21.12.2012 Views

The Nucleon-Nucleon Interaction in a Chiral Effective Field Theory

The Nucleon-Nucleon Interaction in a Chiral Effective Field Theory

The Nucleon-Nucleon Interaction in a Chiral Effective Field Theory

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

2.3. Go<strong>in</strong>g to bigber energies: a toy model 43<br />

150<br />

100<br />

bO 50<br />

Q)<br />

�<br />

�<br />

0<br />

-50<br />

:<br />

'.<br />

��:' ,<br />

, , , , , ,<br />

"<br />

order 0 --- - --order<br />

2 -- - - -- - .<br />

order 4 --- --order<br />

6 _._._.exact<br />

--<br />

- -<br />

_._._.-::... .��<br />

bO<br />

Q)<br />

�<br />

�<br />

150<br />

100<br />

50<br />

0<br />

-50<br />

order 0 - - - ---order<br />

2 ,- ----..<br />

order 4 -----exact<br />

--<br />

-'-_-'- -- -- -1_-L_-' -- -- -'-_-'-_ L---<br />

-L.- --I<br />

-1 00 -1 00 L-o<br />

20 40 60 80 1 00 120 140 160 1 80 200 0 20 40 60 80 1 00 120 140 160 1 80 200<br />

T1ab [MeV] l1ab [MeV]<br />

Figure 2.11: Phase shifts from the effective potential V' (solid l<strong>in</strong>e) and the truncated expansion<br />

(2.116) as a function of the k<strong>in</strong>etic energy <strong>in</strong> the lab frame for A =300 MeV. Left (right) panel:<br />

the constants Ci, C; are fitted to the effecti ve potential (to the NN phase shift).<br />

with<br />

11 J 12 d 'O( ') TI (q', q,Eq)<br />

q q q, q ,<br />

E E +'<br />

q - q'<br />

ZE<br />

J 1 2 d I 1 2 d I T'* (q�, q,Eq)<br />

O<br />

( I ' ) T'(q�, q,Eq)<br />

h = q1 q1 q2 q2 E E<br />

. q1 ' q2 + '<br />

- ZE E q - E q� ZE<br />

(2.121)<br />

<strong>The</strong> results for quantum averages of the operators v(2n), (n = 0,1,2,3), are shown <strong>in</strong> table 2.3.<br />

q - q �<br />

Note that the matrix elements for the bound and scatter<strong>in</strong>g states have different units. This<br />

is a consequence of different normalization of those states. One observes a good convergence <strong>in</strong><br />

agreement with the naive expectation. Indeed, s<strong>in</strong>ce the cut-off is chosen to be A =300 MeV and<br />

the scale A s cale ,...,.,600 MeV, one expects the expansion parameter to be of the order AI A s cale � 1/2.<br />

Such a value agrees wen with the one extracted from the results shown <strong>in</strong> table 2.3. Note furt her<br />

that for higher energies, the convergence is slower, which is also rather natural.<br />

deuteron 25.94 MeV -4.23 MeV 1.07 MeV -0.38 MeV<br />

E1ab = 10 MeV 31.34 GeV-2 -6.19 GeV-� 1.64 GeV-� -0.58 GeV-2<br />

E1ab = 50 MeV 11.54 GeV 2 -3.28 GeV -",;! 1.11 GeV 2 -0.44 GeV 2<br />

E1ab = 100 MeV 7.79 GeV-2 -3.09 GeV-� 1.40 GeV-2 -0.71 GeV-2<br />

Table 2.3: <strong>The</strong> quantum averages of the operators V(O), V(2), V(4) and V(6) for the bound (second<br />

row) and the scatter<strong>in</strong>g states (third to fifth rows) for A = 300 MeV.<br />

Hav<strong>in</strong>g calculated the quantum averages of the operators V(O), V(2), V(4) and V(6) we can now<br />

better understand the quite slow convergence of the effective theory expansion (2.116) observed

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!