21.12.2012 Views

Hilic Columns for the Analysis of Steviol Glycosides - eustas en

Hilic Columns for the Analysis of Steviol Glycosides - eustas en

Hilic Columns for the Analysis of Steviol Glycosides - eustas en

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Hilic</strong> <strong>Columns</strong> <strong>for</strong> <strong>the</strong> <strong>Analysis</strong> <strong>of</strong><br />

<strong>Steviol</strong> <strong>Glycosides</strong><br />

B<strong>en</strong>no F. Zimmermann Ursula Wölwer-Rieck<br />

Institut Pr<strong>of</strong>. Dr. Georg Kurz GmbH, Bonn University<br />

Cologne, Germany<br />

and<br />

Bonn University<br />

1


<strong>Steviol</strong> <strong>Glycosides</strong><br />

Rebaudioside A, B, C, D, E, F<br />

Stevioside<br />

Rubusoside<br />

<strong>Steviol</strong>bioside<br />

Dulcoside A<br />

minor steviol glycosides<br />

2


<strong>Hilic</strong><br />

Hydrophilic<br />

Interaction<br />

Liquid<br />

Chromatography<br />

3


<strong>Hilic</strong> a (relatively) new stationary phase <strong>for</strong> HPLC<br />

Hydrophilic<br />

Interaction<br />

Liquid<br />

Chromatography<br />

Selectivity: orthogonal to RP (more or less)<br />

Gradi<strong>en</strong>t: 93 % acetonitrile ➔ 80 % acetonitrile<br />

Elu<strong>en</strong>ts: water, acetonitrile, additives: <strong>for</strong>mic acid, ammonium <strong>for</strong>mate …<br />

4


alculate Standard mixture <strong>the</strong> perc<strong>en</strong>tage <strong>of</strong> total steviol glycosides (sum <strong>the</strong> nine<br />

rc<strong>en</strong>tages).<br />

Column: Capcell pak C18 MG II<br />

250 x 4.6 mm, 5 µm<br />

8.0e-2<br />

6.0e-2<br />

4.0e-2<br />

2.0e-2<br />

2.35<br />

3.42<br />

Rebaudioside D<br />

7.60<br />

Rebaudioside A<br />

8.08<br />

Stevioside<br />

Rebaudioside F<br />

Rebaudioside C<br />

9.72<br />

Dulcoside A<br />

10.72<br />

11.73<br />

Isocratic: 32:68 Acetonitrile:Water, pH 2.6<br />

Flow: 1.0 mL/min<br />

JECFA, 2010<br />

Rubusoside<br />

15.62<br />

23.23<br />

21.57<br />

0.0<br />

Tim<br />

0.00 5.00 10.00 15.00 20.00 25.00 30.00<br />

Rebaudioside B<br />

<strong>Steviol</strong>bioside<br />

5


mAU<br />

1800<br />

Extracts <strong>of</strong> Stevia rebaudiana have demonstrated sweetness up to 300 times greater than table sugar, and have rec<strong>en</strong>tly be<strong>en</strong> granted approval through <strong>the</strong> GRAS certification process <strong>for</strong> use in commercial food<br />

and beverage products. With <strong>the</strong> growing commercial use <strong>of</strong> Stevia extracts <strong>the</strong>re is an increased need <strong>for</strong> testing <strong>for</strong> <strong>the</strong> known ‘impurities’ <strong>of</strong> Stevia extracts. A comparative study is made betwe<strong>en</strong> <strong>the</strong> industry<br />

accepted<br />

1600<br />

JECFA method, which utilizes NH -columns under isocratic conditions 2 1 and an improved method developed by <strong>the</strong> authors, which utilizes a Ph<strong>en</strong>om<strong>en</strong>ex Synergi Hydro-RP column and a linear<br />

gradi<strong>en</strong>t2 , <strong>for</strong> <strong>the</strong> HPLC analysis <strong>of</strong> Rebaudioside A and related diterp<strong>en</strong>e glycosides found in Stevia rebaudiana.<br />

