21.12.2012 Views

The Nucleon-Nucleon Interaction in a Chiral Effective Field Theory

The Nucleon-Nucleon Interaction in a Chiral Effective Field Theory

The Nucleon-Nucleon Interaction in a Chiral Effective Field Theory

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>The</strong> <strong>Nucleon</strong>-<strong>Nucleon</strong> <strong>Interaction</strong> <strong>in</strong> a<br />

<strong>Chiral</strong> <strong>Effective</strong> <strong>Field</strong> <strong>The</strong>ory<br />

Dissertation<br />

zur Erlangung des Grades e<strong>in</strong>es<br />

Doktors der Naturwissenschaften <strong>in</strong> der<br />

Fakultät für Physik und Astronomie der<br />

Ruhr-Universität Bochum<br />

von<br />

Evgeny Epelbaum<br />

aus St. Petersburg<br />

Bochum 2000


Zusammenfassung und Ausblick<br />

In dieser Arbeit haben wir emlge Anwendungen der Methode der effektiven Feldtheorien zur<br />

Beschreibung der Streu- und B<strong>in</strong>dungszustände zweier Nukleonen betrachtet. Wir möchten jetzt<br />

die erzielten Ergebnisse zusammenfassen:<br />

1. Nach e<strong>in</strong>er E<strong>in</strong>leitung, die den derzeitigen Stand der Forschung beschreibt und die Fragestellungen<br />

angibt, haben wir als erstes im Kapitel 2 das quantenmechanische Problem<br />

zweier Nukleonen betrachtet und haben gezeigt, wie man e<strong>in</strong>e effektive Niederenergietheorie<br />

basierend auf der Methode unitärer Transformationen konstruieren kann, wenn man von<br />

e<strong>in</strong>em beliebigen realistischen Zwe<strong>in</strong>ukleonenpotential im Impulsraum ausgeht. Dies wird<br />

erreicht durch die Entkopplung der Unterräume kle<strong>in</strong>er und großer Impulskomponenten, die<br />

zusammen den gesamten Impulsraum bilden. Die unitäre Transformation kann durch e<strong>in</strong>en<br />

Operator A parametrisiert werden, siehe GI. (2.65), der der nicht l<strong>in</strong>earen Integralgleichung<br />

(2.69) gehorcht. Diese Gleichung kann numerisch gelöst werden. Die Observablen können<br />

dann alle<strong>in</strong> <strong>in</strong> dem Unterraum kle<strong>in</strong>er Impulskomponenten berechnet werden. Abgesehen<br />

davon, daß diese Methode an sich <strong>in</strong>teressant ist, haben wir sie auch im Zusammenhang<br />

mit der chiralen Störungstheorie (CHPT) für das Zwe<strong>in</strong>ukleonensystem betrachtet, <strong>in</strong>dem<br />

wir e<strong>in</strong>e Reihe von Fragen untersuchten, die im Rahmen unserer exakten effektiven <strong>The</strong>orie<br />

für niedrige Impulse e<strong>in</strong>deutig gelöst werden können. Natürlich ersetzt dies nicht e<strong>in</strong>e realistische<br />

Rechnung im Rahmen der CHPT, wie sie ja ebenfalls von uns <strong>in</strong> der vorliegenden<br />

Arbeit durchgeführt wurde. Sie kann aber als Leitfaden benutzt werden. Die Hauptergebnisse<br />

unserer Untersuchung können wie folgt zusammengefaßt werden:<br />

• Wir haben analytisch gezeigt, daß die auf den Niederimpulsraum (mit Impulsen kle<strong>in</strong>er<br />

als e<strong>in</strong> gegebener Wert A) projizierte <strong>The</strong>orie genau die gleiche S-Matrix liefert wie<br />

die ursprüngliche <strong>The</strong>orie, die im gesamten, nicht e<strong>in</strong>geschränkten Impulsbereich def<strong>in</strong>iert<br />

ist. Dies setzt voraus, daß die Randbed<strong>in</strong>gungen für die Streuzustände geeignet<br />

gewählt s<strong>in</strong>d. Insbesondere s<strong>in</strong>d die hohen Impulskomponenten der transformierten<br />

