21.12.2012 Views

The Nucleon-Nucleon Interaction in a Chiral Effective Field Theory

The Nucleon-Nucleon Interaction in a Chiral Effective Field Theory

The Nucleon-Nucleon Interaction in a Chiral Effective Field Theory

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

88 3. <strong>The</strong> derivation of nuclear forces from chiral Lagrangians<br />

+ �(\ [(NtVN)2 + (VNtN)2] + ((\ + 02 )(NtVN) . (VNtN)<br />

+ �02 (NtN) [NtV2N + V2NtN]<br />

+i�63{ [(NtVN) . (VNt x iJN) + (VNtN) . (NtiJ x VN)]<br />

+ (NtN)(VNt . iJ x VN) + (NtiJN) . (VNt x VN)} (3.237)<br />

1 ( 1 - -<br />

+ 2 2 C 4 (6ik6jl + 6il6kj) + C56ij6kl<br />

x [(OiOjNt17kN) + (Nt17kOiOjN)] (Nt171N)<br />

+ (�06 (6ik6jl + 6il6kj) + (05 - 67)6ij6k1) (Nt17kOiN)(ojNt171N)<br />

1 ( 1 - -<br />

-<br />

+ 2 2 (C4 - C6) (6ik6jl + 6i/6kj) + C76ij6kl<br />

x [(OiNt17kOjN) + (ojNt17kOiN)] (Nt171N) ,<br />

1i5 �El (NtN) (NtrN) . (NtrN) + �E 2 (NtN) (NtriJN) . . (NtriJN)<br />

+ �E3 [(NtriJN) x x (NtriJN)] .. (NtriJN) .<br />

)<br />

)<br />

(3.238)<br />

Here we have shown explicitly only the operators 1i". lead<strong>in</strong>g to non-vanish<strong>in</strong>g TjH".Tj, ),1 H".),l,<br />

),1 H".Tj, ),2 H".Tj, ),2 H".),l, ),4H".Tj and h. c., which we will need <strong>in</strong> our furt her calculations. <strong>The</strong><br />

correspond<strong>in</strong>g <strong>in</strong>dex /'l, is def<strong>in</strong>ed <strong>in</strong> eq. (3.211). <strong>The</strong> operators with nucleon fields and three or<br />

. . more pion fields are irrelevant. <strong>The</strong> symbols ' ' ' , x x<br />

' me an that the appropriate products <strong>in</strong><br />

co-ord<strong>in</strong>ate and isosp<strong>in</strong> space have to be taken. Note that one has, <strong>in</strong> pr<strong>in</strong>ciple, four possible<br />

contact terms (two more <strong>in</strong>volv<strong>in</strong>g r) <strong>in</strong> eq. (3.234). However, they can be reduced to two after<br />

perform<strong>in</strong>g anti-symmetrization of the potential. This will be expla<strong>in</strong>ed below. Furt her , the<br />

Hamiltonian used <strong>in</strong> this paper is always taken <strong>in</strong> normal order<strong>in</strong>g. F<strong>in</strong>ally, we have used the<br />

standard (<strong>in</strong> the one-nucleon sector) notation for the Cl , C3 and C4 terms, which is different from<br />

the correspond<strong>in</strong>g one given <strong>in</strong> the reference [78] 39 and also our El, 2 ,3 coupl<strong>in</strong>gs differ from those<br />

def<strong>in</strong>ed <strong>in</strong> [77]. In particular, EI = EU4, E2 = E!J./4 and E3 = Ej/8, where we denote by E* the<br />

correspond<strong>in</strong>g parameters from reference [77].<br />

<strong>The</strong> Hamiltonian given <strong>in</strong> [78] conta<strong>in</strong>s apart from the terms enumerated above the two additional<br />

<strong>in</strong>teractions<br />

(3.239)<br />

which lead to significant contributions to the two-nucleon potential at next-to-lead<strong>in</strong>g order.<br />

However, as argued <strong>in</strong> [127], no correspond<strong>in</strong>g terms appear <strong>in</strong> the relativistic Lagrangian after an<br />

appropriate nucleon field redef<strong>in</strong>ition is performed. <strong>The</strong>refore, terms of such type <strong>in</strong> the nonrelativistic<br />

Lagrangian may only represent l/m-corrections, that are irrelevant for our calculations<br />

because of the count<strong>in</strong>g eq. (A.14).<br />

39 In ref. [78] these are the EI-E3 terms.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!