The improved 1400 method <strong>of</strong>fers greater s<strong>en</strong>sitivity, greater resolution <strong>of</strong> minor constitu<strong>en</strong>ts, maintains resolution over lifetime <strong>of</strong> <strong>the</strong> column and reduces <strong>the</strong> amount <strong>of</strong> acetonitrile consumed during analysis. The<br />

improved method is also readily compatible with additional detection techniques including mass spectrometry (LC/MS) and Evaporative Light Scatting Detection (ELSD), overcoming a limitation <strong>of</strong> JECFA<br />

method. The two methods have be<strong>en</strong> evaluated using standards <strong>of</strong> rebaudiosides A, B, C, D and F, dulcoside A, isosteviol, isosteviol monoside, steviol, steviol glucuronide, stevioside and steviolbioside.<br />

hello<br />

Figure 1<br />

Comparative study <strong>of</strong> HPLC methods <strong>for</strong> <strong>the</strong> <strong>Analysis</strong> <strong>of</strong> Diterp<strong>en</strong>e<br />

<strong>Glycosides</strong> from Stevia rebaudiana<br />

Abstract & Introduction<br />

mAU<br />

900<br />

800<br />

HO<br />

700<br />

O<br />

OH<br />

HO<br />

OH<br />

O<br />

OH<br />

600<br />

HO<br />

OH<br />

500<br />

400<br />

300<br />

200<br />

100<br />

Figure 2 mAU<br />

OH<br />

OH<br />

OH<br />

OH<br />

HO<br />

OH<br />

HO<br />

OH<br />

HO<br />

OH<br />

HO<br />

OH<br />

ADC1 A, ADC1 CHANNEL A (R:\INGOLD\DATA\2009\H0309\H0309_02.D)<br />

HO<br />

O O<br />

HO<br />

1<br />

1<br />

O O<br />

11<br />

12<br />

HO<br />

OH<br />

O O<br />

HO<br />

HO<br />

OH<br />

10<br />

8<br />

Time, Min. %Aqueous* %Acetonitrile<br />

6<br />

7<br />

0 95 5<br />

3 95 5<br />

38 5 95<br />

40 5 95<br />

43 95 5<br />

51 95 5<br />

*Aqueous Mobile Phase is Milli-Q water with or without modifier (see below).<br />

Figure 3<br />

0.1% TFA<br />

ELSD<br />

Figure 4<br />

0.1% TFA<br />

UV, 210 nm<br />

Figure 5<br />

0.1% TFA<br />

LC/MS, TIC<br />

Figure 6<br />

Milli-Q water<br />

UV, 210 nm<br />

Figure 7<br />

1.0% IPA<br />

UV, 210 nm<br />

HO<br />

OH<br />

O O<br />

OH<br />

HO<br />

HO<br />

HO<br />

O HO OH<br />

O HO OH<br />

O HO OH<br />

HO<br />

HO<br />

HO<br />

OH<br />

OH<br />

OH<br />

O O<br />

OH<br />

2 2 3<br />

3 4 4 5<br />

5 6 6 7<br />

7 8 8 9<br />

9<br />

10 10 11<br />

11<br />

12<br />

12<br />

18 20 22 24 26 28 30<br />

3<br />

HO<br />

HO<br />

O O<br />

HO<br />

HO<br />

OH<br />

OH<br />

5<br />

4<br />

O O<br />

2<br />

HO<br />

HO<br />

HO<br />

OH<br />

OH<br />

OH<br />

O O<br />

HO<br />

HO<br />

HO<br />

HO<br />

O HO OH<br />

O HO OH<br />

O HO OH<br />

O HO OH<br />

HO<br />

HO<br />

O O<br />

O OH<br />

O OH<br />

O OH<br />

O OH<br />

O OH<br />

O OH<br />

O OH<br />

Rebaudioside D Rebaudioside A Stevioside<br />

Rebaudioside F Rebaudioside C Dulcoside A Rebaudioside B<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