Streuzustände für Anfangsimpulse, die kle<strong>in</strong>er als der Abschneideparameter A s<strong>in</strong>d,<br />

exakt Null.<br />

• Ausgehend von e<strong>in</strong>em S-Wellen NN Potential, welches aus e<strong>in</strong>em anziehenden und e<strong>in</strong>em<br />

abstoßenden Teil besteht, entsprechend den Austäuschen leichter (/1L � 300 MeV)<br />

und schwerer (/1H � 600 MeV) Mesonen, siehe GI. (2.113), haben wir die nichtl<strong>in</strong>eare<br />

Gleichung für den Operator A rigoros (<strong>in</strong> e<strong>in</strong>em numerischen S<strong>in</strong>n) gelöst. Dabei haben<br />

wir gezeigt, daß die Observablen, die den gebundenen und Streuzuständen entsprechen,<br />

<strong>in</strong> der ursprünglichen und effektiven <strong>The</strong>orie genau übere<strong>in</strong>stimmen. Genauer gesagt,<br />

haben wir <strong>in</strong> beiden Fällen jeweils e<strong>in</strong>en gebundenen Zustand mit der B<strong>in</strong>dungsenergie<br />

2.23 MeV. Diese Ergebnisse s<strong>in</strong>d unabhängig vom Abschneideparameter, der von<br />

200 Me V bis 5.5 Ge V variiert wurde. Wir haben argumentiert, daß der natürlichste<br />

Wert des Abschneideparameters A ca. 300 MeV ist. Das effektive Potential kann sich


11<br />

vom ursprünglichen wesentlich unterscheiden. Die gilt <strong>in</strong>sbesondere für die Werte von<br />

A im unteren Teil des angegebenen Bereiches.<br />

• Wir haben auch e<strong>in</strong>en alternativen Weg zur Bestimmung des Operators A betrachtet,<br />

der die Kenntniss der "half-off-shell" N N T-Matrix voraussetzt. Diese Methode<br />

führt zu der l<strong>in</strong>earen Gleichung (2.94), die ebenfalls numerisch gelöst wurde.<br />

Für alle gewählten Werte des Abschneideparameters A haben wir e<strong>in</strong>e perfekte<br />

Übere<strong>in</strong>stimmung zwischen den A's, die durch Lösung der l<strong>in</strong>earen und nichtl<strong>in</strong>earen<br />

Gleichungen gewonnen wurden, erhalten.<br />

• Wir haben e<strong>in</strong>e Niederimpulsentwicklung des effektiven Potentials untersucht. Dafür<br />

haben wir den Anteil, der dem Austausch des leichten Mesons entspricht, ungeändert<br />

beibehalten und den verbleibenden Teil des effektiven Potentials <strong>in</strong> e<strong>in</strong>e Reihe von Kontaktwechselwirkungen<br />

wachsender Dimension entwickelt, siehe (2.115), (2.116). Die<br />

entsprechenden lokalen Operatoren s<strong>in</strong>d aus geraden Potenzen der Impulse aufgebaut.<br />

Die dazugehörigen Kopplungskonstanten Ci können durch den Vergleich mit der exakten<br />

Lösung genau bestimmt werden. Für A =300 (400) MeV s<strong>in</strong>d ihre Werte <strong>in</strong> der<br />

Tabelle 2.1 angegeben. Wir haben gezeigt, daß sie die Eigenschaft der "natürlichen"<br />

Größe haben. Das heißt, sie s<strong>in</strong>d von der Ordnung e<strong>in</strong>s <strong>in</strong> Bezug auf die Massenskala<br />

Ascale = 600 MeV. Wir haben auch die Beziehung zwischen dieser Skala und der Masse<br />

des schweren aus<strong>in</strong>tegrierten Mesons diskutiert, sowie die Konvergenzeigenschaften<br />

dieser Niederimpulsentwicklung. Dabei stellte sich heraus, daß man Operatoren von<br />

relativ hoher Ordnung explizit mitzunehmen hat, um die B<strong>in</strong>dungsenergie mit e<strong>in</strong>er<br />

Genauigkeit von e<strong>in</strong>igen Prozent zu bekommen, siehe GI. (2.116). Dies ist wegen der<br />

unnatürlichen Kle<strong>in</strong>heit dieser Größe im Vergleich zu jeder anderen hadronischen Skala<br />

zu erwarten. Die 3 Sl-Streuphasen können bis zur Laborenergie l1ab<br />

:::: 120 MeV mit<br />

den ersten drei Termen dieser Entwicklung nach Kontaktwechselwirkungen gut reproduziert<br />

werden.<br />

• Basierend auf unserer Niederimpulsentwicklung haben wir die Konstanten Ci auch direkt<br />

durch die Anpassung an die Streuphasen gefunden. Dies ist äquivalent zu der<br />

