</strong>to<br />

anal fin; breeding adults without red<br />

<strong>on</strong> sides; mouth lining black; obligatory<br />

anadromous; l<strong>on</strong>g sea migrati<strong>on</strong>s<br />

; not abundant far <str<strong>on</strong>g>of</str<strong>on</strong>g>fshor e- -<strong>Oncorhynchus</strong><br />

t s haw y t s c h a, king<br />

salm <strong>on</strong>.<br />

BB. Pyloric caeca 45-114; lateral-line<br />

scales 124-150; branchiostegals 11-<br />

16; anal rays 15-21 (complete count);<br />

gill rakers 19-39.<br />

D. Pyloric caeca 45-114 (average about<br />

75); lateral-line scales 130-144 (average<br />

about 135); branchiostegals<br />

11-15; anal rays 15-19 (complete<br />

count); gill rakers 19-25 (average<br />

about 21), rakers wide apart with<br />

large teeth, n<strong>on</strong>e <strong>on</strong> back <str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>d<br />

and fourth gill arches; caudal peduncle<br />

stout; parr marks large vertical<br />

bars almost bisected by lateral line;<br />

anal fin <str<strong>on</strong>g>of</str<strong>on</strong>g> parr falcate with first ray<br />

whitish; o<strong>the</strong>r lower fins <str<strong>on</strong>g>of</str<strong>on</strong>g> parr<br />

orange-tinged and white-tipped; in<br />

adults black speckling <strong>on</strong> back, <str<strong>on</strong>g>of</str<strong>on</strong>g>ten<br />

extending al<strong>on</strong>g upper edge <str<strong>on</strong>g>of</str<strong>on</strong>g> caudal<br />

fin and base <str<strong>on</strong>g>of</str<strong>on</strong>g> dorsal fin; sides <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

breeding adults may be suffused with<br />

light pink, but no definite markings;<br />

mouth lining dark; adaptively anadromous;<br />

l<strong>on</strong>g sea migrati<strong>on</strong>s; not<br />

abundant far <str<strong>on</strong>g>of</str<strong>on</strong>g>fshore----<strong>Oncorhynchus</strong><br />

kisutch, silver salm<strong>on</strong>.


<strong>the</strong> colorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> normal pink salm<strong>on</strong> f r y.<br />

From <strong>the</strong> same cross, Hikita and Yokohira<br />

(1964) found that about half <strong>the</strong> hybrids were<br />

greenish blue to dark green, and thus different<br />

from normal pink and chum salm<strong>on</strong> fry; <strong>the</strong><br />

o<strong>the</strong>r half were light to darkish brown, and<br />

thus similar to <strong>the</strong> normal fry. Hybrids from<br />

<strong>the</strong> reciprocal cross (male chum salm<strong>on</strong> and<br />

female pink salm<strong>on</strong>) had colorati<strong>on</strong> similar<br />

to normal fry. In hybrids from female chum<br />

salm<strong>on</strong> and male pink salm<strong>on</strong>, parr marks<br />

were variable; some had no parr marks<br />

(as in pink salm<strong>on</strong>), whereas in o<strong>the</strong>rs, <strong>the</strong>y<br />

were distinct (as in chum salm<strong>on</strong>). In hybrids<br />

from <strong>the</strong> male chum salm<strong>on</strong> and female pink<br />

salm<strong>on</strong>, all <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fry had parr marks similar<br />

to chum salm<strong>on</strong>.<br />

Foerster (1935) and Terao Uchiyama, Kurahashi,<br />

and Matsumoto (1965) reared hybrids<br />

to sexual maturity and backcrossed <strong>the</strong>m with<br />

normal species and with o<strong>the</strong>r hybrids (table<br />

11 ).<br />

Kamyshnaya (1961) described artificially<br />

produced hybrids (from female chum salm<strong>on</strong><br />

and male pink salm<strong>on</strong>) that had g<strong>on</strong>e to sea and<br />

returned to <strong>the</strong>ir natal stream, <strong>the</strong> Takoi<br />

River in Sakhalin. Female hybrids were larger<br />

than males and resembled chum salm<strong>on</strong> in<br />

weight and fecundity. Males attained maturity<br />

at age 0.1 3 and females atage 0.2. In all female<br />

hybrids <strong>the</strong> size <str<strong>on</strong>g>of</str<strong>on</strong>g> eggs varied. The author<br />

presented meristic and morphometric data for<br />

fry and adult hybrids.<br />

Mature hybrids (from female pink salm<strong>on</strong> and<br />

male chum salm<strong>on</strong>) have also returned to <strong>the</strong><br />

Hood Canal hatchery in Washingt<strong>on</strong> (Washingt<strong>on</strong><br />

State Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Fisheries, 1964). Survival<br />

to <strong>the</strong> adult stage was 2.1 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> fingerlings liberated and exceeded <strong>the</strong><br />

survival <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> pink salm<strong>on</strong> stock returning to<br />

<strong>the</strong> same hatchery. The hybrids returned at<br />

age 0.1 (2,390 males and 565 females) and age<br />

0.2 (37 males and 295 females). The age 0.1<br />

adults had more <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> normal pink salm<strong>on</strong><br />

characteristics than did <strong>the</strong> age 0.2 hybrids.<br />

Size <str<strong>on</strong>g>of</str<strong>on</strong>g> eggs ranged from normal for chum<br />

salm<strong>on</strong> to <strong>the</strong> normal for pink salm<strong>on</strong>. When<br />

<strong>the</strong> hybrids were backcrossed, <strong>the</strong> spawn had<br />

poor viability (egg-to-fry survival <str<strong>on</strong>g>of</str<strong>on</strong>g> about 8<br />

percent) and could not be used to perpetuate<br />

<strong>the</strong> run.<br />

2.42 Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> natural hybridizati<strong>on</strong><br />

in ecology and morphology<br />

Hybrids <str<strong>on</strong>g>of</str<strong>on</strong>g> chum and pink salm<strong>on</strong> occur in<br />

nature (Kusnetzov, 1928; Hunter, 1949) but are<br />

extremely rare (Neave, 1958).<br />

3 See secti<strong>on</strong> 3.12 for method <str<strong>on</strong>g>of</str<strong>on</strong>g> reporting ages.<br />

3 BIONOMIC S AND LIFE HISTORY<br />

3.1 R eproducti<strong>on</strong><br />

3. 11 S ex uali ty<br />

<strong>Chum</strong> sal m<strong>on</strong> are heterosexual. The mature<br />

male i s dis tinguished from <strong>the</strong> mature female<br />

by a hooked snout and more fanglike teeth.<br />

Hermaphrodit e s are found occasi<strong>on</strong>ally (Hikita,<br />

1958a ; Uzmann and Hesselholt, 1958; Nakatsukasa,<br />

1965 ).<br />

3.12 Maturity<br />

Three syst ems h a ve been used to record <strong>the</strong><br />

ages <str<strong>on</strong>g>of</str<strong>on</strong>g> Pacific salm<strong>on</strong>: Gilbert and Rich, 1927;<br />

Chugunova, 1959; and Koo, 1962. The Gilbert<br />

and Rich method records a ge from time <str<strong>on</strong>g>of</str<strong>on</strong>g> egg<br />

depositi<strong>on</strong>; <strong>the</strong> o<strong>the</strong>r methods record age from<br />

time <str<strong>on</strong>g>of</str<strong>on</strong>g> hatching. An additi<strong>on</strong>al y ear or winter<br />

is <strong>the</strong>refore incorporated into ages under <strong>the</strong><br />

Gilbert and Rich system, which has been widely<br />

us ed for Pacific salm<strong>on</strong> in North A merica and<br />

Japan. In this synopsis, I use <strong>the</strong> Koo system<br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> advantages lis t e d byKoo (1962).<br />

This method uses two digits separated by a<br />

period; for example, age 1. 2 indicates that a<br />

fish spent <strong>on</strong>e winter in fresh water, t wo winters<br />

in <strong>the</strong> ocean, and was in its fourth year <str<strong>on</strong>g>of</str<strong>on</strong>g> life.<br />

<strong>Chum</strong> salm<strong>on</strong> never spen d a winter in fresh<br />

water, so <strong>the</strong> first digit is a l wa y s O. A chum<br />

salm<strong>on</strong> with three annuli (fig. 3 ) is inits fourth<br />

year <str<strong>on</strong>g>of</str<strong>on</strong>g> life, and its age is r eported as 0.3. In<br />

reporting <strong>the</strong> ages <str<strong>on</strong>g>of</str<strong>on</strong>g> mature salm<strong>on</strong>, Russian<br />

scientists have added a + to indicate that fish<br />

have underg<strong>on</strong>e a summer1s growth after <strong>the</strong><br />

last annulus was laid down. The + has been deleted<br />

from Soviet age data r eported h e re.<br />

Mature chum s a l m o n range from age 0.1 to<br />

age 0.6 (see sect i<strong>on</strong> 4 .1 2 ). Age 0.3 fish are<br />

usually dominant, but in certain years and<br />

areas 0. 2 fish a r e m ore abundant. Adult fish<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> age 0.2 and age 0.4 m ake up a significant<br />

part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> runs ; age 0. 1 and age 0.5 chum<br />

salm<strong>on</strong> are reported in <strong>on</strong>ly small numbers,<br />

and age 0.6 fish are r a r e . In A sia and North<br />

America, <strong>the</strong> more s ou<strong>the</strong> rn populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

maturing fish have l arger p ercentages <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

younger fish; po pulati<strong>on</strong> s in more nor<strong>the</strong>rn<br />

areas have larger p e r centage s <str<strong>on</strong>g>of</str<strong>on</strong>g> older fish<br />

(Gilbert, 1922; Marr , 1943; Pritchard, 1943;<br />

Kobayashi, 1961; Oakl ey, 1966; Sano, 1966).<br />

Sex ratios <str<strong>on</strong>g>of</str<strong>on</strong>g> chum s almo n at m aturity vary<br />

with age. Sano (1 966 ) co n cluded that almost<br />

all maturing chum sal m<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> age 0.1 were males<br />

and that males outnumb e r ed f emales at age<br />

0.2. The sex ratio was nearly e qual atage 0.3,<br />

but females tended to outn u m b e r males in ages<br />

0.4 and 0.5.


The length and weight <str<strong>on</strong>g>of</str<strong>on</strong>g> churn salm<strong>on</strong> at maturity<br />

(table 12) indicate that most Asian churn<br />

salm<strong>on</strong> are 45 to 96 cm. l<strong>on</strong>g and weigh 1.0 to<br />

11.9 kg. and that most NorthAmericanfishare<br />

53 to 92 cm. l<strong>on</strong>g and weigh 0.8 to 13.4 kg.<br />

Mature churn salm<strong>on</strong> under 50 cm. appear to<br />

be more comm<strong>on</strong>inAsia thaninNorthAmerica.<br />

The maximum length and weight for mature<br />

churn salm<strong>on</strong> is about 100 cm. and 20 kg. (Lovetskaya,<br />

1948).<br />

3.13 Mating<br />

Promiscuous, male fish frequently attend<br />

more than <strong>on</strong>e female (Kuznetsov, 1928; Hunter,<br />

1959; Strekalova, 1963).<br />

3.14 Fertilizati<strong>on</strong><br />

External; ova and sperm are ejected simultaneously<br />

into a depressi<strong>on</strong> excavated by <strong>the</strong><br />

female in streambed gravel.<br />

Yamamoto (1952) described <strong>the</strong> fertilizati<strong>on</strong><br />

process in churn salm<strong>on</strong>. The area at which<br />

<strong>the</strong> spermatozoan enters <strong>the</strong> egg is mark'3d by<br />

a funnel-shaped depressi<strong>on</strong>. Penetrati<strong>on</strong> by <strong>the</strong><br />

spermatozoan takes place when <strong>the</strong> female<br />

nucleus is in <strong>the</strong> metaphase stage <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sec<strong>on</strong>d<br />

maturati<strong>on</strong> divisi<strong>on</strong>; <strong>the</strong> fact that <strong>on</strong>e polocyte<br />

has already been extruded from <strong>the</strong> female<br />

nucleus indicates that maturati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> egg is<br />

activated by water before inseminati<strong>on</strong>. About<br />

1 hour after inseminati<strong>on</strong>, a sperm aster de ­<br />

velops at <strong>the</strong> base <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> head <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> spermatozoan<br />

and <strong>the</strong> sec<strong>on</strong>d polar divisi<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> female<br />

nucleus proceeds to <strong>the</strong> telophase stage. After<br />

extrusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> t he sec<strong>on</strong>d polocyte, <strong>the</strong> chromosome<br />

mass begins its c<strong>on</strong>versi<strong>on</strong> into <strong>the</strong><br />

vesicular female pr<strong>on</strong>ucleus. The head <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

spermatozoan completes its metamorphosis<br />

into <strong>the</strong> male pr<strong>on</strong>ucleus at <strong>the</strong> same time and<br />

migrates from <strong>the</strong> margin toward <strong>the</strong> center <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> egg accompanied by <strong>the</strong> sperm aster. The<br />

movement <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> male nucleus starts about<br />

2 1/ 2 hours after ins eminati<strong>on</strong> and is completed<br />

in about 30 minutes. After completing its<br />

metamorphosis a t about 3 hours after inseminati<strong>on</strong>,<br />

<strong>the</strong> female pr<strong>on</strong>ucleus begins its migrati<strong>on</strong><br />

toward <strong>the</strong> male pr<strong>on</strong>ucleus. T his<br />

movement also takes about 30 minutes. C<strong>on</strong>jugati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> pr<strong>on</strong>uclei generally takes place<br />

within 3 1/2 to 4 hours after inseminati<strong>on</strong>. The<br />

first cleavage spindle appears about 8 hours or<br />

more after inseminati<strong>on</strong>.<br />

3.15 G<strong>on</strong>ads<br />

Neave (1948) discussed <strong>the</strong> relati<strong>on</strong> between<br />

<strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> eggs produced by species <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>Oncorhynchus</strong> and <strong>the</strong> differences in <strong>the</strong>ir life<br />

histories which regulate <strong>the</strong> stability in relative<br />

abundance between <strong>the</strong> species. Only<br />

species with many eggs and relativelyfavorable<br />

Table 12.--Range in length and weight <str<strong>on</strong>g>of</str<strong>on</strong>g> chum salm<strong>on</strong> at maturity in Asia and North America<br />

Area Year(s)<br />

Sample Fork<br />

size length<br />

Number em. !5&..<br />

Weight Authority<br />

Asia:<br />

Okhotsk coast 1948, 1952-53 3,353+ 45- 78 Birman (1956).<br />

Amur River 1925- 27, 1933 10, 848 48-96 1.2-11.9 Kuznetsov (1928).<br />

1948-49, 1952- 53 19,013+ 45-90 Birman (1956).<br />

Sakhalin 1946-49 2,397 45-82 1.1- 6.8 Dvinin (1952).<br />

Primore (Tumnin River ) 1948-49 515 55- 85 Birman (1956).<br />

Hokkaido 1956, 1958- 59 852 1.0-10.4 11 J<br />

H<strong>on</strong>shu (Miomote River ) 1936 50-90 1.0- 8.0 Kubo (1938 .<br />

.North Arneri c a :<br />

Northwest Alaska 1920 448 53-80 1.8- 5.9 Gilbert (1922<br />

1955- 59 1,324 1.4- 5.8 (1)<br />

Central Alaska 1955 - 59 1,603 0 .8- 8 . 2 1)<br />

Sou<strong>the</strong>astern Alaska 1955-59 1,913 1.8-10.8 '1<br />

Bri tish Columbia 1916-17 1,024 53-84 1.8- 4.9 Fraser 1921,<br />

1955-59 1,784 1.2-13.4 (l<br />

Washingt<strong>on</strong> and Oreg<strong>on</strong> 1910, 1914, 1947-61 3,721 56-92 Gilber 1'913<br />

Marr 1943 j<br />

Oakley 1966 .<br />

1955- 59 410 1.8- 8.6 1 )<br />

1 <str<strong>on</strong>g>Data</str<strong>on</strong>g> <strong>on</strong> file, Bureau <str<strong>on</strong>g>of</str<strong>on</strong>g> Cornrnerc i al Fisheries, <str<strong>on</strong>g>Biological</str<strong>on</strong>g> Laboratory, Seattle, Nash. 2.<br />

15


20<br />

Figure 4.--C<strong>on</strong>struct 0 <str<strong>on</strong>g>of</str<strong>on</strong>g> read antlspawnlng<br />

behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> chum salm<strong>on</strong> (Sano and Naga sawa,<br />

1958),<br />

(a) Male (foreground) and female before redd<br />

c<strong>on</strong>structi<strong>on</strong>.<br />

(b) Female digging redd by turning <strong>on</strong> side,<br />

rapidly flexing body, and fanning streambed<br />

with caudal fin. The female excavated <strong>the</strong><br />

r edd al<strong>on</strong>e and repeated <strong>the</strong> digging moti<strong>on</strong><br />

every 1 to 5 minutes.<br />

(c) From time to timt! during re{\d 'C<strong>on</strong>structi<strong>on</strong>,<br />

<strong>the</strong> male came in c<strong>on</strong>tact with <strong>the</strong><br />

female and exhibited body spasms which<br />

appeared to excite <strong>the</strong> female.


21<br />

(d) As <strong>the</strong> redd bulldln approach d I 8 C mpletl<strong>on</strong>,<br />

<strong>the</strong> male and fem Ie circled<br />

<strong>the</strong> redd.<br />

(e) To stan <strong>the</strong> spawning ct, th male and<br />

female lowered <strong>the</strong>ir bodies Into <strong>the</strong> redd.<br />

(f) In <strong>the</strong> spawning act, both <strong>the</strong> male and<br />

female exhibited body spasms a <strong>the</strong><br />

and eggs were released. Their mou<br />

and opercula were extended.


feInales were no l<strong>on</strong>ger attended by Inales and<br />

passively guarded <strong>the</strong> redd s. Strekalova (1963)<br />

reported that feInales guarded <strong>the</strong> redds 1 to 6<br />

days (average 3 to 4 days) after depositing<br />

<strong>the</strong>ir eggs in <strong>the</strong> My River, U.S.S.R.<br />

Egg retenti<strong>on</strong> (table 15) has not generally<br />

been c<strong>on</strong>sidered aniInportant cause <str<strong>on</strong>g>of</str<strong>on</strong>g> egg loss.<br />

SeInko (1954) presented data to show that egg<br />

retenti<strong>on</strong> can increase when spawning density<br />

is high:<br />

Year Eggs retained per female Total eggs deposited 6<br />

1947<br />

1948<br />

1949<br />

1950<br />

290<br />

45<br />

20<br />

28<br />

68,280<br />

16,050<br />

3,730<br />

2,940<br />

Lister and Walker (1966) also reported an<br />

increased egg retenti<strong>on</strong> (24.5 percent) in a<br />

year <str<strong>on</strong>g>of</str<strong>on</strong>g> relatively high spawning density in <strong>the</strong><br />

Big QualicuIn River, British ColuInbia.<br />

6 The size <str<strong>on</strong>g>of</str<strong>on</strong>g> area in which <strong>the</strong>se eggs were deposited<br />

was not given.<br />

22<br />

(g) Fr<strong>on</strong>t view <str<strong>on</strong>g>of</str<strong>on</strong>g> spawning act which lasted<br />

5 to 10 sec<strong>on</strong>ds. The act was repeated until<br />

<strong>the</strong> female had ejected all <str<strong>on</strong>g>of</str<strong>on</strong>g> her eggs.<br />

(h) Female covered <strong>the</strong> eggs after spawning,<br />

Eggs have been spawned at depths <str<strong>on</strong>g>of</str<strong>on</strong>g> 12 to 35<br />

CIn. below <strong>the</strong> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> gravel (Kuznetsov,<br />

1928; Myren, WilliaIns<strong>on</strong>, and Ols<strong>on</strong>, 1959;7<br />

Vasilev, 1959). These eggs were deposited in<br />

two to four pockets which were parallel with<br />

<strong>the</strong> current. One egg pocket was 7.6 CIn. deep<br />

and 15.2 CIn. wide; <strong>the</strong> eggs were mixed with<br />

coarse sand and gravel ra<strong>the</strong>r than in a COInpact<br />

cluster [Myren, et al., 1959 (s ee footnote<br />

7)].<br />

As reported by Kuznetsov (1928), redds <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

autUInn chuIn sa1In<strong>on</strong> were 125 to 320 cIn.10ng<br />

and 106 to 213 CIn. wide. The redd area averaged<br />

1.3 In.2 for SUInIner chuIn sa1In<strong>on</strong> in <strong>on</strong>e<br />

Asian streaIn (Vasilev, 1959), and 2.3 In.2 for<br />

autUInn chuIn salIn<strong>on</strong>infour sInall NorthAInerican<br />

streaInS (Burner, 1951).<br />

7 Myren, R. T., R. S. Williams<strong>on</strong>, and J. M. Ols<strong>on</strong>. 1959.<br />

Salm<strong>on</strong> survival investigati<strong>on</strong>s. U.S. Fish. Wild!. Serv.,<br />

Bur. Commer. Fish., Alaska Regi<strong>on</strong> (Juneau), Operati<strong>on</strong>s<br />

Rep. - July I, 1958 to Feb. 3, 1959, with notes <strong>on</strong> 1957<br />

studies. 44 pp. (Processed.)