HO<br />

O O 1<br />

O O 2 O O 3 O O 4 O O 5 O O 6<br />

O 7<br />

Experim<strong>en</strong>tal ACN Usage = 21.5 mL/run<br />

Column: Synergi Hydro-RP 250 x 4.6 mm, 4 µm particle size<br />

Flow Rate: 1.0 mL/minute<br />

Temperature: 60 °C<br />

3<br />

3<br />

5 5<br />

6<br />

6<br />

10<br />

7<br />

7<br />

1<br />

1 4 4<br />

9<br />

2<br />

2<br />

8<br />

8<br />

3<br />

1<br />

2 4 56<br />

3<br />

1<br />

2 4 9<br />

78 10<br />

56<br />

3<br />

1<br />

2 4 9<br />

78 10<br />

56<br />

9<br />

78 10<br />

6<br />

6 8<br />

8<br />

3<br />

3<br />

7<br />

7<br />

5<br />

5<br />

2<br />

2 4<br />

4<br />

1<br />

1<br />

1<br />

1<br />

3<br />

3<br />

6<br />

6<br />

4<br />

4<br />

2<br />

2<br />

5<br />

5 8<br />

8<br />

3<br />

3<br />

7<br />

7<br />

6<br />

6<br />

9<br />

9<br />

10<br />

10<br />

10<br />

10<br />

5<br />

5<br />

7<br />

7<br />

1<br />

1<br />

8<br />

8<br />

2<br />

2 4<br />

4<br />

10<br />

10<br />

Brant C. Hoekstra, Keith A. Chamberlain, James S. Traub, Stev<strong>en</strong> F. Baugh, Sylesh K. V<strong>en</strong>kataraman<br />

ChromaDex, Inc., 2830 Wilderness Place, Boulder, Colorado 80301, USA.<br />

12<br />

11<br />

11<br />

12<br />

11<br />

11<br />

11<br />

11<br />

12<br />

12<br />

12<br />

12<br />

12<br />

HO<br />

HO<br />

OH<br />

OH<br />

O O<br />

HO<br />

OH<br />

HO<br />

OH<br />

HO<br />

O O<br />

O O<br />

JECFA ACN Usage = 30 mL/run<br />

Column: Agil<strong>en</strong>t Zorbax NH 2 250 x 4.6 mm, 5 µm particle size<br />

Flow Rate: Adjust such that Rebaudioside A is retained ~21 min.<br />

Temperature: 40 °C<br />

Detection: UV, 210 nm<br />

Isocratic 80:20 Acetonitrile:Water, adjusted to pH 3.0 with phosphoric<br />

acid and filtered prior to use.<br />

Discussion<br />

• HPLC analysis <strong>of</strong> Stevia glycosides is illustrated by <strong>the</strong> improved<br />

method (Figure 1) and <strong>the</strong> JECFA method (Figure 2).<br />

• The improved method (Figure 1: detail, Figure 3: full time scale)<br />

displays better peak shape, greater s<strong>en</strong>sitivity and resolution <strong>for</strong><br />

<strong>the</strong> Stevia glycosides while reversing <strong>the</strong> elution order.<br />

• In <strong>the</strong> JECFA analysis <strong>of</strong> <strong>the</strong> mixed standard (Figure 2):<br />

- <strong>Steviol</strong> and Isosteviol show poor resolution and ret<strong>en</strong>tion by<br />

eluting in <strong>the</strong> void volume,<br />

- baseline is not achieved betwe<strong>en</strong> compounds 3-8,<br />

- As <strong>the</strong> 3-minute-wide Rebaudioside D peak elutes well after<br />

Rebaudioside A, it may interfere with subsequ<strong>en</strong>t injections.<br />

• Figures 1-5 utilize 10 µL injections <strong>of</strong> <strong>the</strong> same mixed standard.<br />

• As Stevia glucosides are not readily soluble in acetonitrile or<br />

JECFA mobile phase, <strong>the</strong> mixed standard was prepared using a<br />

mixture <strong>of</strong> methanol and water.<br />

• All UV signals are displayed at 210 nm to allow a fair comparison<br />

to <strong>the</strong> JECFA method. However, s<strong>en</strong>sitivity significantly improves<br />

by utilizing 202 nm (peak heights are approximately 50% greater).<br />

• Figures 3-7 show <strong>the</strong> robust compatibility <strong>of</strong> <strong>the</strong> improved method<br />

with additional detection techniques (Figures 3-5) and modification<br />

<strong>of</strong> <strong>the</strong> aqueous mobile phase (Figures 6, 7).<br />

• The JECFA method is not ELSD or MS compatible due to <strong>the</strong> use<br />

<strong>of</strong> phosphoric acid in <strong>the</strong> mobile phase and dilu<strong>en</strong>t.<br />

