21.12.2012 Views

The Nucleon-Nucleon Interaction in a Chiral Effective Field Theory

The Nucleon-Nucleon Interaction in a Chiral Effective Field Theory

The Nucleon-Nucleon Interaction in a Chiral Effective Field Theory

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

2.3. Go<strong>in</strong>g to higher energies: a toy model 29<br />

For momenta ij from the 1]-space this equation takes a simpler form<br />

(2.91)<br />

s<strong>in</strong>ce the resolvent operator of the transformed Hamiltonian H' is block-diagonal as already<br />

po<strong>in</strong>ted out before, cf eq. (2.77). Now we act with the operator (1] + )'A1]) on both sides of<br />

this equation. Because of the trivial relation (1] + )'A1]) (1] + )'A1]) = 1] + )'A1] we conclude from<br />

eq. (2.91) for all momenta ij E 1] that<br />

), Iw�+) ) =<br />

q E 1] " q E Ti<br />

)'A'l1 Iw�+) )<br />

Project<strong>in</strong>g this equation onto the state (pi, p > A, and mak<strong>in</strong>g use of the relation<br />

(2.92)<br />

(2.93)<br />

where T(Pl ,P 2 , z) is the ord<strong>in</strong>ary off-shell T-matrix, we end up with the follow<strong>in</strong>g l<strong>in</strong>ear <strong>in</strong>tegral<br />

equation for the operator A:<br />

A(� ;1\ _ T(p, ij, Eq) _ ! d3 , A(p, ij') T(ij',ij,Eq)<br />

.<br />

p, q ) - E E q E E<br />

q - p q - q' + Zf<br />

(2.94)<br />

Here the <strong>in</strong>tegration over q ' goes from 0 to A. Consequently, the dynamical <strong>in</strong>put <strong>in</strong> this method<br />

is the T-matrix T(ql,q""2,Eq2 ). Note that this is not a usual Lippmann-Schw<strong>in</strong>ger equation, s<strong>in</strong>ce<br />

the position of the pole, Eq, <strong>in</strong> the <strong>in</strong>tegration over q' is not fixed but moves with q. It is the<br />

second argument <strong>in</strong> A which varies, the first one is a parameter for the <strong>in</strong>tegral equation.<br />

To end this section we would like to rewrite the decoupl<strong>in</strong>g equation (2.69), which is given <strong>in</strong> the<br />

three-dimensional vector space of momenta, <strong>in</strong> a more convenient partial wave decomposed form.<br />

For two particles with sp<strong>in</strong> 1/2 one obta<strong>in</strong>s, us<strong>in</strong>g the standard Ilsj) representation, the follow<strong>in</strong>g<br />

equation<br />

Vi:! (p, q)<br />

� 0<br />

InA [00 . . .<br />

'2 ' '2 ' SJ , sJ " sJ ,<br />

q dq P dp All (p, q )Vil' (q ,p )Al'l'(p ,q)<br />

A<br />

11'<br />

(Eq - Ep) A:f, (p, q )<br />

(2.95)<br />

where Vi:!(p,q ) == (lsj,plVll'sj,q) and A:f,(p,q) == (lsj,pIAll'sj,q). In the uncoupled case 1 is<br />

conserved and equals j. In the coupled cases it takes the values 1 = j ± 1. Analogously, we can<br />

partial wave decompose the l<strong>in</strong>ear equation (2.94):<br />

sj ( ) A AS2( ') T!j( , E)<br />

ASj ( ) - Tl!' p,q, Eq _ " In '2 d ' 11 p,q 11' q , q, q<br />

q p _<br />

11' p, q -<br />

E - E � q q E - E +'<br />

I<br />

0 q q' Zf<br />

2.3.2 Regularization of the decoupl<strong>in</strong>g equation<br />

(2.96)<br />

<strong>The</strong> factor (Eq - Ep) <strong>in</strong> eq. (2.69) multiply<strong>in</strong>g A(p, ij) requires some caution when p == IPI and<br />

q == l

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!