Okado and Ito (1955) found that <strong>the</strong> viability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> spermatozoa after stripping varied with<br />

temperature; <strong>the</strong> spermatozoa were viable for<br />

o 0<br />

about 4 hours at 33 C. and about 7 days at 5<br />

C. Barrett (1951) c<strong>on</strong>cluded that spermatozoa<br />

could be stored at 2.5 0 to 5.8 0 C. for at least<br />

36 hours with low mortality.<br />

3.2 Preadult phase<br />

3.21 Embry<strong>on</strong>ic phase<br />

Mah<strong>on</strong> and Hoar (1956) described <strong>the</strong> development<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> embryo from <strong>the</strong> first cleavage<br />

furrow through closure <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> blastopore.<br />

Their paper c<strong>on</strong>tains photographs <str<strong>on</strong>g>of</str<strong>on</strong>g> transvers e<br />

secti<strong>on</strong>s through <strong>the</strong> developing embryo and<br />

shows morphological changes in detail. They<br />

also have photographs that show gross stages<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> development (fig. 5).<br />

When <strong>the</strong> embryo is 6 mm.l<strong>on</strong>g and <strong>the</strong> blastopore<br />

is closed, <strong>the</strong> main organ systems have<br />

been laid down (Mah<strong>on</strong> and Hoar, 1956).<br />

Late r development is s how n and described<br />

in figure 6. Eggs used in this study<br />

were older than those used in <strong>the</strong> previous<br />

descripti<strong>on</strong> because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> lower average temperature<br />

(3.4 0 C.) at which <strong>the</strong>y developed.<br />

Toward <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> embry<strong>on</strong>ic period, <strong>the</strong><br />

egg shell is s<str<strong>on</strong>g>of</str<strong>on</strong>g>tened (by secreti<strong>on</strong>s from hatching<br />

glands in <strong>the</strong> epidermis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> embryo) to<br />

facilitate hatching (Nishida, 1953; Disler,<br />

1954). Movement <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> embryo breaks <strong>the</strong><br />

s<str<strong>on</strong>g>of</str<strong>on</strong>g>tened shell and <strong>the</strong> larva emerges.<br />

The rate <str<strong>on</strong>g>of</str<strong>on</strong>g> embry<strong>on</strong>ic development depends<br />

primarily <strong>on</strong> temperature; this relati<strong>on</strong> has<br />

not been precisely described for churn salm<strong>on</strong>.<br />

Table 16 shows how temperature affects <strong>the</strong><br />

rate <str<strong>on</strong>g>of</str<strong>on</strong>g> development and indicates that <strong>the</strong><br />

time from fertilizati<strong>on</strong> to hatching can range<br />

from about 1.5 to 4.5 m<strong>on</strong>ths.<br />

Alderdice, Wickett, and Brett (1958) have<br />

shown that dissolved oxygen also caninfluence<br />

rate <str<strong>on</strong>g>of</str<strong>on</strong>g> development. The mean rate <str<strong>on</strong>g>of</str<strong>on</strong>g> hatching<br />

was delayed in eggs expos ed to oxygen below<br />

air-saturati<strong>on</strong> at 10 0 C. for 7 days at four<br />

developmental stages. The delay was greatest<br />

when eggs were exposed during early stages<br />

(between 100 and 200 C. <strong>the</strong>rmal units) and<br />

dropped at about <strong>the</strong> time blood circulati<strong>on</strong><br />

within <strong>the</strong> egg was established. After <strong>the</strong> circulatory<br />

system became functi<strong>on</strong>al, <strong>the</strong> eggs<br />

could no l<strong>on</strong>ger survive extreme hypoxial<br />

c<strong>on</strong>diti<strong>on</strong>s. Eggs in advanced developmental<br />

stages were stimulated to hatch prematurely<br />

by low c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen.<br />

Soin (1954) reported that light may also slow<br />

<strong>the</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> embryo.<br />

24<br />

Poor envir<strong>on</strong>ment is <strong>the</strong> principal caus e <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

mortality <str<strong>on</strong>g>of</str<strong>on</strong>g> churn salm<strong>on</strong> eggs in natural<br />

streams (See secti<strong>on</strong> 4.42 for a discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

specific factors). The <strong>on</strong>e factor which directly<br />

or indirectly c<strong>on</strong>tributes most heavily to<br />

mortality has been fluctuati<strong>on</strong> in streamflow,<br />

which may cause mortality directly by erosi<strong>on</strong>,<br />

by shifting <str<strong>on</strong>g>of</str<strong>on</strong>g> gravel, or by leaving redds dry.<br />

Indirectly, flooding causes mortality by depositi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> silt <strong>on</strong> spawning areas, which<br />

prevents water from seeping through <strong>the</strong> gravel<br />

at a satisfactory rate to supply <strong>the</strong> eggs ith<br />

oxygen and remove waste products. O<strong>the</strong>r factors<br />

that c<strong>on</strong>tribute to mortality are freezing ,<br />

light, parasites, predati<strong>on</strong>, high salinity, shock,<br />

and superimpositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> redds.<br />

Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mortality from egg fertilizati<strong>on</strong><br />

to early fry stage occur in <strong>the</strong> embry<strong>on</strong>ic<br />

period; it varies from about 70 to over 90 percent<br />

(see secti<strong>on</strong> 4.31).<br />

3.22 Larval phase (Alevin)<br />

The larval phase (a salm<strong>on</strong> i.j comm<strong>on</strong>ly referred<br />

to as an alevin in this stage) covers <strong>the</strong><br />

period from hatching to emergence from <strong>the</strong><br />

gravel. Di"ler 1954) describe <strong>the</strong> development<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> churn salm<strong>on</strong> m this phase (table 17)<br />

and separated <strong>the</strong> phase into two parts. In <strong>the</strong><br />

first part food was denved solely from <strong>the</strong><br />

yolk sac, whereas in <strong>the</strong> sec<strong>on</strong> part some<br />

external food was taken. Food organisms found<br />

in alevins were Diptera larvae, diatoms , and<br />

cyclops (Disler, 1953), The yolk sac was c<strong>on</strong>sidered<br />

<strong>the</strong> main source <str<strong>on</strong>g>of</str<strong>on</strong>g> nutriti<strong>on</strong> throughout<br />

<strong>the</strong> phase.<br />

Alevins remain in <strong>the</strong> gravel until <strong>the</strong>ir yolk<br />

sacs are completely or almost completely<br />

absorbed. The alevin phas e is completed in 30<br />

to 50 days, depending <strong>on</strong> <strong>the</strong> water temperature;<br />

mortality in this stage averaged 9.7 percentin<br />

<strong>the</strong> Memu River, Hokkaido (Sano, 1966).<br />

3.23 Adolescent phase<br />

Life history stages <str<strong>on</strong>g>of</str<strong>on</strong>g> Pacific salm<strong>on</strong> do not<br />

fit some <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> terminology proposed for FAa<br />

synopses by Rosa (1965). Biologists at <strong>the</strong> Bureau<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Commercial Fisheries <str<strong>on</strong>g>Biological</str<strong>on</strong>g> Laboratory,<br />

Seattle, Wash., who prepared synopses<br />

<strong>on</strong> salm<strong>on</strong>, <strong>the</strong>refore decided to separate <strong>the</strong><br />

adolescent phase into two stages: <strong>the</strong> freshwater<br />

stage which begins as <strong>the</strong>y emerge from<br />

<strong>the</strong> gravel and ends as <strong>the</strong>y enter <strong>the</strong> sea; and<br />

<strong>the</strong> salt-water stage which lasts from entry<br />

into salt water to <strong>the</strong> year in which <strong>the</strong>y reach<br />

maturity. We c<strong>on</strong>sidered <strong>the</strong> adult phase to<br />

begin <strong>on</strong> January I <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> year in which <strong>the</strong> fish<br />

spawns. The fresh-water stage <str<strong>on</strong>g>of</str<strong>on</strong>g> churn salm<strong>on</strong><br />

lasts from a few days to several weeks; <strong>the</strong><br />

salt-water stage is about 6 m<strong>on</strong>ths for fish


. 18<br />

Figure 5.--Early development <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> chum salm<strong>on</strong> embryo<br />

(photographs and descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> photographs from figs.<br />

1-17,. 27, and 77 <str<strong>on</strong>g>of</str<strong>on</strong>g> Mah<strong>on</strong> and Hoar, 1956).<br />

Photographs 1 to 19. Gross appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> blastoderm<br />

and embryo in fixed fertilized egg after removal <str<strong>on</strong>g>of</str<strong>on</strong>g> chori<strong>on</strong>.<br />

Age from time <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilizati<strong>on</strong>; magnificati<strong>on</strong>, X 10.<br />

1. Unsegmented blastodisc. 5 hours, 7.60 C. (Note<br />

irregular shape <str<strong>on</strong>g>of</str<strong>on</strong>g> protoplasm.)<br />

2. Unsegmented blastodisc showing protoplasm<br />

regular in outline and somewhat elevated. 12.5<br />

hours, 7.40 C. '<br />

3. Two celled stage showing first cleavage furrow.<br />

1B.5 hours , 7.20 C.<br />

4. Four celled stage. Note CM (coagulated material)<br />

due to Bouin's fixative <strong>on</strong> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> yolk. 21<br />

hours, 7.2 0 C.<br />

5. Eight celled stage. 2B hours, 7.50 C.<br />

6. A composite picture <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> B, 16, 32 and later<br />

segmentati<strong>on</strong> stage (probably 64 cells). 12 to 16<br />

celled stages are found from 31 to 39 hours<br />

after fertilizati<strong>on</strong> at 7.2 0 C., and 32- to 64-celled<br />

stages from 39 to 50 hours at same temperature.<br />

7. Later segmentati<strong>on</strong> stage. Note prominent MP<br />

(marginal periblast). 56 hours, 7.1 0 C.<br />

B. and 9. Blastulae, 5 and 6 days, respectively, 7.0 0 C.<br />

Blastoderm has begun to spread over yolk, and<br />

marginal periblast diminishes in extent.<br />

10. Formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> GR (germ ring). Note thickening<br />

<strong>on</strong> <strong>on</strong>e side indicating future locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> embry<strong>on</strong>ic<br />

shield. Blastoderm 3 mm. in diameter,<br />

9 days, 6.0 0 C.<br />

11. Embry<strong>on</strong>ic shield stage, 3.5 mm. in diameter;<br />

<strong>the</strong> caudal knob which is so prominent in photograph<br />

12 is just appearing; 10 days, 20 hours,<br />

5.9 0 C.<br />

12. Early embryo formati<strong>on</strong>. Blastoderm 4 to 5 mm.<br />

in diameter; embryo 1.5 mm. in length; note<br />

prominent CK (caudal knob) and transitory NF<br />

(neural furrow). 11 days, 21 hours, 5.9 0 C.<br />

13. 3-mm. embryo. Due to epiboly, <strong>the</strong> advancing<br />

GR (germ ring) covers almost <strong>on</strong>e-half <strong>the</strong> yolk.<br />

14 days, 20 hours, 6.4 0 C •<br />

14. 5-mm. embryo. The OC (optic cups) and otic<br />

vesicles (not clearly defined in photomicrograph)<br />

were well developed at this stage; 20 days, 21<br />

hours, 5.Bo C.<br />

15. Oval opening <str<strong>on</strong>g>of</str<strong>on</strong>g> blastopore showing DL, LL, VL<br />

(dorsal, lateral, and ventral lips, respectively)<br />

formed by germ ring. Dorsal lip is proximal to<br />

tail bud regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> embryo. Embryo is same age<br />

as embryo in photograph 14, but epiboly had<br />

advanced to a greater degree.<br />

16. 5.3- mm. embryo. B (blastopore) almost closed;<br />

head slightly raised from yolk. 21 days, 20<br />

hours, 4.0 0 C.<br />

17. 5.5-mm. embryo. B (blastopore) closed; head<br />

and tail freed from yolk. 23 days, 20 hours,<br />

3.9 0 C.<br />

lB. 5.5-mm. embryo. OC (optic cup); OTV (otic<br />

vesicle); CB (cerebellum); S (somites). X lB.<br />

19. 6.5-mm. embryo. Compare with photograph IB;<br />

additi<strong>on</strong>al features are cranial and cervical<br />

flexur es, elaborate c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> brain showing<br />

CB (cerebellum) and OL (optic lobe), PFN<br />

(pectoral fins), GS (gill slits), larger number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

somites, G (gut), and AN (anal regi<strong>on</strong>). X lB.


Table 17 .--Development <str<strong>on</strong>g>of</str<strong>on</strong>g> chum salm<strong>on</strong> in <strong>the</strong><br />

alevin stage (adapted from Disler, 1954)<br />

Part <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

stage<br />

First<br />

Sec<strong>on</strong>d<br />

Development<br />

Skelet<strong>on</strong> and muscle <str<strong>on</strong>g>of</str<strong>on</strong>g> fins become<br />

formed--fin fold is resorbed.<br />

Yolk sac becomes el<strong>on</strong>gated and decreases<br />

in area. Role <str<strong>on</strong>g>of</str<strong>on</strong>g> branchial<br />

apparatus as respiratory<br />

organ becomes more marked, and<br />

mouth performs rhythmical respiratory<br />

movements. Rudiments <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

teeth appear.<br />

Larvae have positive reacti<strong>on</strong> to<br />

tactile stimuli and negative reacti<strong>on</strong><br />

to light.<br />

Intestine begins to permit passage<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> food, and peristaltic movements<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> its walls begin. The<br />

yolk sac c<strong>on</strong>tinues to be <strong>the</strong> main<br />

source <str<strong>on</strong>g>of</str<strong>on</strong>g> food but some external<br />

food is also ingested.<br />

Spotted colorati<strong>on</strong> appears and becomes<br />

deeper as development c<strong>on</strong>tinues.<br />

Rudiments <str<strong>on</strong>g>of</str<strong>on</strong>g> branched<br />

s<str<strong>on</strong>g>of</str<strong>on</strong>g>t rays appear--first in dorsal<br />

and later in o<strong>the</strong>r fins--and formati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> upper and lower lobes<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> caudal fin begins. Eyes become<br />

mobile and teeth cut through <strong>on</strong><br />

jaw. Formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lateral line<br />

canals begins .<br />

At <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> stage <strong>the</strong> yolk sac<br />

disappears and is enveloped by<br />

lower extremities <str<strong>on</strong>g>of</str<strong>on</strong>g> myotomes.<br />

Respiratory functi<strong>on</strong> is taken over<br />

completely by branchial apparatus .<br />

Fry emerge from gravel, and <strong>the</strong><br />

air bladder fills with air.<br />

sal:m<strong>on</strong> fro:m Hook Nose Creek, British Colu:mbia,<br />

during various stages <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir ocean life<br />

as: coastal juvenile stage, 5.4 percent; pelagic<br />

stage, 56.6 percent; and coastal adult stage,<br />

93.0 percent. These figures can be co:mpared<br />

with <strong>the</strong> egg-to-fry survival in fresh water <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

7.8 percent for <strong>the</strong> sa:me populati<strong>on</strong>. Mean<br />

survival for <strong>the</strong> entire ocean life (including<br />

fishing :mortality) was 0.8 percent for <strong>the</strong><br />

Hook Nose Creek populati<strong>on</strong> (Hunter, 1959)<br />

(See also secti<strong>on</strong> 4.41).<br />

Causes <str<strong>on</strong>g>of</str<strong>on</strong>g> :mortality at sea are little understood,<br />

but it is known that predati<strong>on</strong> and envir<strong>on</strong>:mental<br />

factoli's are i:mportant. Low water<br />

te:mperatures and low salinity during early<br />

28<br />

ocean residence have been shown to affect survival<br />

adversely (Wickett, 1958; Bir:man, 1959).<br />

Brown trout (Sal:mo trutta), Atlantic salm<strong>on</strong><br />

s:molts (§. salar), herring (Clupea harengus<br />

:maris-albi), and young Gadidae including pollock<br />

(POllachius virens), haddock (Melanogra:m:mus<br />

aeglefinus), A t I ant i c cod (Gadus<br />

:morhua :morhua) and White Sea cod (G a d u s<br />

:morhua :maris -albi) were predators <str<strong>on</strong>g>of</str<strong>on</strong>g> young<br />

chu:m sal:m<strong>on</strong> that had been transplanted in<br />

tributaries <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Barents and White Seas (Bakshtanskii,<br />

1964). In <strong>the</strong> Pacific Ocean predators<br />

include <strong>the</strong> hagfish (Polistotre:ma stoutii),<br />

la:mprey (Entosphenus tridentatus), :mackerel<br />

shark (La:mna ditropis), fur seal (Callorhinus<br />

ursinus), sea li<strong>on</strong> (Eu:metopis jubata), harbor<br />

seal (Phoca vitulina), fin whale (Balaenoptera<br />

physaiu"S),- h u:m p b a c k whale (Megaptera<br />

nodosa), killer whale (Orcinus orca), and beluga<br />

(Delphinapterus 1eucas) (Ikeya:ma, 1935;<br />

Cle:mens and Wilby, 1946; To:milin, 1957;<br />

Spalding, 1964).<br />

When chu:m sal:m<strong>on</strong> enter <strong>the</strong> sea <strong>the</strong>y feed<br />

<strong>on</strong> zooplankt<strong>on</strong> in c<strong>on</strong>trast to <strong>the</strong> botto:mforms<br />

taken in fresh water (see secti<strong>on</strong> 3.4). In <str<strong>on</strong>g>of</str<strong>on</strong>g>fshore<br />

waters, :main types <str<strong>on</strong>g>of</str<strong>on</strong>g> food c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

polychaetes, pteropods, squid, crustaceanlarvae,<br />

copepods, a:mphipods, euphausiids, and<br />

fish (Andrievskaya, 1957; Allen and Ar<strong>on</strong>, 1958;<br />

Bir:man, 1960; Ito, 1964; and LeBrasseur,<br />

1966),<br />

3,3 Adult phase<br />

As discussed earlier, <strong>the</strong> adult phase was<br />

c<strong>on</strong>sidered to begin <strong>on</strong> January 1 <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> year<br />

in which <strong>the</strong> fish :matures sexually and spawns,<br />

Because all churn sal:m<strong>on</strong> die after <strong>the</strong>y spawn,<br />

this final phase <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir life lasts about 6 or 7<br />

:m<strong>on</strong>ths for populati<strong>on</strong>s that spawn first (June<br />

and July) and about 1 year for populati<strong>on</strong>s that<br />

spawn last (Dece:mber).<br />

3,31 L<strong>on</strong>gevity<br />

Chu:m sal:m<strong>on</strong> :mature fro:m ages 0.1 to 0,6,<br />

but most fish :mature at age 0,3. Age 0,2 and<br />

age 0,4 fish are also abundant; abundance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

age 0,2 fish is greatest in sou<strong>the</strong>rn strea:ms,<br />

and that <str<strong>on</strong>g>of</str<strong>on</strong>g> age 0.4 fish in nor<strong>the</strong>rn strea:ms,<br />

Occasi<strong>on</strong>ally, age 0.2 or age 0,4 fish are :more<br />

abundant than age 0.3 fish, The :maxi:mu:m age<br />

recorded for chu:m sal:m<strong>on</strong> in :most studies is<br />

0,6 (Pritchard, 1943; Lovetskaya, 1948; Manzer,<br />

et al., 1965), but Berg (1948), quoting Ivan<br />

Pravdin, reported age 0,7, 0.8, and 0,9,<br />

Chu:m sal:m<strong>on</strong> spend :most <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> 6 to 12-:m<strong>on</strong>th<br />

adult phase in <strong>the</strong> ocean and <strong>the</strong> re:mainder in<br />

fresh water (see secti<strong>on</strong> 2.2). The strea:m life<br />

varies with different populati<strong>on</strong>s. In <strong>on</strong>e coastal<br />

strea:m <str<strong>on</strong>g>of</str<strong>on</strong>g> sou<strong>the</strong>astern Alaska, <strong>the</strong> average<br />

strea:m life was 18,3 days for :males and 17.6


Table 18.--Parasites <str<strong>on</strong>g>of</str<strong>on</strong>g> chum salm<strong>on</strong> (authorities: Uzmann and Hesselholt, 1957; Fisheries Agency <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Japan, 1959; Bykhovskaya-Pavlovskaya et al . , 1962; Akhmerov, 1963; Becker and Kat z, 1965)<br />

Phylum Class<br />

Thallophyta<br />

Protozoa Flagellata<br />

Cnidosporida<br />

Ciliata<br />

Platyhelmin<strong>the</strong>s Cestoidea<br />

Trematoda<br />

Nema<strong>the</strong>lmin<strong>the</strong>s Nematoda<br />

Saprolegnia<br />

Cryptobia.<br />

Henneguya, Myxosoma, Myxidium .<br />

Tripartiella and Trichodina.<br />

Genus<br />

Eubothrium, Proteocephalus, Pelichnibothrium, Nybelinia ,<br />

Hepatoxyl<strong>on</strong>, Scolex, Diphyllobothrium, Phyllobothrium, and<br />

Triaenophorus.<br />

Tubulovpsicula, Brachyphallus, Lecithaster, Isoparorchis,<br />

Hemiurus, Parahemiurus, and Bucephalopsis .<br />

C<strong>on</strong>tracaecum, Anisakis, Phil<strong>on</strong>ema, Qystidicola, Rhaphidascaris ,<br />

and Porrocaecum.<br />

Acanthocephala Echinorhynchus, Bolbosoma, Corynosoma, Rhadinorhynchus,<br />

Metechinorhynchus, and Acanthocephalos .<br />

Arthropoda Crustacea Lepeoph<strong>the</strong>irus, Ergasilus, Salmincola, Argulus .<br />

Annelida Piscicolidae Piscicola.<br />

Table 19.--Degree <str<strong>on</strong>g>of</str<strong>on</strong>g> parasitic infecti<strong>on</strong> in summer and autumn chum salm<strong>on</strong> from<br />

tributaries <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Amur River (Akhmerov, 1963); ranges are for samples from different<br />

tributaries<br />

Parasite<br />

Brachyphallus crenatus<br />

Lecithaster gibbosus<br />

Phyllobothrium caudatum<br />

Scolex pleur<strong>on</strong>ectis<br />

Nybelinia surm<strong>on</strong>icola<br />

Eubothrium erassum:<br />

Imago<br />

Plerocercoid<br />

Echinorhynchus gadi<br />

Bolbosoma coen<str<strong>on</strong>g>of</str<strong>on</strong>g>orme<br />

Anisakis sp. (larvae)<br />

C<strong>on</strong>tracaecum aduncum<br />

C<strong>on</strong>tracaecum sp. (larvae)<br />

Surmner chum salm<strong>on</strong> Aut umn chum salm<strong>on</strong><br />

(436 fish)<br />

(179 f ish )<br />

Fish Parasites Fish Parasites<br />

infected per fish infected per fish<br />

Percent<br />

Mean<br />

No.<br />

Range<br />

No . Per cent<br />

Mean<br />

No.<br />

Range<br />

No.<br />

2- 32 1-21 1- 100 5- 66 6- 33 1-200<br />

5-7<br />

96-100<br />

36-93<br />

1-11<br />

2-9<br />

2-36<br />

2- 4<br />

2-23<br />

31-72<br />

1- 9<br />

5- 21 1-40 13<br />

90- 680 7- 1000 100<br />

1- 6 1-27 39- 98<br />

1- 2<br />

1- 2<br />

3- 9<br />

1- 8<br />

3- 14<br />

2- 3<br />

30<br />

1-3<br />

1- 3<br />

1- 100<br />

1- 22<br />

1- 58<br />

1- 8<br />

1- 2<br />

4<br />

4- 26<br />

14-45<br />

6- 7<br />

7-18<br />

35- 81<br />

4-7<br />

2- 13<br />

2-16<br />

40- 860 9- 5000<br />

3- 8 1-28<br />

1<br />

4- 10 1-38<br />

26 1-400<br />

1<br />

1-7 1-18<br />

2- 3 1-7<br />

1-3 1-3<br />

2 1-3


acces s ibility i n <strong>the</strong> water column. O<strong>the</strong>r foods<br />

taken by <strong>the</strong> fry were larvae <str<strong>on</strong>g>of</str<strong>on</strong>g> mosquitoes<br />