Vorgehensweise <strong>in</strong> e<strong>in</strong>er effektiven Feldtheorie. Wir konnten zeigen, daß die Werte dieser<br />

Konstanten nahe den exakten s<strong>in</strong>d, solange man ke<strong>in</strong>e Terme sechster Ordnung im<br />

Potential betrachtet. Die B<strong>in</strong>dungsenergie wird <strong>in</strong>nerhalb 2% reproduziert. Die Mitnahme<br />

von Termen sechster Ordnung führt zu ke<strong>in</strong>en stabilen Ergebnissen. Dies kann<br />

durch die Tatsache erklärt werden, daß der Beitrag solcher Terme zu den entsprechenden<br />

Streuphasen sehr kle<strong>in</strong> ist (bei niedrigen und mittleren Energien) und deswegen<br />

nicht richtig festgelegt werden kann.<br />

• Wir haben auch die Erwartungswerte des entwickelten Potentials <strong>in</strong> den B<strong>in</strong>dungsund<br />

Streuzuständen studiert. Für A = 300 MeV ist der Entwicklungsparameter von<br />

der Ordnung 1/2. Dies führt zu e<strong>in</strong>er schnellen Konvergenz für die Erwartungswerte<br />

des entwickelten Potentials <strong>in</strong> den B<strong>in</strong>dungs- und niederenergetischen Streuzuständen,<br />

wie aus der Tabelle 2.3 zu entnehmen ist. Wie erwartet, wird die Konvergenz für<br />

Streuzustände bei höheren Energien langsamer.<br />

• Wir haben die Parameter <strong>in</strong> der effektiven Reichweitenentwicklung ausgehend von dem<br />

entwickelten Potential (2.116) berechnet und die Vorhersagekraft unserer effektiven<br />

<strong>The</strong>orie demonstriert. Speziell führt die Bestimmung der freien Parameter im Potential<br />

durch die Forderung, daß die ersten n Koeffizienten <strong>in</strong> der effektiven Reichweitenentwicklung<br />

korrekt wiedergegeben werden, zu e<strong>in</strong>er Vorhersage für den nächsten Koeffizienten.<br />

Dies ist anders <strong>in</strong> e<strong>in</strong>er effektiven <strong>The</strong>orie ohne Pionen, die im Abschnitt 2.2


etrachtet wurde. In diesem Fall s<strong>in</strong>d solche Vohersagen nicht möglich.<br />

• Im Modellraum niedriger Impulskomponenten kann man auch die Nichtlokalitäten im<br />

Ortsraum studieren. Wir haben gezeigt, daß für typische Werte des Abschneideparameters<br />

das effektive Potential V(x, x') hochgradig nichtlokal ist und daß es vom<br />

ursprünglichen lokalen Potential sehr abweicht. Nur für sehr große Werte des Abschneideparameters<br />

bekommt man das ursprüngliche lokale Potential wieder.<br />

Während diese Doktorarbeit aufgeschrieben wurde, wurde e<strong>in</strong>e ähnliche Arbeit von Bogner<br />

und Mitarbeitern [214] durchgeführt. Dies spricht für e<strong>in</strong>e große Aktivität <strong>in</strong> diesem Feld.<br />

In dieser Arbeit hat man effektive Potentiale im Niederimpulsbereich unter Anwendung<br />

der Methode gefalteter Diagramme ("folded-diagrams") abgeleitet, die von Kuo, Lee and<br />

Ratcliff [215] entwickelt wurde. Als Ausgangspunkt wurden das Bonn-A und das Paris<br />

Potential gewählt. Diese Methode führt zu nicht hermiteschen effektiven Potentialen und<br />

zur Erhaltung der "half-shell" NN T-Matrix.<br />

2. Zweitens haben wir den realistischen Fall der Kernwechselwirkung betrachtet und e<strong>in</strong>e neue<br />

Methode, nämlich den Projektionsformalismus, zur Herleitung der Kräfte zwischen mehreren<br />