• Limited ionization <strong>of</strong> compounds 10-12 was observed using<br />

negative electrospray ionization (Figure 5); however, <strong>the</strong>se<br />

compounds showed excell<strong>en</strong>t ionization in positive mode.<br />

• The standard shown in Figures 6-10 lacks steviol glucuronide.<br />

• Several aqueous mobile phase modifiers were evaluated including<br />

<strong>for</strong>mic acid, acetic acid, TFA, and isopropyl alcohol.<br />

• Analyses over several years utilizing differ<strong>en</strong>t instrum<strong>en</strong>tation,<br />

columns and standard conc<strong>en</strong>tration show only nominal<br />

changes to ret<strong>en</strong>tion times and resolution (see Graz 2007<br />

poster 2 ).<br />

OH<br />

9<br />

HO<br />

OH<br />

O O<br />

OH<br />

HO<br />

O HO OH<br />

O OH<br />

OH<br />

O<br />

<strong>Steviol</strong>bioside <strong>Steviol</strong> glucuronide Isosteviolmonoside <strong>Steviol</strong> Isosteviol<br />

HO<br />

O<br />

O<br />

O<br />

OH<br />

O 8<br />

O O 9<br />

O O 10<br />

11 12<br />

O<br />

HO<br />

HO<br />

OH<br />

OH<br />

HO<br />

OH<br />

Equipm<strong>en</strong>t<br />

1<br />

1<br />

1<br />

1<br />

1<br />

3<br />

6<br />

2<br />

4<br />

5<br />

3<br />

3<br />

6<br />

6<br />

4<br />

4<br />

2<br />

2<br />

5<br />

5<br />

3<br />

3<br />

6<br />

6<br />

2<br />

2 4<br />

4<br />

5<br />

5<br />

HO<br />

OH<br />

8<br />

7<br />

8<br />

8<br />

7<br />

7<br />

8<br />

8<br />

7<br />

7<br />

1<br />

10<br />

10<br />

10<br />

10<br />

10<br />

HO<br />

O<br />

HO<br />

O<br />

Figure 8<br />

Mill-Q water<br />

UV, 210 nm<br />

11<br />

12<br />

Figure 9<br />

Milli-Q water<br />

UV, 210 nm<br />

11<br />

11<br />

12<br />

12<br />

Figure 10<br />

Milli-Q water<br />

UV, 210 nm<br />

1. Kolb, N., Herrera, J.L., Ferreyra, D., Uliana, R.; <strong>Analysis</strong> <strong>of</strong> Sweet Diterp<strong>en</strong>e <strong>Glycosides</strong> from Stevia rebaudiana: Improved HPLC Method. J. Agric. Food Chem.<br />

2001, 49, 4538-4541.<br />

2. “An Improved HPLC Method <strong>for</strong> <strong>the</strong> <strong>Analysis</strong> <strong>of</strong> Diterp<strong>en</strong>oid <strong>Glycosides</strong> in Stevia rebaudiana,” Brant C. Hoekstra, Brian T. Schaneberg, Poster, 55th International<br />

Congress & Annual Meeting <strong>of</strong> <strong>the</strong> Society <strong>for</strong> Medicinal Plant Research, Graz, Austria, EU, Sept 2-6, 2007.<br />

3. <strong>Steviol</strong> <strong>Glycosides</strong>; FAO JECFA Monographs 5 (2008)<br />

10005 Muirlands Blvd. | Suite G | First Floor | Irvine, CA 92618 USA | Phone: +1 (949) 419-0288 | Fax: +1 (949) 419-0294 | www.chromadex.com<br />

11<br />

11<br />

12<br />

12<br />

min<br />

HPLC: Agil<strong>en</strong>t 1100 series equipped with a vacuum<br />

degasser, an autosampler injection system, a<br />

<strong>the</strong>rmostated column ov<strong>en</strong>, and a binary pump<br />

with a quaternary low pressure mixing valve.<br />

MS: Agil<strong>en</strong>t 1100 SL series Ion Trap<br />

ELSD: Alltech 200ES ELSD<br />

What’s Next? ACN Usage = 3.5 mL/run<br />

Synergi Hydro-RP HST 100 x 2.00 mm, 2.5 µm particle size<br />

Ph<strong>en</strong>om<strong>en</strong>ex C18(2)-HST 100 x 2.00 mm, 2.5 µm particle size<br />

Ph<strong>en</strong>om<strong>en</strong>ex Fusion-HST 100 x 2.00 mm, 2.5 µm particle size<br />

• Figures 8-10 repres<strong>en</strong>t preliminary results from fur<strong>the</strong>r method<br />

developm<strong>en</strong>t work. The results suggest that optimization <strong>of</strong> <strong>the</strong><br />

method on HST columns could reduce run times to ~20 minutes<br />

(including wash & re-equilibration) while maintaining resolution.<br />

• HST chromatography can be run on an Agil<strong>en</strong>t 1100 or<br />

equival<strong>en</strong>t (fitted with low flow compon<strong>en</strong>ts).<br />