(Culicidae) and oligochetes (Oligochaeta). Bott<strong>on</strong>-l<br />

iving copepods (Copepoda) and ostracod s<br />

(Ostracoda) were ingested <strong>on</strong>ly when o<strong>the</strong>r food<br />

was scarce and <strong>the</strong>n in insignificant numbers.<br />

Daily food intake is influenced by water temperature<br />

(Levanidov, 1955). At 4 0 to 10 0 C.,<br />

<strong>the</strong> weight <str<strong>on</strong>g>of</str<strong>on</strong>g> food eaten daily was 5 to 10 Jercent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> body weight; between 12 0 and 20 C.,<br />

it was 13 to 19 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> body w eight.<br />

Stomach c<strong>on</strong>tents <str<strong>on</strong>g>of</str<strong>on</strong>g> a dolescent a n d adult fish<br />

in salt water are frequently difficult to identify<br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> advanced stage <str<strong>on</strong>g>of</str<strong>on</strong>g> digesti<strong>on</strong>.<br />

<strong>Chum</strong> salm<strong>on</strong> digest food faster than o<strong>the</strong>r<br />

species <str<strong>on</strong>g>of</str<strong>on</strong>g> salm<strong>on</strong> or feed more extensively <strong>on</strong><br />

readily digestible organisms (LeBrass eur,<br />

1966). LeBrasseur also noted that stomac h<br />

c<strong>on</strong>tents differed more betw een chum salm<strong>on</strong><br />

from differen t ocean wat er m a sses (Coastal,<br />

Transiti<strong>on</strong>aL Suba r c t ic, and Alaskan St ream)<br />

than betw een chum salm<strong>on</strong> and o<strong>the</strong>r species<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> salm<strong>on</strong>. He suggested that feeding habits<br />

were based <strong>on</strong> availability <str<strong>on</strong>g>of</str<strong>on</strong>g> , ra<strong>the</strong> r th a n o n<br />

preferences for, certain kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> organis m s.<br />

<strong>Chum</strong> salm<strong>on</strong> w ere less sele ctive th a n ei<strong>the</strong> r<br />

pink or sockey e salm<strong>on</strong> (Allen and Ar<strong>on</strong>, 195 8 ;<br />

Andrievskaya, 1966). L e Brasseur (1966 ) com ­<br />

pared his findings with thos e <str<strong>on</strong>g>of</str<strong>on</strong>g> Ito (1964) and<br />

c<strong>on</strong>cluded that salm <strong>on</strong> from <strong>the</strong> eastern and<br />

western Pacific Ocean ate similar organis m s<br />

but that salm<strong>on</strong> fro m <strong>the</strong> w estern Pacific Ocean<br />

ate greater amounts.<br />

Feeding habits <str<strong>on</strong>g>of</str<strong>on</strong>g> imma ture and maturing<br />

chum salm<strong>on</strong> were not significantly diffe r ent<br />

in <str<strong>on</strong>g>of</str<strong>on</strong>g>fshore waters (LeBrass eur, 1966 ), but<br />

maturing fish ate less as <strong>the</strong>y approach ed <strong>the</strong><br />

coast than <strong>the</strong>y did in 0 f f s h 0 r e waters<br />

(Andrievs kaya, 1957; Allen a nd Ar<strong>on</strong>, 1958).<br />

Andrievskaya attributed this decreas e to l ess<br />

abundant supplies <str<strong>on</strong>g>of</str<strong>on</strong>g> foo d and to <strong>the</strong> h igh co n ­<br />

centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> salm <strong>on</strong> near s hore during <strong>the</strong><br />

spawning migrati<strong>on</strong>. <strong>Chum</strong> salm<strong>on</strong> stop f e eding<br />

as <strong>the</strong>y approach sexual maturity and ente r<br />

fresh water.<br />

3.42 Food<br />

Benthic organisms, chiefly aquatic ins e cts ,<br />

c<strong>on</strong>stitute <strong>the</strong> basic food <str<strong>on</strong>g>of</str<strong>on</strong>g> y oung chum salm <strong>on</strong><br />

in fresh water. The stomachs <str<strong>on</strong>g>of</str<strong>on</strong>g> preemergent<br />

larvae c<strong>on</strong>tained detritus, diatoms, cyclop s,<br />

and chir<strong>on</strong>omids (Disler, 1953).<br />

Chir<strong>on</strong>omid larv ae were <strong>the</strong> m ost importan t<br />

fOod item <str<strong>on</strong>g>of</str<strong>on</strong>g> chum salm<strong>on</strong> fry (K<strong>on</strong>stantinov ,<br />

1951; Levanidov and Levanidova, 1951; Synkova,<br />

1951; Levanidov, 1954; Hikita, 196 0; and<br />

Kobayashi and Ishikawa, 1964). In <strong>on</strong>e study<br />

(Levanidov and Levanidova, 1951), mayfly<br />

nymphs ranked highest, but chir<strong>on</strong>ornid s were<br />

3 1<br />

also important. O<strong>the</strong>r important food items<br />

listed by most investigators were st<strong>on</strong>efly<br />

nymphs, mayfly n ymphs, caddisfly larvae,<br />

blackfly larvae (Simuliidae), and terrestrial<br />

insects. Terrestria l forms taken in Amur River<br />

tributaries in order <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir importance (Levanidov<br />

and L evanidova, 1957) were adult<br />

chir<strong>on</strong>omids, blackflies, mosquitoes, o<strong>the</strong>r<br />

terrestrial Diptera, imagoes <str<strong>on</strong>g>of</str<strong>on</strong>g> mayflies and<br />

caddisflies, m ites (Acarina), and thrips (Thysanoptera).<br />

The major food <str<strong>on</strong>g>of</str<strong>on</strong>g> small chum salm<strong>on</strong> when<br />

<strong>the</strong>y enter <strong>the</strong> sea is zooplankt<strong>on</strong>. Off <strong>the</strong> British<br />

Columbia coas t copepods, euphausiids, and<br />

t unicat e s (Larvacea) were main foods (Neave,<br />

1966). O<strong>the</strong>r food organisms were diatoms,<br />

ostrac o ds, cirrip edes, mysids, cumaceans,<br />

isopods, a m phipods, decapods, chaetognaths,<br />

and fish larvae. Insects (Diptera) were found<br />

in stomach c<strong>on</strong>tents frequently. In Traitors<br />

Cove , A l aska, young chum and pink salm<strong>on</strong> ate<br />

cladoce r ans, copepods, barnacle nauplii, and<br />

barnacle cyprids (Commercial Fisheries<br />

Review, 1966) . At times Diptera (mostly chir<br />

<strong>on</strong>omids) and an intertidal species <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> insect<br />

o r der Collembo1a were also important.<br />

Andrievskaya (1957) found over 45 species<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> food organisms in <strong>the</strong> stomachs <str<strong>on</strong>g>of</str<strong>on</strong>g> chum<br />

s alm<strong>on</strong> taken in <str<strong>on</strong>g>of</str<strong>on</strong>g>fshore waters; however, <strong>on</strong>ly<br />

a few groups were c<strong>on</strong>sumed in appreciable<br />

numb er s. The important groups <str<strong>on</strong>g>of</str<strong>on</strong>g> food organi<br />

s ms and <strong>the</strong>ir c<strong>on</strong>tributi<strong>on</strong> to <strong>the</strong> diet <str<strong>on</strong>g>of</str<strong>on</strong>g> adol<br />

e s cent and adult chum salm<strong>on</strong> are listed in<br />

table 20. The rank inimportance differed somewhat<br />

between studies, but four groups <str<strong>on</strong>g>of</str<strong>on</strong>g> organisms<br />

were c<strong>on</strong>sistently menti<strong>on</strong>ed as <strong>the</strong> main<br />

types <str<strong>on</strong>g>of</str<strong>on</strong>g> food. Allen and Ar<strong>on</strong> (1958) reported<br />

tha t amphipods were c<strong>on</strong>sistently important in<br />

inshore and <str<strong>on</strong>g>of</str<strong>on</strong>g>fshore waters and that copepods<br />

a nd euphausiids were important <strong>on</strong>ly in <strong>the</strong><br />

m ore <str<strong>on</strong>g>of</str<strong>on</strong>g>fshore waters. Ito (1964) stated that<br />

e u phausiids were <strong>the</strong> most important food <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fis h that he examined, but large amounts <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pteropods and jellyfish were also c<strong>on</strong>sumed<br />

at times. LeBrasseur (1966) found amphipods<br />

and copepods most frequently in <strong>the</strong> stomachs<br />

he examined, whereas Andrievskaya (1957) and<br />

B i r man (1960) menti<strong>on</strong>ed that pteropods and<br />

eu phau siids were <strong>the</strong> main types <str<strong>on</strong>g>of</str<strong>on</strong>g>food. In most<br />

studies <strong>the</strong> stomachs <str<strong>on</strong>g>of</str<strong>on</strong>g> chum salm<strong>on</strong> had c<strong>on</strong>siderable<br />

quantities <str<strong>on</strong>g>of</str<strong>on</strong>g> unidentifiable material<br />

(due t o advanced stage <str<strong>on</strong>g>of</str<strong>on</strong>g> digesti<strong>on</strong>).<br />

Differ ences in stomach c<strong>on</strong>tents are probably<br />

r e l ated to <strong>the</strong> availability <str<strong>on</strong>g>of</str<strong>on</strong>g> food organisms at<br />

<strong>the</strong> time and l o cati<strong>on</strong> that <strong>the</strong> fish were sampled.<br />

A nd rievs kaya (1966), who studied seas<strong>on</strong>al differences<br />

in <strong>the</strong> food compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chum<br />

s alm o n (table 21) , reported that pteropods were<br />

<strong>the</strong> principal food (in <strong>the</strong> spring, summer, and<br />

fall <str<strong>on</strong>g>of</str<strong>on</strong>g> 1962) b u t that <strong>the</strong> species <str<strong>on</strong>g>of</str<strong>on</strong>g> pteropod<br />

changed fro m Euclio sp. in <strong>the</strong> spring to Cli<strong>on</strong>e


Area<br />

Time period<br />

Item<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> fish examined<br />

Method <str<strong>on</strong>g>of</str<strong>on</strong>g> presentati<strong>on</strong><br />

Food organisms:<br />

Po1ychaetes<br />

Pteropods<br />

Squid<br />

Crustacean larvae<br />

Copepods<br />

Arophipods<br />

Euphausiids<br />

Fish (including<br />

C1upeidae and Myctophidae<br />

and juvenile Gadidae,<br />

Scorpaenidae, and Hexagrammidae)<br />

.<br />

O<strong>the</strong>rs<br />

Unidentifiable<br />

Table 20 . --Food <str<strong>on</strong>g>of</str<strong>on</strong>g> chum salm<strong>on</strong> in <str<strong>on</strong>g>of</str<strong>on</strong>g>fshore waters<br />

Allen and<br />

Ar<strong>on</strong> (1958)<br />

Western North<br />

Pacific Ocean<br />

and Okhotsk<br />

Sea.<br />

May-August<br />

1955 .<br />

156<br />

Percentage<br />

compositi<strong>on</strong><br />

by volume. 1<br />

9.4-19.1<br />

1.1-23.3<br />

0.8-35.8<br />

2.0-10.1<br />

7.8-30.1<br />

3.0-50 .1<br />

10.6-19.0<br />

Birman (1960)<br />

Authority<br />

Western North<br />

Pacific Ocean.<br />

May-August<br />

1955-56.<br />

Percentage<br />

compositi<strong>on</strong><br />

by weight. 2<br />

0-25 . 9<br />

6.0-40.0<br />

4 1.8- 7.9<br />

0.5- 6. 0<br />

5.0- 9.3<br />

0.4-60.0<br />

2.0-52.4<br />

0.7-10.0<br />

Ito (1964)<br />

Western North<br />

Pacific Ocean<br />

and Bering<br />

Sea .<br />

May-August<br />

1956- 63 .<br />

3,889<br />

Percentage<br />

compositi<strong>on</strong><br />

by weight . )<br />

0-33 . 3<br />

0- 3 . 5<br />

0 . 2- 7 . 2<br />

1.4- 21.4<br />

4 .1-21.0<br />

3.7-26 . 1<br />

0- 38 . 8<br />

0-80 .3<br />

LeBrasseur<br />

(1966)<br />

Eastern North<br />

Pacific Ocean.<br />

May and June<br />

1958 .<br />

361<br />

Percentage<br />

compositi<strong>on</strong><br />

by weight . 1<br />

0- 33 .1<br />

Trace - 2. 8<br />

0- 5 . 3<br />

Trace - 1.5<br />

Trace - 2 .7<br />

Trace - 50 . 2<br />

0- 2 . 0<br />

15 . 8- 97 . 8<br />

1 Ranges represent differences in average compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> samples from different subareas <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

ocean.<br />

2 Ranges represent differences in average compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> samples taken in June- July 1955 and<br />

May-June and August 1956.<br />

) Ranges represent differences in average compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> samples ty years .<br />

4 Stomach c<strong>on</strong>tents reported by Birman c<strong>on</strong>tained octopi ra<strong>the</strong>r than squid .<br />

Table 21.--Seas<strong>on</strong>a1 and yearly differences in <strong>the</strong> stomach c<strong>on</strong>tents <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

chum salm<strong>on</strong> from <strong>the</strong> western Pacific Ocean (Andrievskaya, 1966)<br />

Compositi<strong>on</strong> by weight<br />

Food Seas<strong>on</strong>al differences, 1962 Yearly differ ences<br />

Spring I Summer I Fal l 1956 I 1957<br />

Percent<br />

Polychaetes 9 . 4 0 1.0 0 3.4<br />

Pteropods 51.6 51.3 47 . 5 4.3 2.6<br />

Squid 0 0 . 3 7 . 4 0 0<br />

Cope pods 0 0 . 4 0 . 1 0 0<br />

Amphipods 12.1 11. 8 1.2 10 . 8 0.1<br />

Euphausiids 22 . 4 15 . 0 2. 7 73.2 0.1<br />

Decapods and J ellyfish 4 . 5 12.6 0.9 0 72.6<br />

Fish 0 8.3 39 . 2 2 . 4 3. 9<br />

O<strong>the</strong>rs 0 0.3 0 9.3 17 .3<br />

32


limacina in <strong>the</strong> summer and fall. This change<br />

in di et occurred when <strong>the</strong> fish migrated north<br />

in <strong>the</strong> s p r in g to a regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> North<br />

Pacific Ocean not inhabited by Euclio. Euphausiids<br />

ranked next to pteropods in importance in<br />

<strong>the</strong> spring but declined during <strong>the</strong> summer and<br />

fall, whereas immature fish ranked high in<br />

<strong>the</strong> diet in <strong>the</strong> fall. ,.<br />

Yearly differences in <strong>the</strong> stomach c<strong>on</strong>tents<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> chum salm<strong>on</strong> (table 21) followed changes in<br />

<strong>the</strong> abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> pink salm<strong>on</strong> in even and odd<br />

years according to Andrievskaya (1966). In a<br />

year <str<strong>on</strong>g>of</str<strong>on</strong>g> low abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> pink salm<strong>on</strong> (1956),<br />

she found that chum salm<strong>on</strong> ate euphausiids,<br />

which were <strong>the</strong> principal food <str<strong>on</strong>g>of</str<strong>on</strong>g> pink and socke<br />

ye salm<strong>on</strong>. In a year when <strong>the</strong> abundance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pink salm<strong>on</strong> was high (1957), <strong>the</strong> weight <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

stomach c<strong>on</strong>tents <str<strong>on</strong>g>of</str<strong>on</strong>g> chum salm<strong>on</strong> was about<br />

<strong>the</strong> same as in 1956 but <strong>the</strong> types <str<strong>on</strong>g>of</str<strong>on</strong>g> food<br />

changed. Ito (1964), however, found that weight<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> stomach c<strong>on</strong>tents <str<strong>on</strong>g>of</str<strong>on</strong>g> chumsalm<strong>on</strong>decreased<br />

in odd years.<br />

3.43 Growth rate<br />

Growth begins in <strong>the</strong> alevin stage. At -hatching,<br />

chum salm<strong>on</strong> are about 22 mm. l<strong>on</strong>g and<br />

weigh about 0.16 g., and after absorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong><br />

yolk-sac <strong>the</strong>y are 27 to 32 mm. and 0.20<br />

to 0.23 g. (Kuznetsov, 1928; Sano and Kobayashi,<br />

1953; Levanidov, 1955).<br />

<strong>Chum</strong> salm<strong>on</strong> may migrate seaward so<strong>on</strong><br />

after losing <strong>the</strong>ir yolk-sac or <strong>the</strong>y may remain<br />

in fresh-water feeding areas up to several<br />

weeks. For thos e fish which remain in streams,<br />

two periods <str<strong>on</strong>g>of</str<strong>on</strong>g> growth have been described.<br />

Area<br />

United States:<br />

Tillamook Bay, Oreg .<br />

U.S .S .R. :<br />

Khor River<br />

Iski River<br />

Amur River tributaries<br />

Japan:<br />

Ishikari and Chitose<br />

Rivers.<br />

I shikari River<br />

Memu River<br />

Levanidov (1955) c<strong>on</strong>sidered <strong>the</strong> initial period<br />

to last from mid-April to mid- May, and fry<br />

grew from about 0.20 to 0.28 g. in this period.<br />

In <strong>the</strong> sec<strong>on</strong>d period (mid-May to July) <strong>the</strong>y<br />

grew more rapidly- -from about 0.2? to 0.55 g.<br />

in an average <str<strong>on</strong>g>of</str<strong>on</strong>g> 27 days. The slower growth<br />

period 'qas from March to April in<strong>on</strong>e Hokkaido<br />

stream, during which most <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fry migrated<br />

to sea (Kobayashi and Ishikawa, 1964). More<br />

rapid growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> remaining fry in April was<br />

attributed to higher water temperature and<br />

increas ed feeding. By increasing water temperature<br />

from 8 0 C. to 14 0 _20 0 C. in laboratory<br />

experiments, Levanidov (1955) found that <strong>the</strong><br />

growth rate increased from 3 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> body<br />

weight per day to 5 to 6 percent. He also found<br />

that 50 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> food energy was used to<br />

increas e body weight during <strong>the</strong> fresh-water<br />

rearing period.<br />

Table 22 presents some measurements <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fry for <strong>the</strong> period <str<strong>on</strong>g>of</str<strong>on</strong>g> seaward migrati<strong>on</strong>. The<br />

small size indicates little growth in most fry<br />

before <strong>the</strong>y leave fresh water. The lengthweight<br />

relati<strong>on</strong> for chum salm<strong>on</strong> fry during<br />

fresh-water migrati<strong>on</strong> in <strong>the</strong> Chitose and Ishikari<br />

Rivers <str<strong>on</strong>g>of</str<strong>on</strong>g> Hokkaido was W =2.364 x 10- 5<br />

L 2. 817 (Sano and Kobayashi, 1953).<br />

Hatchery fry were smaller than naturally<br />

produced fry when <strong>the</strong>y were compared during<br />

<strong>the</strong>ir migrati<strong>on</strong> downstream (Hikita. 1960).<br />

Hatchery fry were 37.5 to 44.5 mm. l<strong>on</strong>g;<br />

naturally produced fry were from 46.5 to 56.5<br />

mm.<br />

Table 22 . --Size <str<strong>on</strong>g>of</str<strong>on</strong>g> young chum salm<strong>on</strong> in fresh water in North America and Asia<br />

Number<br />

230<br />

205<br />

494<br />

800<br />

2, 997<br />

1,700<br />

Period covered<br />

55 Mar . 22-May 29, 1948-51<br />

Apr . 26 - June 30, 1950<br />

Mar . 23 -July 31, 1940<br />

Migrati<strong>on</strong> period 1951<br />

Do. 1952<br />

Do. 1953<br />

Do. 1954<br />

758 Apr. 2- June 11,1952<br />

1,601 Feb. 21-June 24, 1961<br />

1,047 April<br />

May<br />

June<br />

Mm.<br />

38. 5-42.0<br />

33 . 4-38 .0<br />

28 . 8-35 .1<br />

35 .3<br />

33 . 4-34.5<br />

33 .4-37.6<br />

35 .1-37.7<br />

29 .7-42 .8<br />

27 . 8-56 . 5<br />

34 .5- 40 . 8<br />

35 .7-42 .0<br />

45 . 1- 49 . 8<br />

274 Late Feb . - late Apr . 1958 43 . 8-57.1<br />

455 Late Jan . - mid-May, 1959 43.3-69 .4<br />

462 Late Mar. - mid-June, 1960 45 . 8-78.8<br />

33<br />

G.<br />

0 . 24 -0 .48<br />

0.20-0 . 41<br />

0.31-0 .32<br />

0 .31-0.34<br />

0 .31-0 .48<br />

0.27-0 . 35<br />

Henry (1953).<br />

Authority<br />

Levanidov and Levanidova 11951).<br />

Do.<br />

Levanidov and Levanidova (1957) .<br />

Do .<br />

Do.<br />

Do .<br />

Sano and Kobayashi (1952).<br />

Kobayashi and Ishikawa (1964).<br />

Sano (1966) .<br />

Do.<br />

Do.<br />

0 . 56-1.29 Nagasawa and Sano (1961) _<br />

0 .49- 2. 56 Do.<br />

0 .65 -3.82 Do .