(zwei, drei, ... ) Nukleonen aus effektiven chiralen Lagrangdichten vorgestellt. Dazu<br />

mussten wir zuerst die Regeln für das Abzählen der Impulspotenzen ("power count<strong>in</strong>g") modifizieren,<br />

die ursprünglich von We<strong>in</strong>berg vorgeschlagen wurden. Diese Modifizierung war<br />

notwendig, da im Projektionsformalismus der gesamte Fockraum <strong>in</strong> die Unterräume mit bestimmter<br />

Anzahl von Nukleonen und Pionen aufgespalten wird. Während <strong>in</strong> zeitgeordneter<br />

Störungstheorie die resultierenden Wellenfunktionen nur bis zu e<strong>in</strong>er bestimmten Ordnung<br />

<strong>in</strong> der chiralen Entwicklung orthonormal s<strong>in</strong>d, taucht dieses Problem im Projektionsformalismus<br />

gar nicht auf. Ferner hängt das Zwe<strong>in</strong>ukleonenpotential <strong>in</strong> den vorausgehenden<br />

Rechnungen im Rahmen der zeitgeordneten Störungstheorie explizit von der Gesamtenergie<br />

zweier Nukleonen ab. Diese explizite Energieabhängigkeit des Potentials führt zu Schwierigkeiten<br />

bei Anwendungen auf Systeme mit drei und mehr Nukleonen (obwohl sich diese<br />

Energieabhängigkeit mit bestimmten N-Teilchen Wechselwirkungen zur führender Ordnung<br />

wegkürzt). Wir fassen jetzt die Hauptergebnisse des dritten Kapitels zusammen:<br />

• Wir s<strong>in</strong>d von dem allgeme<strong>in</strong>sten chiral <strong>in</strong>varianten Hamiltonoperator für nichtrelativistische<br />

Nukleonen und Pionen ausgegangen und zerlegten den vollen Fockraum <strong>in</strong> zwei<br />

Unterräume r] and A. Der erste Unterraum enthält nur re<strong>in</strong> nukleonische Zustände,<br />

während im zweiten alle übrigen Zustände enthalten s<strong>in</strong>d. Um e<strong>in</strong>en effektiven Hamiltonoperator<br />

herzuleiten, der nur im r]-Raum wirkt, haben wir e<strong>in</strong>e unitäre Transformation<br />

durchgeführt, die durch e<strong>in</strong>en Operator AAr] parametrisiert ist, siehe (3.190).<br />

Nach e<strong>in</strong>er Projektion A i auf die Zustände mit i Pionen wird aus der Entkopplungsgleichung<br />

(3.192) e<strong>in</strong> unendliches System (3.205) von gekoppelten Gleichungen. Wir haben<br />

bewiesen, daß dieses Gleichungssystem störungstheoretisch nach Potenzen der Skala<br />

Q kle<strong>in</strong>er Impulse gelöst werden kann. Dazu haben wir entsprechende Abzählregeln<br />

für Impulspotenzen entwickelt und damit die Ordnungen aller Terme <strong>in</strong> der Gleichung<br />

(3.192) analysiert. Wir konnten e<strong>in</strong>e rekursive Vorschrift zur Lösung dieses Gleichungssystems<br />

formulieren, so daß die Operatoren A i Ar] für jede endliche Zahl i der Pionen<br />

und zu jeder benötigten Ordnung <strong>in</strong> der Q-Entwicklung berechnet werden können.<br />

Der effektive, nur im r]-Unterraum wirkende Hamiltonoperator Heff kann dann aus der<br />

Gleichung (3.197) mit Hilfe dieser Regeln (3.223)-(3.229) hergeleitet werden.<br />

• Unter Anwendung des Projektionsformalismus haben wir die expliziten Ausdrücke für<br />

das Zwe<strong>in</strong>ukleonenpotential zur nächstführenden Ordnung angegeben (die führende<br />

111


IV<br />

Ordnung des Potentials besteht aus dem E<strong>in</strong>pionaustausch und zwei Kontaktwechselwirkungen).<br />

Insbesondere haben wir auch die Selbstenergie- und Vertexkorrekturen zu<br />

solchen Kontaktwechselwirkungen berechnet, die früher nicht betrachtet wurden.<br />

