21.12.2012 Views

The Nucleon-Nucleon Interaction in a Chiral Effective Field Theory

The Nucleon-Nucleon Interaction in a Chiral Effective Field Theory

The Nucleon-Nucleon Interaction in a Chiral Effective Field Theory

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

120 4. <strong>The</strong> two-nuc1eon system: numerical results<br />

where<br />

and q=p' - p.<br />

4 39� r i (0\ + eh) . (p ' x ff) (2M; + q2)A(q)<br />

6 7fm 'Ir<br />

647fm f: Tl' T2 2 0"1 + 0"2 •<br />

x {(c4 + 4 �)(4M; + q2) - :� (10M; + 3q2)} A(q)<br />

g � (1 - g �) ( ) . ( � � ) ( �' ;;'\ (4M2 2)A( )<br />

L(q)<br />

A(q)<br />

q V 'Ir + q n<br />

1 q<br />

P X p) 'Ir + q q ,<br />

� . /4M2 2 I V 4M; + q2 + q<br />

2M'Ir '<br />

-arctan --<br />

2q 2M'Ir '<br />

Now we want to apply this potential to calculate the two-nucleon observables. <strong>The</strong> scatter<strong>in</strong>g<br />

states are described by the Lippmann-Schw<strong>in</strong>ger <strong>in</strong>tegral equation. <strong>The</strong> LS equation (for the<br />

T-matrix) projected onto states with orbital angular momentum I, total sp<strong>in</strong> s and total angular<br />

moment um j is<br />

InOO d " ,,2<br />

sj , sj , P P sj ,,, m sj<br />

Tl'<br />

"<br />

I(P , p) = Vi, I (P , p) + L<br />

(2 )3 Vi, 1" (P , p ) 2 ,,2 . Tl" , ,<br />

I (P , p) ,<br />

I" ° 7f ' P - P + 2'TJ '<br />

with 'TJ --+ 0+. In the uncoupled case, I is conserved. <strong>The</strong> partial wave projected potential Vi��(p' , p)<br />

can be obta<strong>in</strong>ed us<strong>in</strong>g the formulae of the appendix G. <strong>The</strong> relation between the on-shell 8- and<br />

T-matrices is given by<br />

S � ( )_ r<br />

2<br />

T� ( )<br />

1'1 P - Ul'l - 87f2 pm 1'1 P ,<br />

where P denotes the two-nucleon center-of-mass three-momentum. <strong>The</strong> phase shifts <strong>in</strong> the uncoupled<br />

cases can be obta<strong>in</strong>ed from the S-matrix via<br />

SOj ( 2 ' rOj )<br />

JJ J ' Slj (2·r1j)<br />

.. = exp 2u ·<br />

(4.4)<br />

(4.5)<br />

(4.6)<br />

jj = exp w j , (4.7)<br />

where we have used the notation 8t j . Throughout, we use the so-called Stapp parametrization<br />

[203] of the S-matrix <strong>in</strong> the coupled channels (j > 0):<br />

S =<br />

)<br />

2 . sm<br />

.<br />

(2 f ) exp ( W' r1j<br />

j_ 1 ;-. 2Uj+1<br />

. r1j<br />

) .<br />

(4.8)<br />

cos (2f) exp (2i8 j� 1)<br />

For the discussion of the effective range expansion for the 3 S I partial wave we will use the different<br />

parametrization of the S-matrix, namely the one due to Blatt and Biedenharn [204]. <strong>The</strong><br />

connection between these two sets of parameter is given by the follow<strong>in</strong>g equations:<br />

8j-1 + 8j+1<br />

s<strong>in</strong>(8j_ 1 - 8j+1 )<br />

8j-1 + 8j+1 ,<br />

tan(2f)<br />

tan(2E') ,<br />

s<strong>in</strong>(2f)<br />

s<strong>in</strong>(2E') ,<br />

(4.9)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!