Table 24.-- Growth <str<strong>on</strong>g>of</str<strong>on</strong>g> chum salm<strong>on</strong> stocks from various studies as summarized by Ricker (1964)<br />

Locati<strong>on</strong><br />

United States:<br />

Year Age<br />

Fish<br />

sampled<br />

Male Fe male<br />

number number<br />

L 1<br />

1<br />

Mm.<br />

G 2<br />

2 L2<br />

Mm.<br />

G) L)<br />

Mm .<br />

G4 L4<br />

Mm.<br />

G5 L5<br />

Mm.<br />

Weight<br />

increase<br />

in last<br />

year<br />

Percent<br />

Tillamook Bay 1949 0 . 2<br />

0 . 3<br />

12<br />

128<br />

3<br />

129<br />

305<br />

300<br />

1.61 505<br />

1.59 493<br />

0.94 678<br />

0.65 604 0.65 739<br />

156<br />

92<br />

Columbia River 1914 0 . 2 184 178 319 1. 83 565 0 .80 725 123<br />

0 . 3 81 67 297 1.74 512 0 . 79 655 . 55 777 73<br />

0 .4 4 0 282 1.75 488 0 . 53 585 .48 668 .42 762 52<br />

Canada:<br />

Lower Strait <str<strong>on</strong>g>of</str<strong>on</strong>g> 1916 0 . 2 395 379 307 1.76 533 0 .87 700 139<br />

Georgia. 0 . 3 767 436 285 1.72 487 0 . 88 642 . 54 759 72<br />

0 .4 19 3 282 1.67 475 0.84 617 .55 732 .38 825 46<br />

Central British 1960 0 . 2 100 274 2.10 528 0 . 93 706 153<br />

Columbia. 0.3 96 261 2.04 493 0 .91 650 .58 784 79<br />

0 .4 4 213 2 .31 439 1.07 614 .69 761 .38 856 46<br />

High Seas: 1952- 54 0.2 37 11 262 1.50 419 0.50 490 65<br />

West <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g. 180 0 • 0 .3 50 58 257 1.88 462 0 .34 514 . 35 574 42<br />

0 .4 1 10 224 1.50 358 0.95 482 . 58 578 .22 619 25<br />

U.S.S . R. :<br />

Amur River 1946- 48 0 . 2 91 280 1.78 489 0.63 595 88<br />

(autumn fish ) . 0 . 3 296 263 1.64 439 0 .81 566 .47 655 60<br />

0 .4 150 260 1.54 421 0 .73 529 .56 630 .39 711 48<br />

Avg . <str<strong>on</strong>g>of</str<strong>on</strong>g> 0 . 3 1,285 269 1.64 449 0 .81 578 .48 672 62<br />

6 years<br />

Sakhalin<br />

Tar<strong>on</strong>domari River 1948 0 . 3 291 1.33 440 0.83 571 .61 690 84<br />

(autumn fish) .<br />

Khor River 1948 0 . 3 255 1.60 420 0.82 543 .49 633 63<br />

(summer fish) .<br />

, L 2 , etc . , are lengths at successive annuli as computed from scales; <strong>the</strong> last length in <strong>the</strong> series is <strong>the</strong> ob­<br />

1 L<br />

l<br />

served average fork length at capture .<br />

2 Instantaneous rates <str<strong>on</strong>g>of</str<strong>on</strong>g> increase in weights (g2' g), etc . ) are computed by <strong>the</strong> expressi<strong>on</strong>:<br />

g = b (loge 12- loge l l ) ; b = 3 . 2 .<br />

most <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> growth was in June and July. From<br />

September to April, growth was represented<br />

by a narrow annulus band, which usually c<strong>on</strong>sisted<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 4 to 6 closely placed circuli for <strong>the</strong><br />

first annulus and 2 to 4 circuli for later <strong>on</strong>es .<br />

Birman (1951) noted a relati<strong>on</strong> between <strong>the</strong><br />

size <str<strong>on</strong>g>of</str<strong>on</strong>g> chum salm<strong>on</strong> and <strong>the</strong> density <str<strong>on</strong>g>of</str<strong>on</strong>g> stocks<br />

in <strong>the</strong> ocean. More intensified competiti<strong>on</strong> for<br />

food during periods <str<strong>on</strong>g>of</str<strong>on</strong>g> high abundance (Ito, 1964;<br />

Andrievskaya, 1966) leads to a decrease in<br />

' <strong>the</strong> growth rate. This slower growth rate in<br />

turn results in later maturity.<br />

Some c<strong>on</strong>clusi<strong>on</strong>s c<strong>on</strong>cerning growth were<br />

made from size <str<strong>on</strong>g>of</str<strong>on</strong>g> chum salm<strong>on</strong> at maturity.<br />

Within sex and age groups <strong>the</strong> increase in size<br />

and weight <str<strong>on</strong>g>of</str<strong>on</strong>g> fish from north to south (tables<br />

26 and 27) shows that chum salm<strong>on</strong>fromnor<strong>the</strong>rn<br />

areas grow less and do not become as<br />

large as fish from more sou<strong>the</strong>rn areas (Gilbert,<br />

1922; Marr, 1943; Henry, 1954; Sano,<br />

1966). It is also evident from <strong>the</strong>se data that<br />

35<br />

males grow faster than females. Although a<br />

comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sizes between Asia and North<br />

America may be invalid because inmostcases<br />

samples were taken in different years, it appears<br />

that growth was similar between chum<br />

salm<strong>on</strong> from Alaska and those from <strong>the</strong> U.S.S.R.<br />

and am<strong>on</strong>g fish from British Columbia, Washingt<strong>on</strong>,<br />

Oreg<strong>on</strong>, and Japan.<br />

Sernko (1954), in his analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> data from<br />

<strong>the</strong> Bolshaya River (table 27), c<strong>on</strong>cluded that<br />

fish grew larger in years <str<strong>on</strong>g>of</str<strong>on</strong>g> abundant runs<br />

(1937, 1941, and 1943) than <strong>the</strong>y did in years<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> smaller runs (1938, 1939, 1940, and 1944).<br />

On <strong>the</strong> o<strong>the</strong>r hand, Birman (1951) in his study<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> chum salm<strong>on</strong> from <strong>the</strong> Amur River and<br />

Petrova (1964) in her study <str<strong>on</strong>g>of</str<strong>on</strong>g> more recent data<br />

from <strong>the</strong> Bolshaya River (1951-60, table 27)<br />

c<strong>on</strong>sidered <strong>the</strong> size <str<strong>on</strong>g>of</str<strong>on</strong>g> fish to increase as<br />

<strong>the</strong>ir numbers declined.<br />

The following length-weight relati<strong>on</strong>s have<br />

been calculated for chum salm<strong>on</strong> where W is


Fry<br />

Table 28.--0xygen c<strong>on</strong>sumpti <strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chum salm<strong>on</strong> eggs, fry, and mature adults<br />

Stage <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

development Temperature Oxygen c<strong>on</strong>sumpti<strong>on</strong> Authority<br />

Egg (oe. days)<br />

Fingerling<br />

121.2<br />

268.2<br />

353.0<br />

452 .4<br />

Mature adults:<br />

Holding positi<strong>on</strong><br />

Migrating upstream<br />

Males<br />

Females<br />

3.5 Behavior<br />

11.0<br />

10.0<br />

20.0<br />

8 . 6- 9 .0<br />

9.0- 9 .4<br />

9 .0- 9 .3<br />

12 . 0<br />

12.0<br />

Mm. 3 0:z/egg/hr. Mm. 3 0:zlg. larval tissue/hr.<br />

0 . 68<br />

1.60<br />

2.78<br />

3 . 80<br />

3.51 Migrati<strong>on</strong>s and local movements<br />

Churn salm<strong>on</strong> migrate throughout most <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong>ir lives. So<strong>on</strong> after emerging from <strong>the</strong><br />

gravel, <strong>the</strong>y start moving downstream to <strong>the</strong><br />

ocean and in <strong>the</strong>ir first year at sea, migrate<br />

to <str<strong>on</strong>g>of</str<strong>on</strong>g>fshore waters <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> North Pacific Ocean<br />

and Bering Sea. Recent studies indicated that<br />

migrati<strong>on</strong>s c<strong>on</strong>tinue during ocean residence.<br />

In <strong>the</strong> year <str<strong>on</strong>g>of</str<strong>on</strong>g> sexual maturity, <strong>the</strong> adults leave<br />

feeding areas <strong>on</strong> <strong>the</strong> high seas, migrate to<br />

coastal waters, and finally enter <strong>the</strong> spawning<br />

streams.<br />

Churn salm<strong>on</strong> fry migrate downstream almost<br />

entirely during darkness (Abramov, 1949;<br />

S.ernko, 1954; Neave, 1955). Very little migrah<strong>on</strong><br />

takes place during daylight except during<br />

flooding or high turbidity. In <strong>the</strong> Chitose River<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Japan, fry actively moved downstream within<br />

2 to 3 hours after sunset; migrati<strong>on</strong> decreased<br />

before dawn and was limited until darkness<br />

approached <strong>the</strong> next day (Saito, 1950). In<br />

Hook Nose Creek, British Columbia, fry<br />

traveled near <strong>the</strong> surface and in <strong>the</strong> center <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> stream where water currents were<br />

str<strong>on</strong>gest (Hunter, 1959). Migrati<strong>on</strong> rates in<br />

<strong>on</strong>e Japanese stream were about 76 km. in 25<br />

39<br />

Mm. 3<br />

295<br />

103<br />

120<br />

131<br />

O:z/g . body wt./hr.<br />

228<br />

445<br />

188<br />

144<br />

71<br />

215<br />

236<br />

Alderdice et a1., (1958) .<br />

Do.<br />

Do.<br />

Do.<br />

Levanidov (1955).<br />

Do.<br />

Awakura (1963) .<br />

Do.<br />

Do.<br />

Winberg (1956).<br />

Do.<br />

days for <strong>on</strong>e group <str<strong>on</strong>g>of</str<strong>on</strong>g> fry and 113 km. in 24<br />

days for ano<strong>the</strong>r (Sano and Kobayashi, 1953).<br />

Behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> churn salm<strong>on</strong> fry migrating in a<br />

large river (Fraser River, British Columbia)<br />

differed from behavior in smaller streams<br />

(Todd, 1966). At <strong>the</strong> beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> seas<strong>on</strong>,<br />

<strong>the</strong> daily migrati<strong>on</strong> peaked in <strong>the</strong> early afterno<strong>on</strong><br />

but became progressively earlier in <strong>the</strong><br />

day as <strong>the</strong> seas<strong>on</strong> advanced. Less than 20<br />

percent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fry migrated at night. The fry<br />

were distributed laterally over <strong>the</strong> entire width<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> river throughout <strong>the</strong> migrati<strong>on</strong> period<br />

(February to early June); from 65 to 75 percent<br />

were near <strong>the</strong> river surface, but some<br />

were found to depths exceeding 4 m.<br />

After becoming distributed throughout <strong>the</strong><br />

North Pacific Ocean and Bering Sea, immature<br />

churn salm<strong>on</strong> c<strong>on</strong>tinue <strong>the</strong>ir migratory behavior<br />

during <strong>the</strong>ir life at sea. A westward<br />

migrati<strong>on</strong> south <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Alaska Peninsula and<br />

<strong>the</strong> Aleutian Islands was detected from mid­<br />

June to August or later (Hartt, 1962 and 1966;<br />

Johnsen, 1964; Larkins, 1964a). These investigati<strong>on</strong>s<br />

have also shown a similar westward<br />

migrati<strong>on</strong> for maturing fish in late May<br />

through July with a peak in June. Researchers<br />

have hypo<strong>the</strong>sized that churn salm<strong>on</strong> migrate<br />

from <strong>the</strong> colder nor<strong>the</strong>rn waters <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Okhotsk<br />

and Bering Seas during <strong>the</strong> winter and make a


Table 30.- ·Age compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chum salm<strong>on</strong> caught at sea by research vessels<br />

Area Year and time period<br />

Fish<br />

sampled<br />

Number<br />

Mid-Pacific Ocean 1962 Feb. 10 - Mar. 6 143<br />

1963 Jan. 28 - Feb. 22 64<br />

Nor<strong>the</strong>ast Pacific 1962 Apr. 9 - May 6 847<br />

Ocean . 1962 May 10 - 24 323<br />

1962 May 28 - June 13 635<br />

1959 May 18 - June 29 763<br />

1962 June 18 - 30 445<br />

1962 July 3 - 14 492<br />

1962 July 15 - 26 117<br />

which are maturing and leaving <strong>the</strong> high-seas<br />

areas (Fisheries Research Board <str<strong>on</strong>g>of</str<strong>on</strong>g> Canada,<br />

1964).<br />

Manzer et al. (1965) summarized present<br />

knowledge <strong>on</strong> <strong>the</strong> high-seas distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> age<br />

groups for <strong>the</strong> period from May to August from<br />

catches <str<strong>on</strong>g>of</str<strong>on</strong>g> research vessels and Japanese<br />

commercial vessels. Fish in <strong>the</strong>ir first year<br />

were taken in coastal areas during <strong>the</strong> summer,<br />

but <strong>the</strong>ir distributi<strong>on</strong> after <strong>the</strong>y left coastal<br />

areas was unknown.<br />

Age 0.1 fish were taken <strong>on</strong>ly in <strong>the</strong> sou<strong>the</strong>astern<br />

Gulf <str<strong>on</strong>g>of</str<strong>on</strong>g> Alaska in May, after which this<br />

age group became more numerous in sou<strong>the</strong>rn<br />

waters <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Gulf <str<strong>on</strong>g>of</str<strong>on</strong>g> Alaska and near <strong>the</strong><br />

central Aleutian Islands. By July <strong>the</strong>y were<br />

present throughout <strong>the</strong> North Pacific Ocean<br />

and Bering Sea. Centers <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong><br />

during July and August were in <strong>the</strong> southwestern<br />

areas <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Gulf <str<strong>on</strong>g>of</str<strong>on</strong>g> Alaska, eastern<br />

Aleutian Islands, and in <strong>the</strong> western areas <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> Bering Sea and North Pacific Ocean.<br />

Age 0.2 fish were widespread in Mayacross<br />

<strong>the</strong> western and central areas <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> North<br />

Pacific Ocean and generally throughout <strong>the</strong><br />

eastern part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Gulf <str<strong>on</strong>g>of</str<strong>on</strong>g> Alaska. After May,<br />

age 0.2 fish were caught throughout <strong>the</strong> North<br />

Pacific Ocean and Bering Sea. During July and<br />

August <strong>the</strong>y were relatively more numerous in<br />

<strong>the</strong> western Gulf <str<strong>on</strong>g>of</str<strong>on</strong>g> Alaska, south <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> eastern<br />

Aleutian Islands, and in <strong>the</strong> western Bering<br />

Sea.<br />

Age 0.3 and 0.4 fish were in all waters<br />

fished during May, after which <strong>the</strong>ir relative<br />

numbers increased coastward from <strong>the</strong> highseas<br />

areas.<br />

Age 0.5 fish were caught <strong>on</strong>ly west <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

eastern Aleutian Islands in <strong>the</strong> North Pacific<br />

Ocean, and west <str<strong>on</strong>g>of</str<strong>on</strong>g> about l<strong>on</strong>g. 175 0 W. in <strong>the</strong><br />

Bering Sea. After May <strong>the</strong>ir numbers increased<br />

coastward.<br />

Age<br />

0 .1 1 0 . 21 0 .3 I 0 .41<br />

Percent<br />

0.5<br />

Unknown<br />

Authority<br />

0 .7 7.0 49 .0 41.3 1.4 0 .7 French and Mas<strong>on</strong><br />

0 1.6 60 .9 34 .4 1.6 1.6 (1964).<br />

1.4 22.7 52.9 22.8 0.2 Fisheries Research<br />

3.4 23.5 49.3 23 . 8 0 Board <str<strong>on</strong>g>of</str<strong>on</strong>g> Canada<br />

4 . 9 46 .0 40 . 8 8.3 0 (1960 and 1964).<br />

0 . 3 39 .4 27.5 1.4 0 22.8<br />

6 . 5 68 . 5 20.5 4.3 0.2<br />

41.9 49 .6 7 .9 0 . 4 0.2<br />

82 .0 15 .4 2.6 0 0<br />

43<br />

The older <strong>the</strong> age group, <strong>the</strong> closer to major<br />

land masses were <strong>the</strong> centers <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>,<br />

regardless <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> m<strong>on</strong>th. Because most age<br />

0.3 and 0.4 and almost all age 0.5 fish were<br />

maturing, <strong>the</strong> coastward shift in <strong>the</strong> centers <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

abundance was expected.<br />

The age compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mature chum salm<strong>on</strong><br />

in Asia and North America (tables 31 and 32)<br />

shows that age 0.3 fish dominate in most<br />

areas. Populati<strong>on</strong>s from sou<strong>the</strong>rn localities<br />

have a larger percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> younger fish,<br />

whereas nor<strong>the</strong>rn populati<strong>on</strong>s have a larger<br />

percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> older fish (Gilbert, 1922; Marr,<br />

1943; Pritchard, 1943; Kobayashi, 1961; Oakley,<br />

1966; Sano, 1966). This trend applies to both<br />

Asian and North American stocks (tables 31<br />

and 32).<br />

C<strong>on</strong>siderable year-to-year variati<strong>on</strong> in age<br />

compositi<strong>on</strong> is comm<strong>on</strong> for populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

mature chum salm<strong>on</strong>. This phenomen<strong>on</strong> has<br />

been recognized by Pritchard (1943), Henry<br />

(1954), Seroko (1954), and o<strong>the</strong>rs and is evident<br />

from data in table 32.<br />

Age compositi<strong>on</strong> changes as <strong>the</strong> spawning<br />

seas<strong>on</strong> progresses. Generally, <strong>the</strong> older fish<br />

appeared in <strong>the</strong> earlier part <str<strong>on</strong>g>of</str<strong>on</strong>g> runs and <strong>the</strong><br />

younger fish appeared later [Marr, 1943;<br />

Seroko, 1954; Helle, 1960; Thorsteins<strong>on</strong> et al.,<br />

1963; Matts<strong>on</strong> et al., 1964 (see footnote 5)].<br />

Matts<strong>on</strong> and Rowland (1963; see footnote 4),<br />

however, found that age 0.3 fish dominated<br />

early migrants and age 0.4 fish dominated late<br />

migrants at Traitors Cove, Alaska, in <strong>on</strong>e<br />

year.<br />

4.13 Size compositi<strong>on</strong><br />

Published data <strong>on</strong> actual size compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

chum salm<strong>on</strong> populati<strong>on</strong>s are limited; <str<strong>on</strong>g>of</str<strong>on</strong>g>ten<br />

<strong>on</strong>ly mean sizes have been reported. To cover<br />

<strong>the</strong> available informati<strong>on</strong> <strong>on</strong> size, some data<br />

are included which do not deal strictly with<br />

size compositi<strong>on</strong>.


Table 30.- -Age compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chum salm<strong>on</strong> caught at sea by research vessels<br />

Area Year and time period<br />

Fish<br />

sampled<br />

Number<br />

Mid-Pacific Ocean 1962 Feb . 10 - Mar. 6 143<br />

1963 Jan. 28 - Feb. 22 64<br />

Nor<strong>the</strong>ast Pacific 1962 Apr . 9 - May 6 847<br />

Ocean . 1962 May 10 - 24 323<br />

1962 May 28 - June 13 635<br />

1959 May 18 - June 29 763<br />

1962 June 18 - 30 445<br />

1962 July 3 - 14 492<br />

1962 July 15 - 26 117<br />

which are maturing and leaving <strong>the</strong> high-seas<br />

areas (Fisheries Research Board <str<strong>on</strong>g>of</str<strong>on</strong>g> Canada,<br />

1964).<br />

Manzer et al. (1965) summarized present<br />

knowledge <strong>on</strong> <strong>the</strong> high-seas distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> age<br />

groups for <strong>the</strong> period from May to August from<br />

catches <str<strong>on</strong>g>of</str<strong>on</strong>g> research vessels and Japanese<br />

commercial ves sels . Fish in <strong>the</strong>ir first year<br />

were taken in coastal areas during <strong>the</strong> summer,<br />

but <strong>the</strong>ir distributi<strong>on</strong> after <strong>the</strong>y left coastal<br />

areas was unknown.<br />

Age 0.1 fish were taken <strong>on</strong>ly in <strong>the</strong> sou<strong>the</strong>astern<br />

Gulf <str<strong>on</strong>g>of</str<strong>on</strong>g> Alaska in May, after which this<br />

age group became more numerous in sou<strong>the</strong>rn<br />

waters <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Gulf <str<strong>on</strong>g>of</str<strong>on</strong>g> Alaska and near <strong>the</strong><br />

central Aleutian Islands. By July <strong>the</strong>y were<br />

present throughout <strong>the</strong> North Pacific Ocean<br />

and Bering Sea. Centers <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong><br />

during July and August were in <strong>the</strong> southwestern<br />

areas <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Gulf <str<strong>on</strong>g>of</str<strong>on</strong>g> Alaska, eastern<br />

Aleutian Islands, and in <strong>the</strong> western areas <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> Bering Sea and North Pacific Ocean.<br />

Age 0.2 fish were widespread in Mayacross<br />

<strong>the</strong> western and central areas <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> North<br />

Pacific Ocean and generally throughout <strong>the</strong><br />

eastern part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Gulf <str<strong>on</strong>g>of</str<strong>on</strong>g> Alaska. After May,<br />

age 0.2 fish were caught throughout <strong>the</strong> North<br />

Pacific Ocean and Bering Sea. During Julyand<br />

August <strong>the</strong>y were relatively more numerous in<br />

<strong>the</strong> western Gulf <str<strong>on</strong>g>of</str<strong>on</strong>g> Alaska, south <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> eastern<br />

Aleutian Islands, and in <strong>the</strong> western Bering<br />

Sea.<br />

Age 0.3 and 0.4 fish were in all waters<br />

fished during May, after which <strong>the</strong>ir relative<br />

numbers increased coastward from <strong>the</strong> highseas<br />

areas.<br />

Age 0.5 fish were caught <strong>on</strong>ly west <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

eastern Aleutian Islands in <strong>the</strong> North Pacific<br />

Ocean, and west <str<strong>on</strong>g>of</str<strong>on</strong>g> about l<strong>on</strong>g. 175 0 W. in <strong>the</strong><br />