E<strong>the</strong>l Aardvark - Wiki Commons St<strong>en</strong> Porse - Wiki Commons<br />

6


400 proved Standard method mixture <strong>of</strong>fers greater s<strong>en</strong>sitivity, greater resolution <strong>of</strong> minor constitu<strong>en</strong>ts, Isocratic: maintains 80:20 resolution Acetonitrile:Water, over lifetime <strong>of</strong> <strong>the</strong> column pH and 3.0reduces<br />

th<br />

ed Column: method is Synergi also readily Hydro-RP<br />

compatible with additional detection techniques including Flow: 1.0 mass mL/min, spectrometry Temperature: (LC/MS) and Evaporative 60 °C Light Scatt<br />

d. The two methods have be<strong>en</strong> evaluated using standards <strong>of</strong> rebaudiosides A, B, C, D and F, dulcoside A, isosteviol, isosteviol monoside, steviol<br />

mAU<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

HO<br />

OH<br />

HO<br />

OH<br />

HO<br />

OH<br />

HO<br />

OH<br />

ADC1 A, ADC1 CHANNEL A (R:\INGOLD\DATA\2009\H0309\H0309_02.D)<br />

HO<br />

HO<br />

HO<br />

O<br />

HO<br />

HO<br />

OH<br />

O<br />

HO<br />

OH<br />

O<br />

O<br />

O<br />

O<br />

250 x 4.6 mm, 4 μm<br />

O<br />

O<br />

OH<br />

O<br />

OH<br />

1<br />

1<br />

O O<br />

HO OH<br />

OH<br />

OH<br />

Rebaudioside D<br />

1<br />

HO<br />

OH<br />

HO<br />

HO<br />

O<br />

HO<br />

OH<br />

OH<br />

O<br />

HO<br />

O<br />

O<br />

OH<br />

O<br />

O<br />

O<br />

O O<br />

HO OH<br />

OH<br />

Rebaudioside A<br />

OH<br />

O<br />

O<br />

O<br />

O<br />

2 O O 3 O O 4 O O 5 O O 6<br />

HO<br />

HO<br />

HO<br />

OH<br />

HO<br />

OH<br />

OH<br />

O<br />

O<br />

O O<br />

Stevioside<br />

HO OH<br />

OH<br />

OH<br />

2 2 3<br />

3 4 4 5<br />

5<br />

HO<br />

HO<br />

HO<br />

HO<br />

OH<br />

OH<br />

O<br />

HO<br />

OH<br />

O<br />

O<br />

O<br />

O O<br />

HO OH<br />

OH<br />

Rebaudioside F<br />

Hoekstra et al., 2009 (Chromadex)<br />

HO<br />

HO<br />

HO<br />

HO<br />

OH<br />

6 6 7<br />

7 8 8 9<br />

9<br />

10<br />

10<br />

18 20 22 24 26<br />

OH<br />

O<br />

HO<br />

OH<br />

O<br />

O<br />

O<br />

O O<br />

HO OH<br />

OH<br />

Rebaudioside C<br />

HO<br />

HO<br />

HO<br />

OH<br />

HO<br />

OH<br />

OH<br />

O<br />

O O<br />

HO<br />

O HO OH<br />

Dulcoside A<br />

OH<br />

HO<br />

HO<br />

OH<br />

O<br />

HO<br />

HO<br />

O<br />

OH<br />

O<br />

O<br />

O<br />

O O<br />

HO OH<br />

OH<br />

Rebaudioside B<br />

7<br />

OH<br />

HO<br />

HO<br />

HO<br />

O<br />

OH<br />

O<br />

O<br />

O O<br />

HO OH<br />

OH<br />

<strong>Steviol</strong>bioside<br />

8<br />

7<br />

OH


What’s Next? ACN Usage = 3.5 mL/run<br />

Synergi Hydro-RP HST 100 x 2.00 mm, 2.5 µm particle size<br />

mAU<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

mAU<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

mAU<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

DAD1 D, Sig=210,8 Ref =600,100 (X:\XAVIER\DATA\2009\H0109\H0109_23.D)<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

Figure 8<br />

Mill-Q water<br />

UV, 210 nm<br />

8 9 10 11 12<br />

Ph<strong>en</strong>om<strong>en</strong>ex C18(2)-HST 100 x 2.00 mm, 2.5 µm particle size<br />