• Wir diskutierten ausführlich Ähnlichkeiten und Unterschiede zwischen unserem und<br />

dem aus der zeitgeordneten Störungstheorie hergeleiteten Potential. Speziell stellte<br />

sich heraus, daß <strong>in</strong> unserem Formalismus der isoskalare sp<strong>in</strong>unabhängige zentrale und<br />

der isovektorielle sp<strong>in</strong>abhängige Anteil, die zu dem Zweipionaustausch gehören, sich<br />

wegheben. Darauf wurde zuerst <strong>in</strong> der Referenz [108] h<strong>in</strong>gewiesen, wobei <strong>in</strong> dieser Arbeit<br />

e<strong>in</strong> anderer Formalismus benutzt wurde. Der Wegfall der oben angegebenen Beiträge<br />

tritt unter Benutzung der zeitgeordneten Störungstheorie nicht auf. Jedoch die<br />

wichtigsten Eigenschaften des Potentials im Projektionsformalismus s<strong>in</strong>d se<strong>in</strong>e Energieunabhängigkeit<br />

und die Orthonormalität der entsprechenden Wellenfunktionen.<br />

• Wir haben die Renormierung des Zwe<strong>in</strong>ukleonenpotentials zu der nächstführenden Ordnung<br />

(NLO) durchgeführt. Insbesondere haben wir gezeigt, daß alle auftretenden ultravioleten<br />

Divergenzen durch e<strong>in</strong>e entsprechende Umdef<strong>in</strong>ition der axialen Kopplungskonstanten<br />

gA sowie der verschiedenen Kontaktwechselwirkungen beseitigt werden können.<br />

Die renormierten Ausdrücke für das NLO Potential stimmen mit den von der Münchner<br />

Gruppe übere<strong>in</strong>, wobei die letzteren mit Hilfe von Feynmann Diagrammen abgeleitet<br />

wurden.<br />

• Im Abschnitt 3.8.1 haben wir auch die Struktur des Potentials <strong>in</strong> der nächst-nächstführenden<br />

Ordnung (NNLO) im Rahmen unseres Formalismus diskutiert. Dabei hat<br />

sich herausgestellt, daß die Ergebnisse <strong>in</strong> beiden Methoden (im Projektionsformalismus<br />

und <strong>in</strong> der zeitgeordneten Störungstheorie ) gleich s<strong>in</strong>d. Das NNLO Potential wurde mit<br />

e<strong>in</strong>er anderer Methode von der Münchner Gruppe berechnet (die aber zu den gleichen<br />

Ergebnissen führt) [108].<br />

• Im Abschnitt 3.8.3 haben wir den Projektionsformalismus verallgeme<strong>in</strong>ert, um die Effekte<br />

der virtuellen Anregung der ß-Resonanz im Rahmen der "small scale expansion"<br />

berücksichtigen zu können. Wir diskutierten die führenden Beiträge der <strong>in</strong>termediären<br />

ß-Anregungen zum Potential. Auch <strong>in</strong> diesem Fall liefern die beiden Methoden zur<br />

Herleitung des Potentials die gleichen Ergebnisse.<br />

• Desweiteren haben wir die führenden Beiträge zu der Dre<strong>in</strong>ukleonenkraft betrachtet.<br />

Wie <strong>in</strong> der zeitgeordneten Störungstheorie kürzen sich die verschiedenen Beiträge<br />

führender Ordnung gegenseitig weg, so daß die führende Dre<strong>in</strong>ukleonenkraft verschw<strong>in</strong>det.<br />

Der Mechanismus dieses sich Weghebens ist aber <strong>in</strong> unserem Formalismus anders.<br />

Er hängt nicht mit dem Wegheben von Termen zusammen, die durch die Iteration<br />

des energieabhängigen Zwe<strong>in</strong>ukleonenpotentials erzeugt werden, wie es <strong>in</strong> der zeitgeordneten<br />

Störungstheorie der Fall ist. Stattdessen kann dieses Wegheben <strong>in</strong> unserem<br />