Bering Sea. After May <strong>the</strong>ir numbers increas ed<br />

coastward.<br />

Age<br />

0.1 1 0 . 21 0 .3 1 0 . 4 I 0.5 Unknown Authority<br />

Percent<br />

0 . 7 7 . 0 49.0 41.3 1.4 0 .7 French and Mas<strong>on</strong><br />

0 1.6 60 .9 34 .4 1.6 1.6 (1964) .<br />

1.4 22.7 52 .9 22.8 0 . 2 Fisheries Research<br />

3.4 23.5 49 .3 23 . 8 0 Board <str<strong>on</strong>g>of</str<strong>on</strong>g> Canada<br />

4 . 9 46 . 0 40 . 8 8 .3 0 (1960 and 1964).<br />

0 .3 39 .4 27 . 5 1.4 0 22.8<br />

6 . 5 68 . 5 20.5 4.3 0 . 2<br />

41.9 49 .6 7 . 9 0 .4 0 . 2<br />

82 .0 15 .4 2.6 0 0<br />

43<br />

The older <strong>the</strong> age group, <strong>the</strong> closer to major<br />

land masses were <strong>the</strong> centers <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>,<br />

regardless <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> m<strong>on</strong>th. Because most age<br />

0.3 and 0.4 and almost all age 0.5 fish were<br />

maturing, <strong>the</strong> coastward shift in <strong>the</strong> centers <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

abundance was expected.<br />

The age compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mature chum salm<strong>on</strong><br />

in Asia and North America (tables 31 and 32)<br />

shows that age 0.3 fish dominate in most<br />

areas. Populati<strong>on</strong>s from sou<strong>the</strong>rn localities<br />

have a larger percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> younger fish,<br />

whereas nor<strong>the</strong>rn popUlati<strong>on</strong>s have a larger<br />

percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> older fish (Gilbert, 1922; Marr,<br />

1943; Pritchard, 1943; Kobayashi, 1961; Oakley,<br />

1966; Sano, 1966). This trend applies to both<br />

Asian and North American stocks (tables 31<br />

and 32).<br />

C<strong>on</strong>siderable year-to-year variati<strong>on</strong> in age<br />

compositi<strong>on</strong> is comm<strong>on</strong> for populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

mature chum salm<strong>on</strong>. This phenomen<strong>on</strong> has<br />

been recognized by Pritchard (1943), Henry<br />

(1954), Semko (1954), and o<strong>the</strong>rs and is evident<br />

from data in table 32.<br />

Age compositi<strong>on</strong> changes as <strong>the</strong> spawning<br />

seas<strong>on</strong> progresses. Generally, <strong>the</strong> older fish<br />

appeared in <strong>the</strong> earlier part <str<strong>on</strong>g>of</str<strong>on</strong>g> runs and <strong>the</strong><br />

younger fish appeared later [Marr, 1943;<br />

Semko, 1954; Helle, 1960; Thorsteins<strong>on</strong> et al.,<br />

1963; Matts<strong>on</strong> et al., 1964 (see footnote 5)].<br />

Matts<strong>on</strong> and Rowland (1963; see footnote 4),<br />

however, found that age 0.3 fish dominated<br />

early migrants and age 0.4 fish dominated late<br />

migrants at Traitors Cove, Alaska, in <strong>on</strong>e<br />

year.<br />

4.13 Size compositi<strong>on</strong><br />

Published data <strong>on</strong> actual size compositi<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g><br />

chum salm<strong>on</strong> populati<strong>on</strong>s are limited; <str<strong>on</strong>g>of</str<strong>on</strong>g>ten<br />

<strong>on</strong>ly mean sizes have been reported. To cover<br />

<strong>the</strong> available informati<strong>on</strong> <strong>on</strong> size, some data<br />

are included which do not deal st:t:ictly with<br />

size compositi<strong>on</strong>.


Bri i<br />

T 1 rl lr<br />

y ar<br />

Villiam Sound<br />

lbC<br />

.....<br />

7 .


Table 32.--Yearly variati<strong>on</strong> in aee<br />

t<br />

compo ih<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hum ulm<strong>on</strong> popu1utivns--C<strong>on</strong>tin d<br />

Fish<br />

Area and year<br />

Me<br />

sampled<br />

A tl ority<br />

0.;:> f_ c.-:} I 0.1. • J<br />

Amur River: Number<br />

Summer chum salm<strong>on</strong><br />

1927 501 3.6<br />

1928 134 0<br />

1929 /.25 bO.2<br />

1930 82 0.6<br />

Autumn chum salm<strong>on</strong><br />

1927 308 3.2<br />

1928 522 1.5<br />

1929 641 1 ."<br />

1932 4 8 1.7<br />

1933 2 8 ::"7<br />

Hokkaido coast :<br />

19'57 32 .<br />

1958 24 .1<br />

1959 18.4<br />

1960 25 .4<br />

1961 18 . ?<br />

<strong>the</strong> mean lengths within age groups and <strong>the</strong><br />

total mean length increased from north to<br />

south. The total increases 1n length from<br />

north to south are <str<strong>on</strong>g>of</str<strong>on</strong>g>fset to some degree by<br />

<strong>the</strong> greater strength <str<strong>on</strong>g>of</str<strong>on</strong>g> YOWlger fish in more<br />

sou<strong>the</strong>rn streams and by <strong>the</strong> actual dominance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> YOWlger age groups in some areas.<br />

The length compositi<strong>on</strong> within and between<br />

areas <str<strong>on</strong>g>of</str<strong>on</strong>g> Alaska, based <strong>on</strong> mean length (mideye<br />

to fork <str<strong>on</strong>g>of</str<strong>on</strong>g> tail), is compared in table 36.<br />

Yearly changes in size compositi<strong>on</strong> within<br />

areas were partially due to differences in<br />

mean length within age groups but were<br />

primarily due to changes in strength <str<strong>on</strong>g>of</str<strong>on</strong>g> age<br />

groups. Age 0.3 fish were dominant in all<br />

areas and in most years, but age 0.2 fish<br />

varied from 0 to 56 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> samples<br />

and age 0.4 fish from 2 to 51 pe rcent. The<br />

size differences between areas also changed<br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> increasing mean lengths within<br />

ages from north to south. A shift to younger<br />

ages from north to south was not evident<br />

for areas in Alaska as it was for samples<br />

with a wider latitudinal distributi<strong>on</strong>. Mean<br />

lengths for age 0.3 fish are fur<strong>the</strong>r summarized<br />

from table 36 as follows:<br />

Area Female Male Percentage<br />

Range in cm, age 0.3<br />

Kotzebue SOWld 58-60 60-62 42-92<br />

Yuk<strong>on</strong> River 55-58 57-59 63-97<br />

Alaska Peninsula 58-60 59-61 60-92<br />

Kodiak Island 59-63 60-67 43-88<br />

Prince William<br />

SOWld 60-63 60-65 45-86<br />

Sou<strong>the</strong>as tern<br />

Alaska 67-68 69-71 64-77<br />

Perc nt<br />

7').:> 15.8 1.4 Lc..v kay (lJ48) .<br />

138 .1 11 .5 . 7 Do.<br />

2 13 . ? 0 Do.<br />

.1 1.J Do .<br />

7 .2 1,. '3 Do.<br />

67.1 ;> Do .<br />

7 . 7 14.1 Do .<br />

j8.7 . ? Do .<br />

4.6 ... 2.4 Do .<br />

46<br />

7.4 8<br />

Do .<br />

Do .<br />

Do .<br />

14 . 3 Do .<br />

<strong>Chum</strong> alm<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this age were smallest in <strong>the</strong><br />

Yuk<strong>on</strong> River. FiSh from Kotzebue Soun an<br />

<strong>the</strong> Alaska Peninsula appea re to be <str<strong>on</strong>g>of</str<strong>on</strong>g> Ellmilar<br />

size. Fish from area m <strong>the</strong> Gulf <str<strong>on</strong>g>of</str<strong>on</strong>g> Ala ka<br />

were largest, particularly those from outh ­<br />

eastern Ala kat<br />

The c<strong>on</strong> iderable overlap in length distri ­<br />

buti<strong>on</strong>s for different a e prevents <strong>the</strong> u"e <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

length to determme age <str<strong>on</strong>g>of</str<strong>on</strong>g> fish (Henry, 1954;<br />

Kobayashi, 1961; Thorste1ns<strong>on</strong> et al.. 1963).<br />

Samples <str<strong>on</strong>g>of</str<strong>on</strong>g> age 0.2 and age 0.4 chum salm<strong>on</strong><br />

from central Alaska overlapped over almost<br />

half <strong>the</strong>ir length distributi<strong>on</strong>, age 0.3 fish overlapped<br />

<strong>the</strong> entire range" <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> o<strong>the</strong>r two age<br />

groups.<br />

4.2 AbWldance and density (<str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong>)<br />

4.21 Average abundance<br />

Neave (1961) calculated gross estimates <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

abWldance for <strong>the</strong> entire ocean populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Pacific salm<strong>on</strong>. <strong>on</strong> <strong>the</strong> basis <str<strong>on</strong>g>of</str<strong>on</strong>g> commercial<br />

catches in 1936-39. Disregardmg <strong>the</strong> relatively<br />

small mass <str<strong>on</strong>g>of</str<strong>on</strong>g> fish which were in <strong>the</strong>ir first<br />

summer at sea, his estimates were:<br />

Species<br />

.Qf<br />

salm<strong>on</strong><br />

Churn<br />

Sockeye<br />

Pink<br />

Chinook<br />

Coho<br />

Masu<br />

Mature stock Immature stock<br />

Thousands <str<strong>on</strong>g>of</str<strong>on</strong>g> metric t<strong>on</strong>s<br />

510<br />

236<br />

790<br />

42<br />

58<br />

24<br />

845<br />

300<br />

55<br />

Total 1,660 1,200<br />

Total<br />

1,355<br />

536<br />

790<br />

97<br />

58<br />

24<br />

2,860


Survival rates from <strong>the</strong> egg to fry stage fo r<br />

various types <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>ment are pres ented<br />

in table 37. Survival has usually averaged l e ss<br />

than 10 percent in natural streams; although<br />

it averaged as much as 2 8 percent in <strong>the</strong> Memu<br />

River, Japan, over 3 years (Nagasawa and<br />

Sano, 1961) • Survival has been increas ed in<br />

natural streams by c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> stream flo w<br />

(table 37). In Nile Creek, British Columbia,<br />

survival was increas ed from 1.5 to 7.5 percent<br />

after regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> flow. In <strong>the</strong> Big<br />

Qualicum River, British Columbia, survival<br />

was increased from 11 to 25 p e rcent.<br />

In Asian hatcheries, egg-to-fry survival has<br />

been about 70 to 90 percent. The rate <str<strong>on</strong>g>of</str<strong>on</strong>g> r e turn<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> adults from hatchery - releas ed fry doe s not<br />

increase in proporti<strong>on</strong> to <strong>the</strong> increase in eggto-fry<br />

survival, howeve r. The Japan Fishe ries .<br />

Resource C<strong>on</strong>s ervati<strong>on</strong> As sociati<strong>on</strong> (1 966) e stimated<br />

that mortality <str<strong>on</strong>g>of</str<strong>on</strong>g> hatche ry fry , f rom <strong>the</strong><br />

time <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir releas e as fry until th eir r eturn<br />

as adults, was about t wice that <str<strong>on</strong>g>of</str<strong>on</strong>g> naturally<br />

produced fry.<br />

Estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> return p e r spawner are gi ven<br />

in table 38 . For central and sou<strong>the</strong>aste r n<br />

Alaska, <strong>the</strong> estim ate s indicate that r e producti<strong>on</strong><br />

rates hav e declined from about 3 to 4<br />

returns per spawner for 19 20- 29 to about 1.5<br />

to 2 returns per spawne r for 1950-59 . The<br />

return per spawner in <strong>the</strong> Johnst<strong>on</strong>e Strait<br />

a rea <str<strong>on</strong>g>of</str<strong>on</strong>g> British Columbia was similar to that<br />

i n central and sou<strong>the</strong>aste rn Alaska. Estim ates<br />

for Hokkaido ch u m salm <strong>on</strong> (Japan Fishe ries<br />

R esource C <strong>on</strong>s e rvati<strong>on</strong> A ssociati<strong>on</strong>, 1966 ),<br />

including r eturns from artifi cial and natur a l<br />

spawning, a veraged about four r eturns p e r<br />

s pawner for 193 1-49 and inc reased to six<br />

r eturns per spawner in <strong>the</strong> 1950 1 s. The inc<br />

reas e was attributed to improved hatchery<br />

t echniques.<br />

4.32 Factors t hat affect reprodu c ti o n<br />

Neave (1953) s e parated factors that i nfluence<br />

populati<strong>on</strong> levels into three categor i es:<br />

1) compensatory mortality whic h b e comes<br />

elatively heavier as <strong>the</strong> d ensity <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> popula ­<br />

ti<strong>on</strong> increases, (2) depensatory m ortality which<br />

b ecomes relatively greater a s th e populati<strong>on</strong><br />

decreases, and (3) extra-pensatory m o r tality<br />

w hich is independent <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> density.<br />

C ompensatory m ortality occurs prim a rily<br />

during <strong>the</strong> period <str<strong>on</strong>g>of</str<strong>on</strong>g> reproducti<strong>on</strong>. When a dults<br />

a re crowded in spawning areas, interference<br />

b etween fish may r e sult in egg r etenti<strong>on</strong>,<br />

removal <str<strong>on</strong>g>of</str<strong>on</strong>g> eggs fro m <strong>the</strong> g ravel b y later<br />

spawners, displacement <str<strong>on</strong>g>of</str<strong>on</strong>g> a dults i nto unfavorable<br />

spawning areas, and m ortality <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

eggs during incubati<strong>on</strong> b ecause o f <strong>the</strong> inab ility<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> streambed envir<strong>on</strong>ment to meet biological<br />

needs.<br />

51<br />

Depensat o r y mortality, whi ch is inversely<br />

r e l a t ed to populati<strong>on</strong> dens i ty , occu rs primarily<br />

during fry migrati<strong>on</strong>. Predato rs take a rela ­<br />

tivel y fixed number ra<strong>the</strong> r than a percentage<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> do wns tream migrants. Thus , <strong>the</strong> percentage<br />

morta lity decreases with increasing numbers<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> f r y migr ants.<br />

Extra-pensatory m ortality may be caused<br />

by fishing and b y e nvir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s such<br />

as extremes <str<strong>on</strong>g>of</str<strong>on</strong>g> stream flow a nd temperature.<br />

The specific effec t s <str<strong>on</strong>g>of</str<strong>on</strong>g> various factors <strong>on</strong> reproducti<strong>on</strong><br />

are discu ss e d in secti<strong>on</strong> 4.42.<br />

4 . 33 R ecruitment<br />

Historically <strong>the</strong> s a l m o n fishery has operated<br />

nea r <strong>the</strong> coast and in r ivers where <strong>the</strong> fish<br />

are c<strong>on</strong>centrated during <strong>the</strong>ir spawning migrati<strong>on</strong>.<br />

In additi<strong>on</strong> t o being more easily caught,<br />

<strong>the</strong> fish have reached <strong>the</strong>ir maximum size.<br />

Since 19 52, <strong>the</strong> J apanese have developed a<br />

h igh-seas fishery which takes maturing fish<br />

several week s b e fore <strong>the</strong>y normally reach<br />

coastal waters ; it a l s o takes some immature<br />

fish. See secti<strong>on</strong> 5 . 3 for fishing seas<strong>on</strong>s.<br />

Estimates by Neave (1961) fo r 1936-39 in-<br />

. dicated that <strong>the</strong> a nnual recruitment <str<strong>on</strong>g>of</str<strong>on</strong>g> chum<br />

salm<strong>on</strong> to <strong>the</strong> fis hable s tock was 510, 000<br />

metric t<strong>on</strong>s. T h e annual catch for this period<br />

was e stimated to be 275,000 metric t<strong>on</strong>s.<br />

Recent catch figu res indicate that present<br />

recruitment levels are much lower. From 1961<br />

to 1964, wo rld cat ches <str<strong>on</strong>g>of</str<strong>on</strong>g> chum salm<strong>on</strong> have<br />

varied fro m a b out 134, 000 to 149,000 metric<br />

t<strong>on</strong>s (Fo o d and Agricultural Organizati<strong>on</strong><br />

[FAO], 1965a).<br />

4.4 Mortality and morbidity<br />

4.41 Mortality<br />

Parke r (1962) esti mated total and instantaneous<br />

mor tality fo r <strong>on</strong>e populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chum<br />

salm<strong>on</strong> throughout its life history (table 39).<br />

Parker states tha t his estimates were based<br />

<strong>on</strong> assumpti<strong>on</strong>s for which little informati<strong>on</strong><br />

was available. Mo r tality was highest (at least<br />

<strong>on</strong> a per-m<strong>on</strong>th basis) during <strong>the</strong> juvenile<br />

coastal p e r i od, a nd next highest during <strong>the</strong> egg<br />

to fry stages in f r esh water. Mortality was<br />

much lower in <strong>the</strong> o<strong>the</strong>r life stages.<br />

Mortality for <strong>the</strong> total marine period <str<strong>on</strong>g>of</str<strong>on</strong>g> life,<br />

including fishing m ortality, was estimated to<br />

range from 97.4 to 99.2 percent for chum<br />

salm<strong>on</strong> from Hook Nos e C r eek (Hunter, 1959) .<br />

Levanidov (196 4) estim ated total marine and<br />

fresh- water mortality fo r summer r un chum


Tabl e 36. --Mean l engths (mideye to f ork <str<strong>on</strong>g>of</str<strong>on</strong>g> tail) by year} age, and sex, and percentage age compos i ti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Bome chum salm<strong>on</strong> populati<strong>on</strong>s in Alaska<br />

Mean lengths (em. )<br />

Percentage age compositi<strong>on</strong><br />

Area and Fish<br />

year sampled Age 0. 2 1 Age 0 . 3 I Age 0 . 4 I Age 0 . 5 Age 0 .2 I Age 0 . 3 I Age 0 . 4 Age 0 . 5 Authority<br />

I<br />

Female I Mele I Female I Mele I Female I Mele I Female I Male Female I Mal e I Female I Male I Female I Male I Female I Male<br />

Number Cm. Percent<br />

Kotzebue Sound<br />

1962 58 54.7 53.1 58.4 61. 0 62 . 0 62.8 -- 64. 5 5 . 9 1. 4 50. 0 13. 3 17. 7 10. 3 0 1.4 Regnart et al.<br />

1963 255 52.3 55.9 59. 5 61.2 61.8 66 . 2 60. 2 62 . 0 18.0 14. 6 32. 5 14.9 13. 7 5.1 0 . 8 0.4 (1967) .<br />

1964 463 56. 8 58.1 60.2 61. 9 61. 7 64. 0 -- -- 29. 4 26 . 3 26 . 1 16 . 4 0.9 0 . 9 0 0<br />

1965 480 55 . 6 57.6 59.0 60 . 4 59.6 61.0 -- -- 1.0 1.7 54. 6 37. 7 2. 3 2. 7 0 0<br />

Yuk<strong>on</strong> River<br />

1962 915 50. 5 54.0 54.7 56. 7 56.6 59.2 -- -- 1 . 2 0 . 7 40. 0 28. 9 14. 2 14.4 0 0<br />

'<br />

1963 650 50.3 51.3 54.7 56.6 57.5 59.2 58. 0 61.0 3 . 7 2.3 51. 5 31.8 4.8 5.4 0 . 3 0 . 2<br />

1964 268 53.8 57.4 57. 8 58. 8 57.8 62 . 0 -- -- 20 . 9 12. 3 38. 4 24. 6 2.2 1.5 0 0<br />

1965 486 51.5 - 55.2 58 . 4 60.0 62.6 -- -- 0.2 0 41 . 7 55 . 6 0 . 4 2.1 0 0<br />

Alaska Peninsula<br />

1951 144 - 55.0 58.2 58.9 59. 2 62.3 -- -- 4 . 9 9 . 7 29 . 9 30.6 13 .9 11.1 0 0 ThorateinsoD<br />

1952 230 55.7 56.4 59 . 9 61.2 62 . 5 - -- -- 8 . 6 25 . 0 36. 6 21.6 4. 7 3 .4 0 0 et a1- (1963).<br />

1953 551 58.1 58. 1 58. 1 60.7 60. 5 63.1 -- -- 9.0 9 .9 34. 8 33.2 6 .9 6. 1 0 0<br />

1954 2, 403 55 . 0 56.7 59.7 61.1 62.7 64.0 -- -- 1.9 7.6 35.2 35 . 0 11.0 9 .4 0 0<br />

1955 561 53.0 53.6 58.2 60.4 60. 9 63.0 -- -- 1.8 5.3 42. 4 39 .9 5 . 5 5 . 0 0 0<br />

1956 1, 579 54.0 54. 6 57.8 59 . 2 60. 3 62.4 -- -- 1. 2 2.6 46 . 7 45. 3 2. 0 2.2 0 0<br />

1957 667 53.3 55 . 8 58 . 4 60. 5 60.7 62.4 -- -- 2. 1 4. 2 31.9 30. 7 15 .1 15. 9 0 0<br />

Kodiak Island<br />

1948 232 - 57 . 1 59.4 59 . 6 62.2 64.7 -- -- 3 . 4 6.4 29 . 6 27 . 0 18 . 0 15 . 5 0 0<br />

1949 316 - - 58.8 60.3 60.9 63.1 -- -- 1.3 1.3 34. 5 31.0 12. 5 19 . 4 0 0<br />

1950 113 - - 59.8 61.7 62.8 65.2 -- -- 1.8 0.9 32.7 33. 6 15. 0 15. 9 0 0<br />

1951 35 - - - 65.1 61.5 - -- -- 2.9 2.9 11.4 31.4 31. 4 20.0 0 0<br />

1955 314 - - 63.4 66.6 64.8 68.1 -- -- 0 1.3 27.4 25 . 8 26 . 1 19. 4 0 0<br />

1956 75 - - 61.0 61.2 - - -- -- 1.3 1.3 44. 0 44. 0 4 . 0 5 . 3 0 0<br />

1957 283 - - 61.4 63.0 62. 3 66.3 -- -- 1. 4 4 . 7 35 . 4 42.2 8 . 1 8 . 3 0 0<br />