DAD1 D, Sig=210,8 Ref =600,100 (X:\XAVIER\DATA\2009\H0109\H0109_13.D)<br />

1<br />

1<br />

2<br />

2<br />

3<br />

3<br />

4<br />

4<br />

5<br />

5<br />

6<br />

6<br />

7<br />

7<br />

8<br />

8<br />

7 8 9 10 11<br />

DAD1 D, Sig=210,8 Ref =600,100 (X:\XAVIER\DATA\2009\H0109\H0109_27.D)<br />

1<br />

1<br />

2<br />

2<br />

3<br />

3<br />

4<br />

4<br />

5<br />

5<br />

6<br />

6<br />

7<br />

7<br />

8<br />

8<br />

10<br />

10<br />

10<br />

10<br />

10<br />

11<br />

12<br />

Figure 9<br />

Milli-Q water<br />

UV, 210 nm<br />

Ph<strong>en</strong>om<strong>en</strong>ex Fusion-HST 100 x 2.00 mm, 2.5 µm particle size<br />

8 9 10 11 12<br />

11<br />

11<br />

12<br />

12<br />

Figure 10<br />

Milli-Q water<br />

UV, 210 nm<br />

11<br />

11<br />

12<br />

12<br />

min<br />

min<br />

min<br />

Hoekstra et al., 2009 (Chromadex)<br />

8


RP by Geuns<br />

Grace Alltima C18<br />

150 mm x 4.6 mm, 5 µm<br />

two columns in series<br />

Reb A<br />

Stevioside<br />

9


RP by Geuns<br />

Grace Alltima C18<br />

150 mm x 4.6 mm, 5 µm<br />

two columns in series<br />

Reb A<br />

Stevioside<br />

<strong>Hilic</strong> by Zimmermann<br />

column: M+N Nucleodur <strong>Hilic</strong><br />

125 mm x 2.0 mm, 3 µm<br />

flow: 0.45 mL/min<br />

gradi<strong>en</strong>t: 4–10 min: 10–15 % water in ACN<br />

with 0.1 % <strong>for</strong>mic acid<br />

Stevioside<br />

Reb A<br />

10


RP by Geuns<br />

Elution order<br />

Reb A<br />

Stevioside<br />

<strong>Hilic</strong> by Zimmermann<br />

1<br />

2<br />

3<br />

4<br />

Stevioside<br />

5<br />

6<br />

7<br />

Reb A<br />

8<br />

11


RP by Geuns<br />

Elution order is roughly inverse<br />

Reb A<br />

8<br />

Stevioside<br />

5<br />

7<br />

6<br />

3<br />

1<br />

4<br />

2<br />

<strong>Hilic</strong> by Zimmermann<br />

1<br />

2<br />

3<br />

4<br />

Stevioside<br />

5<br />

6<br />

7<br />

Reb A<br />

8<br />

12


<strong>Hilic</strong><br />

➔ solves Reb A / Stevioside problem<br />

13


<strong>Hilic</strong><br />

to be optimised:<br />

Column<br />

Gradi<strong>en</strong>t<br />

(pH: basic or acidic analytes)<br />

Buffer conc<strong>en</strong>tration<br />

14


<strong>Hilic</strong> <strong>Columns</strong><br />

Kinetex (Ph<strong>en</strong>om<strong>en</strong>ex) 150 x 2.1 2.6 µm silica<br />