Formalismus auf das Auftreten von den "reduziblen" Diagrammen zurückgeführt werden,<br />

deren gen aue Bedeutung im Abschnitt 3.8.1 erklärt ist. Diese Diagramme dienen<br />

zur Sicherstellung der Orthonormalität der Wellenfunktionen und werden deswegen<br />

manchmal als Wellenfunktionsrenormierungsgraphen bezeichnet.<br />

• Wir haben auch die allgeme<strong>in</strong>ste Lagrangdichte d�/.;S.3) für Kontaktwechselwirkungen<br />

mit vier nukleonischen Be<strong>in</strong>chen bis zur Ordnung ßi = 3 konstruiert, die reparametrisierungs<strong>in</strong>variant<br />

ist (Reparametrisierungs<strong>in</strong>varianz ist e<strong>in</strong>e Folge der Lorentz<strong>in</strong>varianz<br />

der ursprünglichen <strong>The</strong>orie, siehe [182]). Die <strong>in</strong> den vorangehenden Rechnungen<br />

[74], [76], [78], [127] verwandte Lagrandichte enthält vierzehn freie Parameter


CL.,14<br />

und führt auf Zweiteilchenkräfte, die vom Gesamtimpuls P zweier Nukleonen<br />

abhängen. Während solche P-abhängigen Kräfte die Rechnungen im Zweiteilchensystem<br />

im Schwerpunktsystem nicht bee<strong>in</strong>flussen, würden sie für Prozesse mit<br />

zusätzlichen Teilchen sowie für drei und mehr Nukleonen sehr wichtig werden. Wir<br />

haben gezeigt, daß die Forderung nach der Reparametrisierungs<strong>in</strong>varianz für solche<br />

Kontaktwechselwirkungen zu gewissen Bed<strong>in</strong>gungen an die Parameter Ci führt. So<br />

s<strong>in</strong>d nur 7 dieser 14 Parameter wirklich unabhängig. Als Folge davon hängen die NLO<br />

und NNLO Potentiale nicht von dem Gesamtimpuls ß ab.<br />

3. Drittens haben wir im Kapitel 4 die Kernkräfte und verschiedene Eigenschaften des Zwe<strong>in</strong>ukleonensystems<br />

basierend auf der chiralen effektiven Feldtheorie und dem Projektionsformalismus<br />

berechnet. Die Ergebnisse dieser Untersuchung können wie folgt zusammengefaßt<br />

werden:<br />

• Wir haben das Zwe<strong>in</strong>ukleonenpotential <strong>in</strong> NNLO, hergeleitet mit dem Projektionsformalismus,<br />

betrachtet. Dieses besteht aus E<strong>in</strong>- und Zweipionenaustäuschen, die auch<br />

die Wechselwirkungen aus dem Hamiltonoperator der Dimension zwei (ßi = 2) enthalten.<br />

Die entsprechenden Niederenergiekonstanten (LEes) wurden aus e<strong>in</strong>er U ntersuchung<br />

der Pion-Nukleon Streuung genommen. Zusätzlich tragen auch zwei und sieben<br />

Kontaktwechselwirkungen jeweils ohne und mit zwei Ableitungen zum Potential bei.<br />

Die entsprechenden Kopplungskonstanten s<strong>in</strong>d durch die Anpassung an die Daten zu<br />

bestimmen.<br />

• Für große Impulse wird das Potential unphysikalisch und muß regularisiert werden.<br />

Wir haben diese Regularisierung auf dem Niveau der Lippmann-Schw<strong>in</strong>ger Gleichung<br />

mit Hilfe e<strong>in</strong>er scharfen oder exponentiellen Abschneidefunktion durchgeführt, siehe<br />

Abschnitt 4.1. In NLO hängt die Physik nicht von der Wahl des Abschneideparameters<br />

im Bereich zwischen 400 und 650 MeV ab. In NNLO wird dieser Bereich größer,<br />

nämlich er liegt dann zwischen 650 und 1000 MeV. Dies kann durch den chiralen Zweipionaustausch<br />

erklärt werden, der <strong>in</strong> NNLO mr-Korrelationen enthält und e<strong>in</strong>e neue<br />

Massenskala größer als die doppelte Pionenmasse mit sich br<strong>in</strong>gt.<br />

• Wir haben gezeigt, daß die NLO Kopplungskonstanten der Kontaktwechselwirkungen<br />

so komb<strong>in</strong>iert werden können, daß <strong>in</strong> jeder Partialwelle jeweils nur e<strong>in</strong>e Komb<strong>in</strong>ation<br />

von Parametern auftaucht, siehe (4.16)-(4.23).1 Genauer gesagt können die neun<br />