Prince William Sound<br />

1952 186 59. 3 60. 6 63.4 64.4 66.9 68.1 0 0 9.1 14. 4 21.9 25.1 17.1 12.3 0 0 Thorsteins<strong>on</strong><br />

1953 818 58.1 56.5 61.8 63. 4 65.1 65 . 3 -- -- 2 . 3 6 . 1 39 . 6 36. 9 6 . 1 9.0 0 0 et a1- (1963).<br />

1954 99 57. 5 56.9 62.5 64.7 - - -- -- 15.0 30.0 25 . 0 20 . 0 3 . 0 7 . 0 0 0<br />

1955 55 - - 62.9 63 . 8 - - -- -- 3.6 7 . 3 41.8 40. 0 3 . 6 3 . 6 0 0<br />

1956 616 57. 3 56. 4 59.8 60.1 - 63.3 -- -- 2 . 3 8 . 8 46. 5 39 . 7 1.0 1 . 8 0 0<br />

1957 216 - 62 . 3 62.3 62.5 64. 7 62.8 -- -- 1.4 5.5 36. 7 35. 3 ll.O 10 . 1 0 0<br />

1958 140 - 59.7 61. 2 62. 9 - - -- -- 5.7 9.9 37. 6 39.0 2.8 5 . 0 0 0<br />

Sou<strong>the</strong>astern Alaska<br />

1962 378 - - 68.1 70. 8 68.7 71.3 -- -- 0 0 27 . 5 36.8 16. 7 19. 0 0 0 Matts <strong>on</strong> and<br />

1963 286 63. 7 64.1 66.6 68.6 68.5 70.8 -- -- 2 . 4 6.3 29.7 46.9 5.9 8 . 7 0 0 Rowland (1963;<br />

see f ootnote<br />

4); Mat ts<strong>on</strong><br />

et al. ( 1964;<br />

s ee f ootnote<br />

5).<br />

1 Percentage age compositi<strong>on</strong> does not add up to 100 percent because a small percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> data was listed as unknO\ffl in <strong>the</strong> original<br />

source.<br />

(7,500,000 km.2) , <strong>the</strong> average d ensity <str<strong>on</strong>g>of</str<strong>on</strong>g>salm<strong>on</strong><br />

in <strong>the</strong> ocean for this perio d was estimated<br />

a s follow s :<br />

Nature <str<strong>on</strong>g>of</str<strong>on</strong>g> estimates<br />

Seas<strong>on</strong>al minimum<br />

(immature stock)<br />

Se as<strong>on</strong>al maximum<br />

(total stock)<br />

Matur e s tock<br />

Churn<br />

salm<strong>on</strong><br />

Kg.! km. 2<br />

110<br />

180<br />

70<br />

All salm<strong>on</strong><br />

Kg.! km,2<br />

160<br />

380<br />

220<br />

Because churn and o<strong>the</strong>r species <str<strong>on</strong>g>of</str<strong>on</strong>g> salm<strong>on</strong><br />

were a t a high level <str<strong>on</strong>g>of</str<strong>on</strong>g> abundance in 1936-39,<br />

average density in m o re recent years would be<br />

low er.<br />

4.24 Changes in density<br />

World catches <str<strong>on</strong>g>of</str<strong>on</strong>g> churn salm<strong>on</strong> (see secti<strong>on</strong><br />

5.43) indicate that density in <strong>the</strong> ocean<br />

and in fresh water have changed c<strong>on</strong>siderably<br />

during <strong>the</strong> history <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fishery. The density<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> females in spawning areas <str<strong>on</strong>g>of</str<strong>on</strong>g> British<br />

Columbia ha s ranged from 1 female in 0.25 m. 2<br />

50<br />

to 1 female in 1,400 m . 2 (Wickett, 1958 ); it<br />

has ranged from 1 female in 0.3 m. 2 to 1<br />

female in 10.1 m. 2 in <strong>the</strong> Karymaisky Spring<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Bolshaya River, U.S.S.R. (Sernko, 1954).<br />

4.3 Natality and recruitment<br />

4.31 Reproducti<strong>on</strong> rates<br />

No annual rates <str<strong>on</strong>g>of</str<strong>on</strong>g> egg producti<strong>on</strong> exist for<br />

<strong>the</strong> populati<strong>on</strong> as a whole, but some estimates<br />

are available for specific streams (Sernko,<br />

1954; Soin, 1954; Parker, 1962; Levanidov,<br />

1964; Lister and Walker, 1966) (See secti<strong>on</strong><br />

3.15 for fecundity), The most comprehensive<br />

data available are for <strong>the</strong> Japanese islands <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Hokkaido and H<strong>on</strong>shu, where an intensive<br />

pro gram <str<strong>on</strong>g>of</str<strong>on</strong>g> artificial propagati<strong>on</strong> is carried<br />

out; about 57 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> adults that enter<br />

Hokkaido streams are diverted to hatcheries<br />

(Japan Fisheries Resource C<strong>on</strong>servati<strong>on</strong> Associati<strong>on</strong>,<br />

1966). Egg producti<strong>on</strong> fromartificially<br />

spawned fish has ranged from 168 milli<strong>on</strong><br />

to 772 milli<strong>on</strong> in Hokkaido for 1945-65 and<br />

from 42 milli<strong>on</strong> to 158 milli<strong>on</strong> in H<strong>on</strong>shu for<br />

1954-64 (see secti<strong>on</strong> 6.51).


Table 39.--Estimated mortality for chum salm<strong>on</strong><br />

from Hook Nose Creek, British Columbia, during<br />

various life stages (Parker, 1962)<br />

Life history<br />

stage<br />

Egg - fry<br />

Coastal (juvenile)<br />

Pelagic<br />

Coastal ( adults)<br />

Fishing<br />

Total<br />

M<strong>on</strong>ths<br />

7<br />

5<br />

34<br />

2<br />

48<br />

Survival<br />

Percent<br />

7 . 8<br />

5.4<br />

56.6<br />

93 . 0<br />

35.0<br />

0 . 08<br />

Instantaneous<br />

mortality<br />

(i) 1<br />

2.55<br />

2.91<br />

0 .57<br />

0 . 07<br />

1.05<br />

7 .15<br />

1 Instantaneous mortality (i) loge (N2iNl)<br />

where Nl and N2 are <strong>the</strong> numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> fish present<br />

at times 1 and 2.<br />

4.42 Factors causing or affecting<br />

mortality<br />

Egg mortality.-- Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mortality from<br />

egg fertilizati<strong>on</strong> to early fry stage occurs<br />

while eggs are incubating in <strong>the</strong> gravel. Hunter<br />

(1959), who examined redds in Hook Nose<br />

Creek, British Columbia, found that loss <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

eggs and a levins was 93.6 and 97.9 percent<br />

in two y ears. Of <strong>the</strong>re losses 95.9 percent<br />

occurred in <strong>the</strong> pre-eyed stage. In some<br />

sou<strong>the</strong>astern Alaska streams, mortalitybefore<br />

hatching exceeded 93 percent (McNeil, 1962).<br />

Levanidov (1954) found mortality to <strong>the</strong> alevin<br />

stage to be 70 to 75 percent in <strong>the</strong> Khor River,<br />

U.S.S.R.<br />

Envir<strong>on</strong>mental factors which may influence<br />

egg survival <str<strong>on</strong>g>of</str<strong>on</strong>g> churn salm<strong>on</strong> are discussed in<br />

alphab etical order.<br />

Amm<strong>on</strong>ia is a metabolic product <str<strong>on</strong>g>of</str<strong>on</strong>g> egg<br />

respirati<strong>on</strong> which has been suggested (McNeil,<br />

1966) as pos sibly reaching toxic c<strong>on</strong>centrati<strong>on</strong>s<br />

when <strong>the</strong> density <str<strong>on</strong>g>of</str<strong>on</strong>g> eggs and larvae is high<br />

and <strong>the</strong> circulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> intragravel water is<br />

poor. Amm<strong>on</strong>ia is <strong>the</strong> most toxic metabolite<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> eggs.<br />

Carb<strong>on</strong> dioxide is ano<strong>the</strong>r metabolic product<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> eggs. High levels <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 (> 125 mg./ l.<br />

milligrams per liter)) in laboratory experiments<br />

produced mortality <str<strong>on</strong>g>of</str<strong>on</strong>g> developing eggs<br />

by inhibiting <strong>the</strong> uptake <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen (Alderdice<br />

and Wickett, 1958). Oxygen uptake was independent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 below about 125 mg./ l.<br />

The range <str<strong>on</strong>g>of</str<strong>on</strong>g> free CO 2 in spawning gravel<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> some sou<strong>the</strong>astern Alaska streams ,vas 2 to<br />

24 mg. 1. (Mc eil, 1962). Intragravel CO 2 in<br />

54<br />

some Russian streams reached 25 to 30 mg./ l.<br />

(Levanidov, 1954). CO 2 measured in natural<br />

streams has not been shown to influence egg<br />

survival.<br />

Drought may cause egg mortality directly<br />

by leaving redds dry (Smirnov, 1947; Levanidov,<br />

1954; Neave, 1953) or indirectly by<br />

allowing o<strong>the</strong>r mortality-causing factors to<br />

operate. McNeil (1966) and Wickett (1958)<br />

found low oxygen and excepti<strong>on</strong>ally high egg<br />

mortality when stream discharge was low<br />

during and after spawning. Low stream flow<br />

led to poor egg survival <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> same brood<br />

year (1958) in British Columbia, sou<strong>the</strong>astern<br />

Alaska, and <strong>the</strong> Amur River (Ricker and<br />

Manzer , 1967; McNeil, 1966; Levanidov, 1964) .<br />

In British Columbia, <strong>the</strong> poor survival was<br />

attributed to low discharge and high water<br />

temperatures in <strong>the</strong> fall and in sou<strong>the</strong>astern<br />

Alaska and <strong>the</strong> Amur River, to freezing at low<br />

wa ter levels in <strong>the</strong> winter.<br />

Erosi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> eggs and young fish from <strong>the</strong><br />

streambed by floods has l<strong>on</strong>g been recognized<br />

as a caus e <str<strong>on</strong>g>of</str<strong>on</strong>g> mortality during incubati<strong>on</strong><br />

(Neave, 1947; Wickett, 1958; Smirnov, 1947).<br />

In some sou<strong>the</strong>astern Alaska streams (McNeil,<br />

1966), erosi<strong>on</strong> and shifting gravel destroyed<br />

50 to 90 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> eggs and larvae in some<br />

years. Flooding during <strong>the</strong> last m<strong>on</strong>th <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

incubati<strong>on</strong> seas<strong>on</strong> in Minter Creek, Wash.,<br />

reduced fry survival to less than 50 percent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> expected survival (Smoker, 1956). 11<br />

Freezing during periods <str<strong>on</strong>g>of</str<strong>on</strong>g> low flow can<br />

destroy large numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> incubating eggs.<br />

McNeil (1966) c<strong>on</strong>cluded that freezing de ­<br />

stroyed up to 65 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> eggs in <strong>on</strong>e<br />

sou<strong>the</strong>astern Alaskan stream in 1 year. In<br />

tributary streams <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Arnur River in <strong>the</strong><br />

U.S.S.R., freezing in some years resulted in<br />

95-percent mortality (Levanidov, 1954). Smirnov<br />

(1947) reported that freezing <str<strong>on</strong>g>of</str<strong>on</strong>g> ,vater to a<br />

depth <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 m. caused complete egg mortality<br />

in o<strong>the</strong>r U.S.S.R. streams.<br />

Light is detrimental to churn salm<strong>on</strong> embryos<br />

which normally develop in total darkness<br />

within <strong>the</strong> streambed. Direct sunlight is<br />

fatal, according to Disler (1953), and indirect<br />

sunlight slows <strong>the</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> embryo development<br />

(Soin, 1954). The harmful effects <str<strong>on</strong>g>of</str<strong>on</strong>g> light<br />

decrease as <strong>the</strong> embryo grows. Soin (1954)<br />

found greater mortality <str<strong>on</strong>g>of</str<strong>on</strong>g> eggs and lower<br />

vitality <str<strong>on</strong>g>of</str<strong>on</strong>g> fry when eggs were incubated in<br />

light than when <strong>the</strong>y were incubated in darkness.<br />

11Smoker, William A. 1956. Preliminary report <strong>on</strong><br />

Minter Creek biological studies. Part II. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Minter Creek stream flows <strong>on</strong> <strong>the</strong> juvenile producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

silver salm<strong>on</strong>, chum salm<strong>on</strong>, and steelhead trout. Wash.<br />

Oep. Fish., 12 pp. text, [8 PP.] figs. (Processed.)


time. Sea water was not definitely identified<br />

as <strong>the</strong> cause <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mortality.<br />

Sedimentati<strong>on</strong> was reported to be an important<br />

cause <str<strong>on</strong>g>of</str<strong>on</strong>g> egg mortality by many investigators<br />

(Smirnov, 1947; Neave, 1953;<br />

Levanidov, 1954; Sernko, 1954; Soin, 1954;<br />

Wickett, 1954; McNeil, 1966). Sediment accumulates<br />

in spawning areas and fills <strong>the</strong> interspaces<br />

between gravel so that water does not<br />

move easily through <strong>the</strong> gravel. Salm<strong>on</strong> eggs<br />

Time after<br />

fertilizati<strong>on</strong><br />

Stage <str<strong>on</strong>g>of</str<strong>on</strong>g> development<br />

0-15 min. Before water hardening<br />

15 min. - 2 hr.<br />

2-8 hr.<br />

Water hardening<br />

Completi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> water<br />

hardening to cell<br />

divisi<strong>on</strong><br />

8 hr. to 5 days Beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> cell<br />

divisi<strong>on</strong> to formati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> caudal knob<br />

6 days Early embryo formati<strong>on</strong><br />

(caudal knob visible)<br />

8-12 days<br />

15 days<br />

18 days to hatching<br />

Embry<strong>on</strong>ic streak<br />

visible<br />

Closure <str<strong>on</strong>g>of</str<strong>on</strong>g> blastopore<br />

Closure <str<strong>on</strong>g>of</str<strong>on</strong>g> blastopore<br />

to hatching<br />

Smirnov noted that eggs were highly resistant<br />

to shock after closure <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> blastopore (18<br />

days and 174 C.-degree-days); this stage was<br />

reached before eye pigmentati<strong>on</strong> (22 days and<br />

211.5 C.-degree-days), when fish culturists<br />

normally c<strong>on</strong>sider eggs to be resistant to<br />

handling. He did not find any increased mortality<br />

from shock just before hatching.<br />

Superimpositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> redds by later spawners<br />

removes previously deposited eggs from <strong>the</strong><br />

gravel and is an important cause <str<strong>on</strong>g>of</str<strong>on</strong>g> egg mortality<br />

in some areas. McNeil (1962) estimated<br />

that as much as 50 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> egg losses<br />

could be attributed to this cause in years <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

high spawning density. In ano<strong>the</strong>r study, when<br />

densities <str<strong>on</strong>g>of</str<strong>on</strong>g> spawners (chum and pink salm<strong>on</strong>)<br />

exceeded 5 females per 1 m.2, <strong>the</strong> additi<strong>on</strong>al<br />

females dislodged about as many eggs as <strong>the</strong>y<br />

deposited [Thorsteins<strong>on</strong>, 1965 (see footnote 8)].<br />

A decrease in density <str<strong>on</strong>g>of</str<strong>on</strong>g> chum salm<strong>on</strong> eggs in<br />

<strong>the</strong> gravel as <strong>the</strong> seas<strong>on</strong> progressed was also<br />

noted and was attributed to superimpositi<strong>on</strong> by<br />

later spawning pink salm<strong>on</strong>. The carrying<br />

capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> gravel (defined as <strong>the</strong> number<br />

56<br />

may die when <strong>the</strong> intragravel water moves so<br />

slowly that insufficient oxygen is carried to<br />

<strong>the</strong> eggs and lethal amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> waste products<br />

from <strong>the</strong> eggs are not carried away.<br />

Shock was studied by Smirnov (1955)bysubjecting<br />

eggs to mechanical agitati<strong>on</strong> at various<br />

stages <str<strong>on</strong>g>of</str<strong>on</strong>g> development. The eggs developed in<br />

water temperatures from 8.0 0<br />

to 9.60 Results were as follows:<br />

C.<br />

Sensitivity and range in percentage<br />

mortality in two tests<br />

Highly resistant to shock (0.5 - 0.9)<br />

Highly sensitive to shock (8.6 - 89.0)<br />

Resistant to shock (1.0 - 18.2)<br />

Moderate sensitivity to shock (3.5 -<br />

17 .4)<br />

Marked increas e in sensitivity to shock<br />

(18.5 - 32.5)<br />

Resistant to shock (1.6 - 17.8)<br />

Sensitive to shock (20.5 - 24.7)<br />

Resistant to shock (0.0 - 1.2)<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> eggs deposited in <strong>the</strong> streambed which is<br />

not substantially increased by additi<strong>on</strong>al<br />

spawning) was estimated at 5,000 eggs per<br />

1 m. 2 • This egg density could be reached by<br />

four female spawners per 1 m. 2. Thorsteins<strong>on</strong><br />

(1965; see footnote 8) also found evidence that<br />

two to four females (chum and pink salm<strong>on</strong>)<br />

comm<strong>on</strong>ly spawned at <strong>the</strong> same site in Olsen<br />

Creek, Alaska, and occasi<strong>on</strong>ally as many as<br />

seven females spawned at <strong>the</strong> same site.<br />

Fry mortality.--Possible causes <str<strong>on</strong>g>of</str<strong>on</strong>g> mortality<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> fry in fresh water are lack <str<strong>on</strong>g>of</str<strong>on</strong>g> an<br />

adequate food supply, adverse physical c<strong>on</strong>diti<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> envir<strong>on</strong>ment, and predati<strong>on</strong>. Little<br />

is known <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> food supply and<br />

physical c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> mortality. The number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> fry c<strong>on</strong>sumed b y predators within a stream<br />

is more or less c<strong>on</strong>stant, but <strong>the</strong> percentage<br />

mortality varies with <strong>the</strong> size <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> migrati<strong>on</strong><br />

(Neave, 1953; Hunter, 1959). Neave also c<strong>on</strong>cluded<br />

that <strong>the</strong> percentage mortality from<br />

predati<strong>on</strong> increases with <strong>the</strong> distance over<br />

which <strong>the</strong> fry travel and increases during <strong>the</strong><br />

m igrati<strong>on</strong>.


Predators <str<strong>on</strong>g>of</str<strong>on</strong>g> chum salm<strong>on</strong> fry, as listed by<br />

Abramov (1949), Hunter (1959), Levanidov<br />

(1959), and Sano (1966) were:<br />

Coho salm<strong>on</strong><br />

Sockeye salm<strong>on</strong><br />

Dolly varden<br />

Cutthroat trout (Salmo clarkii<br />

clarkii)<br />

Steelhead trout (Salmo<br />

gairdneri)<br />

Aleutian sculpin (Cottus<br />

aleuticus)<br />

Prickly sculpin<br />

Taimen (Hucho taimen)<br />

Lenok<br />

Amur grayling<br />

Amur ide<br />

Lagovsky's minnow<br />

Pike (Esox reicherti)<br />

Merganser (Mergus<br />

sp.)<br />

Comm<strong>on</strong> tern (Sterna<br />

hirundo)<br />

Kingfisher (Alcedo<br />

athis)<br />

Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> above predators had <strong>on</strong>e or two<br />

fry in <strong>the</strong>ir intestines during <strong>the</strong> period <str<strong>on</strong>g>of</str<strong>on</strong>g> fry<br />

migrati<strong>on</strong> (Levanidov, 1959; Hunter, 1959).<br />

Young coho salm<strong>on</strong> in some British Columbia<br />

streams averaged two to four fry per stomach<br />

(Hunter, 1959; Pritchard, 1936). Hunter (1959)<br />

found <strong>the</strong> average number <str<strong>on</strong>g>of</str<strong>on</strong>g> fry per stomach<br />

to increase with <strong>the</strong> size <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> predator.<br />

Predators ate an estimated 23 to 85 percent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> salm<strong>on</strong> fry (chum and o<strong>the</strong>r species <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

salm<strong>on</strong>) in Hook Nose Creek, British Columbia<br />

(Hunter, 1959), and from 20 to 84 percent in a<br />

tributary <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Bolshaya River, U.S.S.R.<br />

(Seroko, 1954).<br />

Juvenile and adult mortality. - - Predators <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

salm<strong>on</strong> during <strong>the</strong>ir ocean residence were<br />

listed in secti<strong>on</strong> 3.23. Spalding (1964) estimated<br />

that sea li<strong>on</strong>s and harbor seals near<br />

British Columbia eat 1.8 milli<strong>on</strong> kg. <str<strong>on</strong>g>of</str<strong>on</strong>g> salm<strong>on</strong><br />

annually or about 2.5 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> average<br />

commercial catch in British Columbia. Spalding<br />

c<strong>on</strong>cluded that predati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this magnitude<br />

was <str<strong>on</strong>g>of</str<strong>on</strong>g> negligible importance in <strong>the</strong> reducti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> existing salm<strong>on</strong> stocks. Tomilin(l957)indic<br />

ated that <strong>the</strong> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> chum salm<strong>on</strong> in <strong>the</strong><br />

diet <str<strong>on</strong>g>of</str<strong>on</strong>g> beluga whales in <strong>the</strong> western Pacific<br />

Ocean increased with age <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> whale; in<br />

y ounger belugas , chum salm<strong>on</strong> made up 4.4<br />

percent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> food intake and in adult belugas,<br />

6 0 percent.<br />

Little has been published <strong>on</strong> o<strong>the</strong>r causes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

n atural mortality during ocean residence.<br />

Wickett (1958) observed that low temperature<br />

and reduced salinity near <strong>the</strong> coast in June<br />

were unfavorable to survival. Birman (1959)<br />

noted that survival was higher than average<br />

when ocean water near <strong>the</strong> coast was relatively<br />

warm and lower when ocean temperatures were<br />

relatively cool. He believed <strong>the</strong>se temperature<br />

changes had <strong>the</strong> greatest influence <strong>on</strong><br />

survival <str<strong>on</strong>g>of</str<strong>on</strong>g> chum salm<strong>on</strong> during <strong>the</strong>ir first<br />

winter at sea.<br />

57<br />

Fishing mortality is discussed in secti<strong>on</strong><br />

4.41. An indirect cause <str<strong>on</strong>g>of</str<strong>on</strong>g> mortality from<br />

fishing may result from fish that escape from<br />

gill nets but become injured (net-marked)<br />

while in <strong>the</strong> net (K<strong>on</strong>da, 1966). These fish<br />

are susceptible to infecti<strong>on</strong> from fungus<br />

(Saprolegnia) when <strong>the</strong>y enter fresh water and<br />

may die before spawning. Petrova (1964) reported<br />

that net-marked chum salm<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>ten<br />

spawn less than 80 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir eggs.<br />

