21.12.2012 Views

The Nucleon-Nucleon Interaction in a Chiral Effective Field Theory

The Nucleon-Nucleon Interaction in a Chiral Effective Field Theory

The Nucleon-Nucleon Interaction in a Chiral Effective Field Theory

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

186 F. <strong>The</strong> complete set of the N N contact <strong>in</strong>teractions with two derivatives<br />

<strong>The</strong>re are also two terms with one derivative:<br />

Note that the terms with just one <strong>in</strong>sertion of the sp<strong>in</strong>-operators S/1 like, for <strong>in</strong>stance,<br />

are not parity and charge conjugation <strong>in</strong>variant, see table F.l. <strong>The</strong> same holds true for the term<br />

(F.8)<br />

(F.9)<br />

(F.10)<br />

Both terms <strong>in</strong> eq. (F.8) are redundant and can be elim<strong>in</strong>ated from the effective Lagrangian apply<strong>in</strong>g<br />

the lead<strong>in</strong>g order equation of motion (EOM) (3.165) of the field Hv : (v · ö)H = 0. 6 Note, however,<br />

that the terms <strong>in</strong> (F.8) are reparametrization <strong>in</strong>variant. This can easily be checked us<strong>in</strong>g eqs. (F.4)<br />

and (F.6).<br />

Let us now consider the contact <strong>in</strong>teractions with two derivatives. <strong>The</strong> follow<strong>in</strong>g terms appear <strong>in</strong><br />

the effective Lagrangian:<br />

.c�� = �Ü1 [ (Hv 7J /1 Hv)(Hv 7J/1 Hv) + (Hv 8 /1Hv)(Hv 8/1 Hv )]<br />

+ ü 2 (Hv 7J /1 Hv )(Hv 8/1 Hv )<br />

+ ü3(HvHv)(Hv( 82 + 7J2 )Hv)<br />

+ ü4(HvHv)(Hv 8 /1 7J/1 Hv)<br />

1 [ - ---itv - ,="p - ,="v - ---itp ]<br />

+ 2i Ü5 E/1VpuV /1 (Hv iJ Hv )(Hv 'ä SU Hv ) - (Hv 'ä Hv)(Hv SU iJ Hv)<br />

+ i Ü6 E/1vpuv /1 (HvHv)(Hv 8v s p7Ju Hv)<br />

- - '="P---itu<br />

+ i Ü7 E/1vpuv/1(HvSV Hv)(Hv 'ä iJ Hv)<br />

+ �i ÜS E/1VpuV /1 [(Hv 7Jv Hv )(HvS p7Ju Hv) - (Hv 8v Hv )(Hv 8u S P Hv)]<br />

1<br />

+ 2 (ügg/1Pgvu + ü10g/1ugvP + üllg/1vgpu)<br />

X [(HvS pa/1 Hv)(Hvs u7Jv Hv) + (Hv 8/1 S P Hv)(Hv 8V sU Hv)]<br />

+(Ü1 2 g/1pgvu + Ü13g/1ugvp + Ü14g/1vgpu ) (HvS p7J/1 Hv )(Hv 8v s u Hv )<br />

+ � (�Ü15 (9/1Pgvu + g/1ugvp) + Ü169/1V9pu)<br />

x [(Hv 8/1<br />

s<br />

p7JV<br />

Hv)(HvSU Hv) + (Hv 8v<br />

sP7J/1 Hv )(HvSU Hv)]<br />

1 1 ( ) - '="/1'="V ---it/1---itv P ---itv -<br />

(F.ll)<br />

+ 2 2Ü17(9/1Pgvu + g/1ugvp) + Ü1Sg/1vgpu (Hv( 'ä 'ä + iJ iJ )S iJ Hv)(HvS Hv)<br />

where Ü1, ... ,lS are constant coefficients. Here we have not shown terms which <strong>in</strong>clude the operator<br />

v . Ö, s<strong>in</strong>ce they can be elim<strong>in</strong>ated apply<strong>in</strong>g the equation of motion (3.165) for the field Hv .<br />

6<strong>The</strong> EOM (3.165) is only valid modulo higher order terms. If no pion fields are considered, such higher order<br />

terms may be divided <strong>in</strong>to two classes: the on es with just one field operator Hv and those ones <strong>in</strong>volv<strong>in</strong>g more field<br />

operators (like, for <strong>in</strong>stance, the term (HvHv)Hv). <strong>The</strong> lead<strong>in</strong>g correction of the first k<strong>in</strong>d is given by the term<br />

-iß2/(2m). <strong>The</strong> higher order corrections to eq. (3.165) of the second k<strong>in</strong>d would lead to contact <strong>in</strong>teractions with six<br />

and more nucleon legs and are irrelevant for our discussion. Thus, elim<strong>in</strong>at<strong>in</strong>g the terms (F.8) us<strong>in</strong>g the EOM for Hv<br />

would modify the contact <strong>in</strong>teractions with four nucleon legs at order .6.i = 3 (terms like l/m(Hv 7J. a Hv )(HvHv)).<br />

For further discussion on such redundant terms see e.g. refs. [133], [71].<br />

U

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!