Luna (Ph<strong>en</strong>om<strong>en</strong>ex) 150 x 3 3 µm diol<br />

Nucleodur (Macherey + Nagel) 125 x 2 3 µm zwitterionic<br />

TSKgel Amide-80 (Tosoh) 150 x 2 3 µm carbamoyl<br />

15


�<br />

�<br />

�<br />

�<br />

����<br />

<strong>Hilic</strong> <strong>Columns</strong><br />

����<br />

���� ���� ���� ���<br />

����<br />

����<br />

����<br />

����<br />

���� ���� ���� ����<br />

����<br />

���� ����<br />

����<br />

����<br />

����<br />

����<br />

Kinetex<br />

7.8 %, 5 mM<br />

0.66 mL / min<br />

Luna<br />

11 %, 5 mM<br />

0.68 mL / min<br />

����<br />

���� ���� ���� ����<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

���� ����<br />

Rub<br />

����<br />

����<br />

����<br />

����<br />

����<br />

����<br />

����<br />

���� ���� ���� ����<br />

Sbi<br />

����<br />

���� ����<br />

Dul A<br />

Reb B<br />

���� ����<br />

����<br />

Ste<br />

Reb C<br />

Reb F<br />

����<br />

����<br />

���� ���� ���� ����<br />

����<br />

Reb A<br />

Reb E<br />

Luna<br />

11 %, 5 mM<br />

0.68 mL / min<br />

Nucleodur<br />

14 %, 10 mM<br />

0.60 mL / min<br />

Reb D<br />

TSKgel<br />

17.5 %, 5 mM<br />

0.45 mL / min<br />

��������<br />

�<br />

����<br />

����<br />

����<br />

����<br />

����<br />

����<br />

���� 16


<strong>Hilic</strong> <strong>Columns</strong><br />

Kinetex (Ph<strong>en</strong>om<strong>en</strong>ex) 150 x 2.1 2.6 µm silica<br />

Luna (Ph<strong>en</strong>om<strong>en</strong>ex) 150 x 3 3 µm diol<br />

Nucleodur (Macherey + Nagel) 125 x 2 3 µm zwitterionic<br />

TSKgel Amide-80 (Tosoh) 150 x 2 3 µm carbamoyl<br />

17


<strong>Hilic</strong> Mechanism<br />

mobile phase<br />

stagnant water<br />

<strong>en</strong>riched layer<br />

silica backbone<br />

OH<br />

analytes<br />

C3H5(OH)2<br />

C3H 6 CN<br />

C3H 6 NH2<br />

C2H2ONH2<br />

C2H4SO3H<br />

18


�<br />

�<br />

�<br />

�<br />

����<br />

<strong>Hilic</strong> <strong>Columns</strong><br />

����<br />

���� ���� ���� ���<br />

����<br />

����<br />

����<br />

����<br />

���� ���� ���� ����<br />

����<br />

���� ����<br />

����<br />

����<br />

����<br />

����<br />

Kinetex<br />

7.8 %, 5 mM<br />

0.66 mL / min<br />

Luna<br />

11 %, 5 mM<br />

0.68 mL / min<br />

����<br />

���� ���� ���� ����<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

���� ����<br />

Rub<br />

����<br />

����<br />

����<br />

����<br />

����<br />

����<br />

����<br />

���� ���� ���� ����<br />

Sbi<br />

����<br />

���� ����<br />

Dul A<br />

Reb B<br />

���� ����<br />

����<br />

Ste<br />

Reb C<br />

����<br />

����<br />

���� ���� ���� ����<br />

����<br />

Reb A<br />

Luna<br />

11 %, 5 mM<br />

0.68 mL / min<br />

Nucleodur<br />

14 %, 10 mM<br />

0.60 mL / min<br />

TSKgel<br />

17.5 %, 5 mM<br />

0.45 mL / min<br />

��������<br />

�<br />

����<br />

����<br />

����<br />

����<br />

����<br />

����<br />

���� 19


et<strong>en</strong>tion Ret<strong>en</strong>tion factor Factor k k<br />

10<br />

1<br />

0,1<br />

Rubusoside 5 mM<br />

Rubusoside 10 mM<br />

<strong>Steviol</strong>bioside 5 mM<br />

<strong>Hilic</strong> <strong>Columns</strong><br />

<strong>Steviol</strong>bioside 10 mM<br />

L Rubusoside 5 mM<br />

L Rubusoside 10 mM<br />

L <strong>Steviol</strong>bioside 5 mM<br />

L <strong>Steviol</strong>bioside 10 mM<br />

T Rubusoside 5 mM<br />

T Rubusoside 10 mM<br />

T <strong>Steviol</strong>bioside 10 mM<br />

T Rubusoside 5 mM<br />

Nucleodur<br />

Luna<br />

0 5 10 15 20<br />

% water % Water (isocratic)<br />

TSKgel<br />

20


Stevia Leaf Extract<br />

dried and ground leaves<br />

extracted with ACN / water 50 / 50<br />

UV<br />

MS<br />

Stevioside<br />

Reb A<br />

21


Stevia Leaf<br />

UV<br />

MS<br />

Stevioside<br />

Stevioside<br />

Reb A<br />

Reb A<br />

22


Stevia Leave<br />

Stevioside<br />

Reb A<br />

UV<br />

MS<br />

Stevioside<br />

Stevioside<br />

Reb A<br />

Reb A<br />

23


Stevioside<br />

Reb A<br />

UV<br />

MS<br />

a<br />

240<br />

220<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

b<br />

240<br />

220<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0<br />

0<br />

mAU<br />

mAU<br />

1<br />

1<br />

2<br />

2<br />

3<br />

3<br />

4<br />

4<br />

after SPE<br />

Woelwer-Rieck et al., 2010<br />

5<br />

5<br />

stevioside<br />

Fig. 1 Chromatograms <strong>of</strong> a Stevia leaf extract (a) after and (b) 24<br />