Factors that affect mortality <str<strong>on</strong>g>of</str<strong>on</strong>g> adult fish<br />

in fresh water are discussed in secti<strong>on</strong> 3.3.<br />

4.43 Factors affecting morbidity<br />

Parasites <str<strong>on</strong>g>of</str<strong>on</strong>g> chum salm<strong>on</strong> are listed in<br />

secti<strong>on</strong> 3.35.<br />

Rucker, Earp, and Orda1 (1954) summarized<br />

informati<strong>on</strong> <strong>on</strong> diseases <str<strong>on</strong>g>of</str<strong>on</strong>g> Pacific salm<strong>on</strong>.<br />

They c<strong>on</strong>cluded that trematodes are <str<strong>on</strong>g>of</str<strong>on</strong>g> little<br />

c<strong>on</strong>sequence as a cause <str<strong>on</strong>g>of</str<strong>on</strong>g> fatal disease in<br />

salm<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Pacific Northwest. External<br />

protozoan parasites cause low-grade infecti<strong>on</strong>s<br />

and may cause epizootics in young salm<strong>on</strong> in<br />

hatcheries. Thes e dis eas es are easily c<strong>on</strong>trolled<br />

with formalin. Saprolegnia comm<strong>on</strong>ly<br />

infects eggs, young, and adult salm<strong>on</strong> in fresh<br />

water. This infecti<strong>on</strong> is a sec<strong>on</strong>dary agent that<br />

follows injury, poor envir<strong>on</strong>ment, malnutriti<strong>on</strong>,<br />

and external parasites.<br />

Bacteria are <strong>the</strong> most important agents <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

dis eas e in several species <str<strong>on</strong>g>of</str<strong>on</strong>g> Pacific salm<strong>on</strong>.<br />

Kidney dis ease, from a small unnamed Grampositive<br />

diplobacillus, has caused high mortality<br />

in young hatchery-reared salm<strong>on</strong> and<br />

has also been found in wild fish. Aquatic myxobacteria<br />

are also important agents <str<strong>on</strong>g>of</str<strong>on</strong>g> disease<br />

in hatcheries and <strong>the</strong> natural habitat. Rucker<br />

(1959) described an infecti<strong>on</strong> by <strong>the</strong> marine<br />

bacteria Vibrio spp. <str<strong>on</strong>g>of</str<strong>on</strong>g> chum salm<strong>on</strong> being<br />

reared in sea water. These bacteria have<br />

caused catastrophic losses but have been<br />

treated satisfactorily with sulf<strong>on</strong>omides. Kobayashi,<br />

Awakura, H<strong>on</strong>ma, and Tamura (1963)<br />

described a sec<strong>on</strong>d bacterial disease caused<br />

by Bacterium salm<strong>on</strong>icida in salt-water rearing<br />

areas. It was highly c<strong>on</strong>tagious and caus ed<br />

high mortality but was also treated satisfactorily<br />

with sulf<strong>on</strong>omides.<br />

4.44 Relati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> morbidity to mortality<br />

No-informati<strong>on</strong>.<br />

4.5 Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong><br />

The size <str<strong>on</strong>g>of</str<strong>on</strong>g> any fish populati<strong>on</strong>, even when<br />

not fished, is limited by natural c<strong>on</strong>trols. The<br />

mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol involves factors <str<strong>on</strong>g>of</str<strong>on</strong>g>mortality<br />

which become more effective as <strong>the</strong><br />

density <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> stock increases (Ricker, 1954).


Table 41.--Relati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> o<strong>the</strong>r fish to chum salm<strong>on</strong> fry as competitors for<br />

food in Khor River, U.S.S.R. (Levanidov, 1959)<br />

Species Felati ve Equivalent Compet it i ve<br />

abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> feeding value 2<br />

compet i ti<strong>on</strong> 1<br />

Percent Percent<br />

Lenok 5. 0 26 .1 55 .7<br />

Grayling 2. 0 4. 8 h.l<br />

Amur ide 7.0 1.1 3.3<br />

Comm<strong>on</strong> eudge<strong>on</strong> 28 . 0 1.2 14.0<br />

Lagovsky's minnow 36 . 0 1.4 20.9<br />

Comm<strong>on</strong> minnow 12.0 0.2 1.2<br />

St<strong>on</strong>e loach 0 . 3 0.8 o.?<br />

Ninespine stickleback 8. 0 0.1 0.4<br />

Bullhead 1.5 0.1 0.1<br />

Burbot 0 . 2 1. 0 0.1<br />

1 Equivalent <str<strong>on</strong>g>of</str<strong>on</strong>g> feeding competiti<strong>on</strong> is best defined by an example. For <strong>the</strong><br />

lenok it means that <strong>on</strong>e lenok ate <strong>the</strong> same quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> food organisms as<br />

26.1 chum salm<strong>on</strong> fry.<br />

2 The figures in this column are <strong>the</strong> product <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> first two columns expressed<br />

in percentage.<br />

'Figure 13.--Relati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> food organisms in Memu River,<br />

Japan (Hikita and Nagasawa, 1960).<br />

century (Shepard et al., 1967). Their efficiency<br />

has been improved by <strong>the</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

power drums and blocks for handling <strong>the</strong> nets<br />

and by <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> nyl<strong>on</strong> for <strong>the</strong> webbing (Internati<strong>on</strong>al<br />

North Pacific Fisheries Commissi<strong>on</strong>,<br />

1962a). Before 1959 (when almost all traps<br />

were abolished by regulati<strong>on</strong>), an extensive<br />

trap-net fishery existed in Alaska. Traps were<br />

also widely used in Washingt<strong>on</strong> and Oreg<strong>on</strong><br />

61<br />

before 1934 and to a much lesser extent in<br />

British Columbia before 1958 (Shepard et al.,<br />

1967).<br />

At present, gill nets, purse seines, and<br />

beach seines are <strong>the</strong> principal types <str<strong>on</strong>g>of</str<strong>on</strong>g> gear<br />

(table 43). Some chum salm<strong>on</strong> are also taken<br />

by reef nets, holling, traps, and fish wheels<br />

(Internati<strong>on</strong>al North Pacific Fisheries Commissi<strong>on</strong>,<br />

1962a; 1962b). The percentage <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

catches taken by types <str<strong>on</strong>g>of</str<strong>on</strong>g> gear in 1966 (data<br />

from INPFC Statistical Yearbook, 1966) was<br />

as follows:<br />

Catches<br />

Thousands <str<strong>on</strong>g>of</str<strong>on</strong>g> Seines Gill nets O<strong>the</strong>r gear<br />

fish Percent Percent Percent<br />

Alaska 6,456 73.5 26.3 0.2<br />

British<br />

Columbia 1,311 44.2 55.5 0.3<br />

Washingt<strong>on</strong> 425 48.2 41.1 10.7<br />

Oreg<strong>on</strong> 1 0 100.0 0<br />

Al<strong>on</strong>g <strong>the</strong> North American coast, regulati<strong>on</strong>s<br />

establish <strong>the</strong> length and sometimes <strong>the</strong> mesh<br />

size and depth <str<strong>on</strong>g>of</str<strong>on</strong>g> gill nets. Gill nets us ed for<br />

chum and o<strong>the</strong>r species <str<strong>on</strong>g>of</str<strong>on</strong>g> salm<strong>on</strong> are generally<br />

made with multifilament nyl<strong>on</strong> and have mesh


0'<br />

0'<br />

Asia:<br />

Fishery<br />

Nor<strong>the</strong>ast coast <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Kamchatka.<br />

Kamchatka River<br />

Table 44.-- Fishing seas<strong>on</strong>s and peak periods <str<strong>on</strong>g>of</str<strong>on</strong>g> catches for chum sa1locln in Asia and North America<br />

Years<br />

examined<br />

1932-41<br />

1932-41<br />

West coast <str<strong>on</strong>g>of</str<strong>on</strong>g> Kamchatka 1932-41<br />

Nor<strong>the</strong>rn Okhotsk coast 1932-41<br />

Sakhalin 1959-64<br />

Kurile Islands 1959-64<br />

Amur River 1959-64<br />

Japanese mo<strong>the</strong>rship 1952-64<br />

Japanese land-based 1952-64<br />

North Amerioa:<br />

Western Alaska 1955-64<br />

Central Alaska 1955-64<br />

Sou<strong>the</strong>astern Alaska 1955-64<br />

British Columbia 1952-64<br />

Washingt<strong>on</strong> 195b-64<br />

Beginning<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> seas<strong>on</strong><br />

June 15-25<br />

June 7<br />

July 2-9<br />

July 12<br />

Peak <str<strong>on</strong>g>of</str<strong>on</strong>g> catch<br />

July 2-23<br />

July l4-Aug. 18<br />

July 19-Aug. 24<br />

Aug. 4-21<br />

End <str<strong>on</strong>g>of</str<strong>on</strong>g> seas<strong>on</strong><br />

Aug. 5-16<br />

Sept. 6<br />

Aug. 21-30<br />

Sept. 1<br />

August-September September October-November<br />

do.<br />

June-August<br />

May-June<br />

April<br />

June 1-11<br />

May I-June 1<br />

do.<br />

do.<br />

July l-Sept. 1<br />

October<br />

September<br />

June<br />

June (marine fishery)<br />

October (coastsl<br />

fishery).<br />

November<br />

September-October<br />

July 31-Aug. 22<br />

December-January<br />

Late June .:.r early Aug. 27-Sept. 2Q<br />

July.<br />

Late July or early Sept. 16-0ct. 3<br />

August.<br />

July, August, or Oct. 26-Dec. 31<br />

September.<br />

Septamber or October do.<br />

Late October or early Jan. 18-Mar. 3<br />

November.<br />

Authority<br />

Kasabara (1963).<br />

Do.<br />

Do.<br />

Do.<br />

Research Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Marihe<br />

Fisheries and Oceanography,<br />

U.S. S.R. (1960, 1961, 1964,<br />

1965).<br />

Do.<br />

Do.<br />

Internati<strong>on</strong>al North Pacific<br />

Fisheries Commissi<strong>on</strong><br />

(1953-64) .<br />

Do.<br />

Internati<strong>on</strong>al North Pacific<br />

Fisheries Commissi<strong>on</strong><br />

(1952-64) .<br />

Do.<br />

Do .<br />

Do.<br />

Do.


Period<br />

Table 49.--Percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> world catch <str<strong>on</strong>g>of</str<strong>on</strong>g> chum salm<strong>on</strong> taken by each country<br />

[Percentage calculati<strong>on</strong>s were made from data in tables 47 and 48]<br />

Catch <str<strong>on</strong>g>of</str<strong>on</strong>g> chum salm<strong>on</strong><br />

Japan U.S.S.R. United States Canada Total<br />

- -- - - - - - - - Percent - - - - - - - - - - Milli<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Fish<br />

1940-45 31.9 36.7 22.1 9.3 279.6<br />

1946-50 8.7 55.4 21.4 14.5 192.5<br />

1951-55 29.8 42.3 18.0 9.9 206 . 8<br />

1956-60 52.2 28.5 14.3 5.0 239.7<br />

1961-64 55.1 23.9 16.7 4.3 152.9<br />

Table 50.--Percentage c<strong>on</strong>tributi<strong>on</strong> by area to <strong>the</strong> total coastal catch <str<strong>on</strong>g>of</str<strong>on</strong>g> chum<br />

salm<strong>on</strong> in Asia (Sano) 1967)<br />

Year Kamchatka<br />

Peninsula<br />

Nor<strong>the</strong>rn<br />

coast <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> Sea <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Amur<br />

IUver<br />

Sakhalin<br />

coast<br />

Primore<br />

coast<br />

Japanese<br />

coast<br />

1955<br />

- - - -<br />

37.6<br />

Okhotsk<br />

- - - -<br />

28.4<br />

Percent<br />

16.9<br />

- - - -<br />

7.3 0.2 9. 6<br />

1956 28.3 43.7<br />

1957 15.3 35.6<br />

1958 13.3 31.6<br />

1959 34.0 26 .7<br />

1960 14.3 43.0<br />

Average 23.8 34.8<br />

salm<strong>on</strong> fishery expanded. A summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> various areas to <strong>the</strong> Asian<br />

catch in prewar years (Committee <strong>on</strong> Biology<br />

and Research, 1961) showed that <strong>the</strong> Kamchatka<br />

Peninsula provided <strong>the</strong> largest catches<br />

(about 25 milli<strong>on</strong> fish annually). The nor<strong>the</strong>rn<br />

coast <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Sea <str<strong>on</strong>g>of</str<strong>on</strong>g> Okhotsk also produced<br />

great numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> chum salm<strong>on</strong> in this period<br />

(about 11 milli<strong>on</strong> annually). The Amur River,<br />

and rivers in Sakhalin, Hokkaido, and H<strong>on</strong>shu<br />

provided a similar annual yield <str<strong>on</strong>g>of</str<strong>on</strong>g> about 10.5<br />

milli<strong>on</strong> fish (7.5 milli<strong>on</strong> from <strong>the</strong> Amur and<br />

3.0 milli<strong>on</strong> from <strong>the</strong> o<strong>the</strong>r rivers). In more<br />

17 .6 4.0 .1 6. 3<br />

13.9 13.3 21.9<br />

25.4 6.4 23 . 3<br />

24.3 1.8 13.2<br />

29.7 1.9 11.1<br />

21.3 5.8 14 . 2<br />

72<br />

recent years (table 50), catches al<strong>on</strong>g <strong>the</strong><br />

coast <str<strong>on</strong>g>of</str<strong>on</strong>g> Kamchatka have been less important;<br />

<strong>the</strong> largest annual yields for most years have<br />

been from <strong>the</strong> nor<strong>the</strong>rn coast <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Sea <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Okhotsk.<br />

In North America, <strong>the</strong> commercial catches<br />

are ra<strong>the</strong>r evenly divided between central<br />

Alaska, sou<strong>the</strong>astern Alaska, and <strong>the</strong> area<br />

from British Columbia southward (Shepard et<br />

a1., 1967). Nor<strong>the</strong>rn Alaska streams (north<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Bristol Bay) have substantial rWlS that are<br />

used by <strong>the</strong> Alaska natives.


are used by <strong>the</strong> species. Churn salm<strong>on</strong> pass<br />

over fishways at three major darns <strong>on</strong> <strong>the</strong><br />

Columbia River (B<strong>on</strong>neville, The Dalles, and<br />

McNary Darns) . In Hokkaido, over 100 manmade<br />

darns or o<strong>the</strong>r facilities ei<strong>the</strong>r totally<br />

or partially obstruct <strong>the</strong> migrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> adult<br />

and young fish (Japan Fisheries Rf'source<br />

C<strong>on</strong>servati<strong>on</strong> Associati<strong>on</strong>, 1966).<br />

6.25 Fish screens<br />

Because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> short distances to <strong>the</strong>ir<br />

spawning grounds, churn salm<strong>on</strong> seldom encounter<br />

fish screens, but Weber (1965) listed<br />

six such installati<strong>on</strong>s that c<strong>on</strong>fr<strong>on</strong>t churn<br />

salm<strong>on</strong> in Washingt<strong>on</strong>.<br />

6.26 Improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> spawning<br />

grounds<br />

Some experiments <strong>on</strong> improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> spa wning<br />

areas have been carried out in <strong>the</strong> United<br />

States and Canada, based <strong>on</strong> research which<br />

has shown that flooding , gravel erosi<strong>on</strong>, silting,<br />

and predati<strong>on</strong> cause serious losses. These<br />

detrimental characteris tic s <str<strong>on</strong>g>of</str<strong>on</strong>g> na tural s tr earns<br />

have been partially eliminated by regulating<br />

flow, improving spawning gravel, and excluding<br />

predators. Improved spawning areas for churn<br />

salm<strong>on</strong> are <str<strong>on</strong>g>of</str<strong>on</strong>g> two types: One c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

completely artificial streambed, excavated and<br />

supplied with clean gravel, an example <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

which is <strong>the</strong> J<strong>on</strong>es Creek channel in British<br />

Columbia (Woodland, 1961); a sec<strong>on</strong>d is a<br />

natural stream in which a storage darn regulates<br />

flow and where <strong>the</strong> natural streambed<br />

has been improved by loos ening and clearung<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> gravel. This type <str<strong>on</strong>g>of</str<strong>on</strong>g> improvement was<br />

recently undertaken <strong>on</strong> <strong>the</strong> Big Qualicum River<br />

in British Columbia (Lister and Walker, 1966).<br />

Egg-to-fry survival has been increased in<br />

<strong>the</strong>se c<strong>on</strong>trolled-flow spawning areas over that<br />

in unc<strong>on</strong>trolled streams (see secti<strong>on</strong> 4.31).<br />

O<strong>the</strong>r stream improvements <strong>on</strong> spawning<br />

areas <str<strong>on</strong>g>of</str<strong>on</strong>g> churn salm<strong>on</strong> include <strong>the</strong> removal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

rock slides, logjams, beaver darns, debris,<br />

and gravel deposits and <strong>the</strong> channelizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

streambeds.<br />

6.27 Habitat improvement<br />

Measures to improve natural habitat have<br />

not been reported except for those listed in<br />

secti<strong>on</strong> 6.26.<br />

6.3 C<strong>on</strong>trol or alterati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g>chemical<br />

features <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> envir<strong>on</strong>ment<br />

6.31 Water polluti<strong>on</strong> c<strong>on</strong>trol<br />

Waste products from mining and <strong>the</strong> producti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> wood pulp, dairy products, alcohol,<br />

gas, sugar, and starch were detrimental to<br />

churn salm<strong>on</strong> in Hokkaido (Japan Fisheries<br />

74<br />

Resource C<strong>on</strong>servati<strong>on</strong> Associati<strong>on</strong>, 1966).<br />

Similar kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> polluti<strong>on</strong> occur in o<strong>the</strong>r<br />

countries and undoubtedly affect chum salm<strong>on</strong>.<br />

6.32 Salinity c<strong>on</strong>trol<br />

No informati<strong>on</strong>.<br />

6.33 Artihcial fertilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> waters<br />

No informati<strong>on</strong>.<br />

6.4 C<strong>on</strong>trol or alterati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> biological<br />

features <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> envir<strong>on</strong>ment<br />

6.41 C<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> aquatic vegetati<strong>on</strong><br />

No informati<strong>on</strong>.<br />

6.42 Introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fish foods<br />

'0 informati<strong>on</strong>.<br />

6.43 C<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> parasites and disease<br />

See secti<strong>on</strong> 4.43.<br />

6.44 C<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> predati<strong>on</strong> and competiti<strong>on</strong><br />

Populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> predators and competitors<br />

have been reduced in artificial spawning channels<br />

and in some rearing areas <str<strong>on</strong>g>of</str<strong>on</strong>g> churn salmor.<br />

in North America .<br />

6.45 Populati<strong>on</strong> manipulati<strong>on</strong><br />

o informati<strong>on</strong>.<br />

6.5 Artificial stocking<br />

6.51 Stockmg to maintain runs<br />

Hatchery operati<strong>on</strong>s for churn salm<strong>on</strong> are<br />

much more extensive 1n Asia , particularly in<br />

Japan, than in North America (table 51). From<br />

10 to 12 hatcheries produce less than 10<br />

milli<strong>on</strong> fry annually in North America, whereas<br />

in Hokkaido al<strong>on</strong>e, 49 hatcheries have produced<br />

from 200 milli<strong>on</strong> to over 400 milli<strong>on</strong> fry.<br />

Japanese scientists c<strong>on</strong>sider artiiicial propagati<strong>on</strong><br />

as <strong>the</strong> <strong>on</strong>ly practical method to maintain<br />

runs <str<strong>on</strong>g>of</str<strong>on</strong>g> salm<strong>on</strong> in Japan, which are faced with<br />

deteriorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> spawning streams from industrial<br />

growth (Japan Fisheries Resource<br />

C<strong>on</strong>servati<strong>on</strong> Associati<strong>on</strong>, 1966). In Hokkaido,<br />

where churn salm<strong>on</strong> enter 160 streams, from<br />

300,000 to 500,000 adults (57 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

escapement) are taken annually from 52 to 64<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> streams for artificial propagati<strong>on</strong>; from<br />

150,000 to 200,000 fish inH<strong>on</strong>shu are also taken<br />

each year for artiiicial propagati<strong>on</strong>.<br />

The Japanes e have estimated maximum sustainable<br />

yields and ec<strong>on</strong>omic returns for <strong>the</strong>ir


17-31. (Transl., Fish. Res. Bd. Can.,<br />

Bio I. Sta., NanaiITlo. Brit. Col uITlbia,<br />

Transl. Ser. 103.) "<br />

1956. J.-0kal'nye stada osennei kety v basseine<br />

aITlura (Local stocks <str<strong>on</strong>g>of</str<strong>on</strong>g> autUITln<br />

chUITl salITl<strong>on</strong> in <strong>the</strong> AITlur Basin); Vop.<br />

Ikhtiol. 7: 158-173. (Transl., Fish.<br />

Res. Bd. Can., Biol. Sta. NanaiITlo, Brit.<br />

ColuITlbia, Tran:sl. Ser. 349.) "<br />

1957. Kuro-Sio i chislennost A ITl U r s k 0 i<br />

osennei kety (<strong>Oncorhynchus</strong> <strong>keta</strong> (Walb.)<br />

infrasp. autuITlnalis) [The Kuro-Shio<br />

and <strong>the</strong> abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> AITlur autUITln chUITl<br />

salITl<strong>on</strong> (<strong>Oncorhynchus</strong> <strong>keta</strong> (Walb.) infrasp.<br />

autuITlnalis)]. Vop. Ikhtiol. 8:<br />

3-7. (Transl., Fish._ Res. Bd. Can.,<br />

Biol. Sta., NanaiITlo, Brit. ColuITlbia,<br />

Transl. Ser. 265.)<br />

1958. 0 rasprostranenii i ITligratsiyakh<br />

kaITlchatskikh lososei v severo-zapadnoi<br />

chasti Tikhogo okeana (The distributi<strong>on</strong><br />

and ITligrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> KaITlchatka salITl<strong>on</strong> in<br />

<strong>the</strong> northwestern part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Pacific<br />

Ocean). In: Materialy po biologii ITlorskogo<br />

),erioda zhizni dal'nevostochnykh<br />

lososel, pp. 31-51. Vses. Nauch.issled.<br />

Inst. Morsk. Ryb. Khoz. Okeanogr.,<br />

Moscow. (Transl., Fish. Res. Bd.<br />

Can. Biol. Sta., NanaiITlo, Brit. Columbia,<br />

Transl. Ser 180.)<br />

1959. Eshche 0 vliyanii Kuro,,-Sio na dinaITliku<br />

chislennosti lososei (More about<br />

<strong>the</strong> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Kurio-shio <strong>on</strong> <strong>the</strong><br />

dynaITlics <str<strong>on</strong>g>of</str<strong>on</strong>g> abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> salITl<strong>on</strong>). Vop.<br />

Ikhtiol. 13: 16-18. (Transl., Fish. Res.<br />

Bd. Can., Biol. Sta., NanaiITlo, Brit.<br />

ColuITlbia, Transl. Ser. 269.)<br />

1960. Novye dannye 0 ITlorskoITl periode<br />

zhizni i ITlorsk


"<br />

GUNTHER, ALBERT.<br />

1866. Catalogue <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fishes in <strong>the</strong> British<br />

Museum. Vol. 6. British Museum, L<strong>on</strong>d<strong>on</strong>,<br />

368 pp.<br />

HALLOCK, RICHARD J., and DONALD H. FRY,<br />

JR.<br />

1967. Five species <str<strong>on</strong>g>of</str<strong>on</strong>g> salm<strong>on</strong>, <strong>Oncorhynchus</strong>,<br />

in <strong>the</strong> Sacramento River, California.<br />

Calif. Fish Game. 53: 5-22.<br />

HAMANO, SHIGERU.<br />

1957. Physico-chemical studies <strong>on</strong> <strong>the</strong> activati<strong>on</strong><br />

and fertilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fish eggs.<br />

Mem. Fac. Fish. Hokkaido Univ. 5: 91-<br />

143.<br />

HAR TT, ALLAN C.<br />

1962. Movement <str<strong>on</strong>g>of</str<strong>on</strong>g> salm<strong>on</strong> in <strong>the</strong> North<br />

Pacific Ocean and Bering Sea as determined<br />

by tagging, 1956-1958. Int. N.<br />

Pac. Fish. Comm., Bull. 6, 157 pp.<br />

1966. Migrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> salm<strong>on</strong> in <strong>the</strong> North<br />

Pacific Ocean and Bering Sea as deter ""<br />

mined by seining and tagging, 1959-1960.<br />

Int. N. Pac. Fish Comm., Bull. 19, 141<br />

pp.<br />

HAR TT, A. C., L. S. SMITH, M. B. DELL, and<br />

R. V. KILAMBI.<br />

1967. Tagging and sampling. In: Investigati<strong>on</strong>s<br />

by <strong>the</strong> United States for <strong>the</strong> Internati<strong>on</strong>al<br />

North Pacific Fisheries Commissi<strong>on</strong>-<br />

-1966. Int. N. Pac. Fish.<br />

Comm., Annu. Rep. 1966: 73-78 .<br />

HASHIMOTO, SUSUMU.<br />

1967. Studies <strong>on</strong> <strong>the</strong> metabolic functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

adult chum salm<strong>on</strong>, <strong>Oncorhynchus</strong> <strong>keta</strong><br />

(Walbaum) - II. Erythrocyte sedimentati<strong>on</strong><br />

rate and serum protein c<strong>on</strong>centrati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> chum salm<strong>on</strong> ascending <strong>the</strong> river<br />

for spawning. Sci. Rep. Hokkaido Salm<strong>on</strong><br />

Hatch. 21: 49-70. In Japanese, Engl.<br />

abstr.<br />

H E LLE, JOHN H.<br />

1960. Characteristics and structure <str<strong>on</strong>g>of</str<strong>on</strong>g> early<br />

and late spawning runs <str<strong>on</strong>g>of</str<strong>on</strong>g> chum salm<strong>on</strong>,<br />

<strong>Oncorhynchus</strong> <strong>keta</strong> (Walbaum), in<br />

streams <str<strong>on</strong>g>of</str<strong>on</strong>g> Prince Will i a m Sound,<br />

Alaska. M.S. Thesis, Univ. Idaho, Moscow,<br />

53 pp. (Typescript.)<br />

HENR Y, KENNETH A.<br />

1953. Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> factors affecting <strong>the</strong> producti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> chum salm<strong>on</strong> (<strong>Oncorhynchus</strong><br />

<strong>keta</strong>l in Tillamook Bay. Fish. Comm.<br />

Oreg., C<strong>on</strong>trib. 18, 37 pp.<br />

19 54 . Age and growth study <str<strong>on</strong>g>of</str<strong>on</strong>g> Tillamook<br />

Bay chum salm<strong>on</strong> (<strong>Oncorhynchus</strong> <strong>keta</strong>l.<br />

Fish. Comm. Oreg., C<strong>on</strong>trib. 19, 28 pp.<br />

HIKITA, TOYOHIKO.<br />

19 55. An aberrant form <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> dog-salm<strong>on</strong><br />

with abnormal scales. Jap. J. Ichthyol.<br />

4: 133-135. In Japanese, Engl. abstr.<br />

HIKITA, TOYOHIKO.<br />

1958a. On <strong>the</strong> hermaphroditic g<strong>on</strong>ads <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

blueback salm<strong>on</strong> (Q. nerka) and <strong>the</strong> chum<br />

salm<strong>on</strong> (Q. <strong>keta</strong>l. Sci. Rep. Hokkaido<br />

Salm<strong>on</strong> Hatch. 12: 111-114. InJapanese,<br />

Engl. abstr.<br />

80<br />

1958b. Occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mot t 1 e d dogs<br />

a 1 m 0 n. Sci. Rep. Hokkaido Salm<strong>on</strong><br />

Hatch. 12: 45-49. In Japanese, Engl.<br />

abstr.<br />

1960. <str<strong>on</strong>g>Biological</str<strong>on</strong>g> observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Memu<br />

stream, Tokachi River system. The<br />

freshwater fishes and its envir<strong>on</strong>ment.<br />

Sci. Rep. Hokkaido Salm<strong>on</strong> Hatch. 15:<br />

4 7 - 67. In Japanes e. (Transl., Bur. Com.<br />

Fish., BioI. Lab., Seattle, Wash.)<br />

1962. Ecological and morphological studies<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> genus <strong>Oncorhynchus</strong> (Salm<strong>on</strong>idae)<br />

with particular c<strong>on</strong>siderati<strong>on</strong> <strong>on</strong> phylogeny.<br />

Sci. Rep. Hokkaido Salm<strong>on</strong><br />

Hatch. 17, 98 pp.<br />

HIKITA, TOYOHIKO, and ARIAKI NAGASAWA.<br />

1960. <str<strong>on</strong>g>Biological</str<strong>on</strong>g> observati<strong>on</strong>s ,<str<strong>on</strong>g>of</str<strong>on</strong>g> Me m u<br />

Stream, Tokachi River system. The<br />

damage <str<strong>on</strong>g>of</str<strong>on</strong>g> salm<strong>on</strong> eggs and fry by<br />

predac eous fishes. Sci. Rep. Hokkaido<br />

Salm<strong>on</strong> Hatch. 15: 69 - 83. (Transl.,<br />

Bur. Commer. Fish., BioI. Lab., Seattle,<br />

Wash.)<br />

HIKITA, TOYOHIKO, and YOSAJIRO YOKO­<br />

HIRA.<br />

1964. <str<strong>on</strong>g>Biological</str<strong>on</strong>g> study <strong>on</strong> hybrids <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

salm<strong>on</strong>id fishes. A note <str<strong>on</strong>g>of</str<strong>on</strong>g> F 1 hybrids<br />

between chum (<strong>Oncorhynchus</strong> <strong>keta</strong>l and<br />

pink salm<strong>on</strong> (<strong>Oncorhynchus</strong> gorbuscha).<br />

Sci. Rep. Hokkaido Salm<strong>on</strong> Hatch. 18:<br />

57-65. In Japanese, Eng!. abstr.<br />

HIRANO, YOSHIMI.<br />

1958 . Migrati<strong>on</strong> route <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> autumn salm<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Hokkaido. Hokkaido R its u Suisan<br />

Shikenjo (Hokkaido Govt. Fish. Res.<br />

Sta.), Hokusuishi Geppo 15: 349-353.<br />

HOAR, WILLIAM S.<br />

1951. The chum and pink salm<strong>on</strong> fisheries<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> British Columbia, 1917-47. Fish.<br />

Res. Bd. Can., Bull. 90, 46 pp.<br />

1953. C<strong>on</strong>trol and timing <str<strong>on</strong>g>of</str<strong>on</strong>g> fish migrati<strong>on</strong>.<br />

BioI. Rev., Cambridge Philos. Soc:.<br />

28: 437-452.<br />

1954. The behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> juvenile Pacific<br />

salm<strong>on</strong> with particular reference to <strong>the</strong><br />

sockeye (<strong>Oncorhynchus</strong> nerka). J. F i sh.<br />

Res. Bd. Can. 11: 69-97.<br />

1956. The behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> migrating pink and<br />

chum salm<strong>on</strong> fry. J . Fish. Res. Bd.<br />

Can. 13: 309-325.<br />

1958. The evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> migratory behavior<br />

am<strong>on</strong>g juvenile salm<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> genus<br />

<strong>Oncorhynchus</strong> . J. Fish. Res. Bd. Can,<br />

15: 391-428.<br />

HOAR, WILLIAM S., and G. MARY BEL::",<br />

1950, The thyroid gland in relati<strong>on</strong> to <strong>the</strong>'<br />

seaward migrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pacific salm<strong>on</strong>.<br />

Can. J. Res., Sect. D., ZooI. Sci. 28:<br />

126-136.


<strong>Oncorhynchus</strong>} in <strong>the</strong> northwestern Pacific--I.<br />

Bull. Hokkaido Reg. Fish. Res.<br />

Lab • . 31:11-17. In Japanese. Engl. summary.<br />

(Transl., Bur. Commer. Fish.,<br />

BioI. Lab., Seattle, Wash.)<br />

MAHON, E. F .• and W. S. HOAR.<br />

1956. The early development <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> chum<br />

salm<strong>on</strong>, <strong>Oncorhynchus</strong> <strong>keta</strong> (Walbaum).<br />

J. Morphol. 98: 1-48.<br />

MAMAEV, YU. L., A. M. PARUKHIN, O. M.<br />

BAEVA, and p. G. OSHMARIN.<br />

1959. Gel'mint<str<strong>on</strong>g>of</str<strong>on</strong>g>auna dal'nevostochnykh<br />

losos evykh v s v y a z i s voprosom 0<br />

lokal'nykh stadakh i putyakh migratsii<br />

etikh ryb (The helminth fauna <str<strong>on</strong>g>of</str<strong>on</strong>g> Far<br />

Eastern salm<strong>on</strong>ids in c<strong>on</strong>necti<strong>on</strong> with <strong>the</strong><br />

questi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> local stocks and routes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

migrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se fish). Primorskoe<br />

Knizhnoe Izd., Vladivostok, 72 pp.<br />

MANZER. J. I.<br />

1956. Distributi<strong>on</strong> and movement <str<strong>on</strong>g>of</str<strong>on</strong>g> young<br />

Pacific salm<strong>on</strong> during early ocean residence.<br />

Fish. Res. Bd. Can., Progr. Rep.<br />

Pac. Coast Sta. 106: 24-28.<br />

1958. Salm<strong>on</strong> distributi<strong>on</strong> and abundance in<br />

<strong>the</strong> nor<strong>the</strong>ast Pacific, 1956 and 1957,<br />

with some comparis<strong>on</strong>s with o<strong>the</strong>r regi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> North Pacific and <strong>the</strong> Bering Sea.<br />

Fish. Res. Bd. Can BioI. Sta •• Nanaimo,<br />

Brit. Columbia (INPFC Doc. 195), 8 pp.<br />

text, [5] pp. tables, [25] pp. figs.<br />

(Processed.)<br />

MANZER. J. I.<br />

1964. Preliminary observati<strong>on</strong>s <strong>on</strong> <strong>the</strong><br />

vertical distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pacific salm<strong>on</strong><br />

(genus <strong>Oncorhynchus</strong>) in <strong>the</strong> Gulf <str<strong>on</strong>g>of</str<strong>on</strong>g> Alaska.<br />

J. Fish. Res. Bd. Can. 21: 891-903.<br />

MANZER. J. I., T. ISHIDA. A. E. PETERSON.<br />

and M. G. HANAVAN.<br />

1965. Salm<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> North Pacific Ocean.<br />

Part V. Offshore distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> salm<strong>on</strong>.<br />

Int. N. Pac. Fish. Comm., Bull. 15,<br />

452 pp.<br />

MARGOLIS. L.<br />

1965. Parasites as an auxiliary source <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

informati<strong>on</strong> about <strong>the</strong> biology <str<strong>on</strong>g>of</str<strong>on</strong>g> Pacific<br />

salm<strong>on</strong>s (genus <strong>Oncorhynchus</strong>). J. Fish.<br />

Res. Bd. Can. 22: 1387-1395.<br />

MARR, JOHN C.<br />

1943. Age. length and weight studies <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

three species <str<strong>on</strong>g>of</str<strong>on</strong>g> Columbia River salm<strong>on</strong><br />

(<strong>Oncorhynchus</strong> <strong>keta</strong>, O. gorbuscha and<br />

Q. kisutch). Stanford Ichthyol. Bull. 2:<br />

157 -197. (Reprinted 1944. Oreg. Fish<br />

Comm., C<strong>on</strong>trib. 9.)<br />

MIHARA. TATEO.<br />

1958. An ecological study <strong>on</strong> <strong>the</strong> salm<strong>on</strong><br />

fry, <strong>Oncorhynchus</strong> <strong>keta</strong>, in <strong>the</strong> coastal<br />

waters <str<strong>on</strong>g>of</str<strong>on</strong>g> Hokkaido. Sci. Rep. Hokkaido<br />

Salm<strong>on</strong> Hatch. 13: 1-14. In Japanese.<br />

(Transl., Fish. Res. Bd. Can., BioI. Sta.,<br />

Nanaimo, Brit. Columbia, Transl. Ser.<br />

226.)<br />

84<br />

MIHARA, TATEO, SIGERU ITO, TOSHIO<br />

HACHIYA, and MIYOE ICHIKAWA.<br />

1951. Studies <strong>on</strong> <strong>the</strong> change <str<strong>on</strong>g>of</str<strong>on</strong>g> fishing c<strong>on</strong>diti<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> salm<strong>on</strong> in Hokkaido. (1) The<br />

fishing c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> salm<strong>on</strong>. Sci. Rep.<br />

Hokkaido Fish Hatch. 6: 27 -133. In Japanese,<br />

Engl. abstr.<br />

NAGASAKI, FUKU ZOo<br />

1967. Some Japanese far-sea fisheries.<br />

In: North Pacific fisheries symposium.<br />

Wash. Law Rev. 43: 197-229.<br />

NAGASAWA. ARIAKI, and SEIZO SANO.<br />

1961. Some obs ervati<strong>on</strong>s <strong>on</strong> <strong>the</strong> downstream<br />

chum salm<strong>on</strong> fry (0. <strong>keta</strong>l counted in <strong>the</strong><br />

natural spawning ground at Memu Stream<br />

1957-1959. Sci. Rep. Hokkaido Salm<strong>on</strong><br />

Hatch. 16: 107-125. In Japanese, Engl.<br />

summary.<br />

NAKATSU, LORRY N.<br />

1960. The eastern Hokkaido land-based salm<strong>on</strong><br />

fishery <str<strong>on</strong>g>of</str<strong>on</strong>g> Japan. U.S. Fish Wildl.<br />

Serv., Spec. Sci. Rep. Fish. 331, 9 pp.<br />

NAKA TSUKASA, YASUO.<br />

1965. An exaI'l).ple <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> hermaphroditic<br />

g<strong>on</strong>ad found in <strong>Oncorhynchus</strong> <strong>keta</strong> (Wa1baum).<br />

Jap. J. Ichthyol. 13: 59-63. In<br />

Japanese, Eng!. summary.<br />

NEA VEt FERRIS.<br />

1947. Natural propagati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chum salm<strong>on</strong><br />

in a coastal stream. Fish. Res. Bd. Can.,<br />

Progr. Rep. Pac. Coast Sta. 70: 20-21.<br />

1948. Fecundity and mortality in Pacific<br />

salm<strong>on</strong>. Trans. Roy. Soc. Can •• ser. 3,<br />

vol. 42. sect. 5: 97 -105.<br />

1953. Principles affecting <strong>the</strong> size <str<strong>on</strong>g>of</str<strong>on</strong>g> pink<br />

and chum salm<strong>on</strong> populati<strong>on</strong>s in British<br />

Columbia. J. Fish. Res. Bd. Can. 9:<br />

450-491.<br />

1955. Notes <strong>on</strong> <strong>the</strong> seaward migrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pink and chum salm<strong>on</strong> fry. J. Fish. Res.<br />

Bd. Can. 12: 369-374.<br />

1958. The origin and speciati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Oncorhynchus</strong>.<br />

Trans. Roy. Soc. Can. , ser. 3,<br />

vol. 52, sect. 5: 25-39.<br />

1961. Pacific salm<strong>on</strong>: ocean stocks and<br />

fishery developments. Proc. Ninth Pac.<br />

Sci. C<strong>on</strong>gr. 10: 59-62.<br />

1966. Salm<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> North Pacific Ocean -<br />

Part III. A review <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> life history <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

North Pacific salm<strong>on</strong>. 6. <strong>Chum</strong> salm<strong>on</strong><br />

in British Columbia. Int. N. Pac. Fish.<br />

Comm., Bull. 18: 81-86.<br />

NEO. M.<br />

1964. How <strong>the</strong> salm<strong>on</strong> fleets operate. In:<br />

Modern fishing gear <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> world 2, pp.<br />

428-431. Fishing News (Books) Ltd ••<br />

L<strong>on</strong>d<strong>on</strong>.<br />

NIKOLSKII. G. V.<br />

1954. Chastnaya ikhtio10giya (Special ichthyology).<br />

Gos. Izd. Sovetskaya Nauka.<br />

Moscow, 458 pp. (Trans!. avail. Clearinghouse<br />

Fed. Sci. Tech. Inform., Springfield.<br />

Va. 22151, as TT 60-21817. $3.00.)


WATANABE, MUNESHIGE.<br />

1955. Some observati<strong>on</strong>s <strong>on</strong> <strong>the</strong> eggs <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

mature salm<strong>on</strong> (<strong>Oncorhynchus</strong> <strong>keta</strong>l in<br />

Hokkaido, with special reference to <strong>the</strong><br />

race <str<strong>on</strong>g>of</str<strong>on</strong>g> salm<strong>on</strong> as characterized b y <strong>the</strong><br />

size <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir eggs. Sci. Rep. Hokkaido<br />

Fish Hatch. 10: 7-20. InJapanese, Engl.<br />

abstr.<br />

WEBER, KINGSLEY G. (Compiler).<br />

1965. Salm<strong>on</strong> and steelhead protecti<strong>on</strong> and<br />

transport facilities. Pac. Salm<strong>on</strong> Inter­<br />

Agency Council, Inventory Rep. 7 (2),<br />

323 pp. (Processed.)<br />

WICKETT, W. P.<br />

1952. Producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chum and pink s alm<strong>on</strong><br />

in a c<strong>on</strong>trolled stream. Fish. Res. Bd.<br />

Can., Progr. Rep. Pac. Coast. Sta.<br />

93: 7-9.<br />

1954. The oxygen supply to salm<strong>on</strong> eggs<br />

in spawning beds. J. Fish. Res . Bd.<br />

Can. 11: 933-953.<br />

1958. Review <str<strong>on</strong>g>of</str<strong>on</strong>g> certain envir<strong>on</strong>mental factors<br />

affecting <strong>the</strong> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pink<br />

and chum salm<strong>on</strong>. J. Fish. Res . B d .<br />

Can. 15: 1103-1126.<br />

89<br />

WIGUTOFF, NORMAN B.<br />

1951. Pacific salm<strong>on</strong> drift gill netting. U.S.<br />

Fish Wildl. Serv., Fish. Lean. 386, 6 pp.<br />

WI NBERG (VINBERG), G.G.<br />

1956. In t ensivnost obmena i pishchevye<br />

p ot rebnos ti ryb (Rate <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolism<br />

and food requirements <str<strong>on</strong>g>of</str<strong>on</strong>g>fishes). Nauch.<br />

Tr. B elorussk. Gos . Univ. im. V. 1.<br />

Lenina , Minsk, 253 pp. (Trans!., Fish.<br />

Res . Bd. Can., Bio!. Sta., Nanaimo,<br />

B rit. Columbia, Trans!. Ser. 194.)<br />

WOODLAND, BRUCE.<br />

1961. J<strong>on</strong>es Creek a proven success. Can.<br />

Dep. Fish., Trade News 14(5-6): 11-12.<br />

YAMAMOTO, KIICHIRO.<br />

1952. Studies <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilizati<strong>on</strong> in <strong>the</strong> dogsalm<strong>on</strong>,<br />

<strong>Oncorhynchus</strong> <strong>keta</strong>. 1. The<br />

m orphology <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> normal fertilizati<strong>on</strong>.<br />

J . Fac. Sci. Hokkaido Univ., Ser. 6,<br />

Zool., 11: 81-94.<br />

YAMANAKA, HIDEAKI, KATSUMI YAMA­<br />

GUCHI , KANEHISA HASHIMOTO, and FUMIO<br />

MATSUURA.<br />

1967. Starch-gel electrophoresis <str<strong>on</strong>g>of</str<strong>on</strong>g> fish<br />

hemoglobins - III. Salm<strong>on</strong>oid fis he s.<br />

Bull. Jap. Soc. Sci. Fish. 33: 195-203.<br />

MS. #1827

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!