without SPE clean-up<br />

6<br />

without SPE<br />

6<br />

7<br />

stevioside<br />

7<br />

rebaudioside A<br />

8<br />

8<br />

9<br />

9<br />

10<br />

rebaudioside A<br />

10<br />

11<br />

11


<strong>Hilic</strong><br />

➔ solves Reb A / Stevioside problem<br />

but:<br />

➔ no ret<strong>en</strong>tion <strong>of</strong> <strong>Steviol</strong><br />

➔ choice <strong>of</strong> internal standard<br />

➔ sample to be dissolved in solv<strong>en</strong>t with high<br />

organic perc<strong>en</strong>tage<br />

25


ACN / Water 50 / 50 Water<br />

<strong>Hilic</strong><br />

Solubility<br />

10 µL<br />

5 µL<br />

Injection volume<br />

2 µL<br />

26


ACN / Water 50 / 50 Water<br />

<strong>Hilic</strong><br />

Solubility<br />

10 µL<br />

5 µL<br />

2 µL<br />

27


ACN / Water 50 / 50 Water<br />

<strong>Hilic</strong><br />

Solubility<br />

10 µL<br />

5 µL<br />

2 µL<br />

28


Conclusion<br />

➔ <strong>Hilic</strong> columns are suitable <strong>for</strong> steviol glycoside analysis<br />

(differ<strong>en</strong>t stationary phases)<br />

➔ <strong>Hilic</strong> columns give <strong>en</strong>hanced resolution <strong>of</strong><br />

stevioside / rebaudioside A<br />

➔ Optimization <strong>of</strong> separation by buffer conc<strong>en</strong>tration<br />

more details:<br />

Woelwer-Rieck et al. (2010), European Food Research and Technology<br />

Zimmermann et al. (2011), Food Analytical Methods<br />

Zimmermann (2011), Rapid Communications in Mass Spectrometry<br />

29


%<br />

1<br />

641(1) Rubusoside<br />

641(1) Steviobioside<br />

Minor <strong>Steviol</strong> <strong>Glycosides</strong><br />

773(1)<br />

787(1)<br />

787(2) Dulcoside A<br />

803(1)<br />

773(4)<br />

803(2) Reb B<br />

803(3) Stevioside<br />

949(1) Reb C<br />

935(2) Reb F<br />

Time<br />

2.50 5.00 7.50 10.00 12.50 15.00 17.50 20.00<br />

935(3)<br />

965(1) Reb A<br />

965(2) Reb E<br />

1127(1)<br />

1127(3)<br />

1.61e6<br />

30


Minor <strong>Steviol</strong> <strong>Glycosides</strong><br />

Ohta et al. (2010): 10 “new” glycosides: 7 %<br />

Chaturvedula et al. (2011): 3 “new” glycosides<br />

Zimmermann (2011): 7 “new” glycosides<br />

10 “traditional” steviol glycosides:<br />

Rebaudioside A, B, C, D, E, F<br />

Stevioside<br />

Rubusoside<br />

<strong>Steviol</strong>bioside<br />

Dulcoside A<br />

31


Ohta et al., 2010<br />

new<br />

32


Ohta et al., 2010<br />

new<br />

33


Ohta et al., 2010<br />

new<br />

34


Conclusion<br />

➔ <strong>Hilic</strong> columns are suitable <strong>for</strong> steviol glycoside analysis<br />

(differ<strong>en</strong>t stationary phases)<br />

➔ <strong>Hilic</strong> columns give <strong>en</strong>hanced resolution <strong>of</strong><br />

stevioside / rebaudioside A<br />

➔ Optimization <strong>of</strong> separation by buffer conc<strong>en</strong>tration<br />

more details:<br />

Woelwer-Rieck et al. (2010), European Food Research and Technology<br />

Zimmermann et al. (2011), Food Analytical Methods<br />

Zimmermann (2011), Rapid Communications in Mass Spectrometry<br />

35

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!