Kopplungskonstanten mit vier nukleonischen Be<strong>in</strong>chen durch die Anpassung an die zwei<br />

S-Wellen, vier P-Wellen sowie an den Mischungsw<strong>in</strong>kel EI für Laborenergien kle<strong>in</strong>er als<br />

100 MeV e<strong>in</strong>deutig bestimmt werden. Dies vere<strong>in</strong>facht die Anpassung der Parameter<br />

beträchtlich im Vergleich zu dem Vorgehen <strong>in</strong> Referenz [78], <strong>in</strong> welcher e<strong>in</strong>e globale<br />

Anpassung an alle niedrigen Partialwellen durchgeführt wurde. Wie aus dem "power<br />

count<strong>in</strong>g" zu erwarten ist, verbessern sich die Ergebnisse bei den Übergängen von LO<br />

zu NLO und zu NNLO, siehe Fig. 4.1.<br />

• In NNLO werden die S-Wellen mit e<strong>in</strong>er sehr hohen Genauigkeit (für Laborenergieen<br />


VI<br />

sagen für die Schwerpunktsimpulse 150 MeV und höher s<strong>in</strong>d weitaus besser als die<br />

entsprechenden NLO und NNLO Ergebnisse aus der KSW Methode.<br />

• Alle übrigen Partialwellen s<strong>in</strong>d frei von Parametern. Die D-Wellen, <strong>in</strong>sbesondere die<br />

3 D1 und 3 D3, werden sehr gut beschrieben. Wir haben auch die Abhängigkeit unserer<br />

Ergebnisse <strong>in</strong> diesen Kanälen von dem Wert des Abschneideparameters diskutiert. Das<br />

Potential <strong>in</strong> NNLO ist zu stark <strong>in</strong> den Sp<strong>in</strong>-1 F -Wellen. Für die höheren Partialwellen<br />

haben wir die Ergebnisse der Münchner Gruppe [108] reproduzieren können. Diese<br />

besagen, daß der E<strong>in</strong>pionaustausch <strong>in</strong> den meisten Fällen gut funktioniert und der<br />

chirale NNLO Zweipionaustausch für e<strong>in</strong>e deutliche Verbesserung der Ergebnisse <strong>in</strong><br />

e<strong>in</strong>igen Partialwellen, wie zum Beispiel <strong>in</strong> den 3G5-, 3 H5- oder 3 h-Kanälen, sorgt.<br />

• Die Eigenschaften des Deuterons werden <strong>in</strong> NLO und NNLO meist gut beschrieben,<br />

siehe Tabelle 4.7. In NNLO zeigt die Wellenfunktion des Deuterons e<strong>in</strong>e <strong>in</strong>teressante<br />

Struktur, die durch die Anwesenheit zweier tiefgebundener Zustände <strong>in</strong> diesem Kanal<br />

zustande kommt. Dies ist e<strong>in</strong>e Folge der NNLO Nährung. Diese unphysikalischen<br />

Zustände haben ke<strong>in</strong>e Auswirkung auf niederenergetische Eigenschaften der effektiven<br />

<strong>The</strong>orie und können vollständig herausprojiziert werden. Unsere Wellenfunktion kann<br />

zur Untersuchung der Pion-Photoproduktion, der Pion-Deuteron Streuung sowie der<br />

Compton-Streuung am Deuteron benutzt werden (die komb<strong>in</strong>ierte Methode von We<strong>in</strong>berg<br />

[114] bleibt jedoch immer noch hilfreich).<br />

• Wir haben <strong>in</strong> unserer <strong>The</strong>orie auch den b..-Freiheitsgrad explizit e<strong>in</strong>gebaut. Mit der<br />

Ausnahme von Kanälen, die auf pionische skalare-isoskalare Korrelationen empf<strong>in</strong>dlich<br />

s<strong>in</strong>d, wie z.B. 3 D3, führt die NNLO-b.. Vorgehensweise zu Ergebnissen, die den NNLO<br />

Ergebnissen ohne explizite b..-Teilchen ähnlich s<strong>in</strong>d. Daraus schließen wir, daß durch die<br />

Berücksichtigung der Effekte der b..-Anregungen mittels Saturierung der LECs <strong>in</strong> Dimension<br />

zwei sich die wesentlichen mit dieser Resonanz zusammenhängen Phänomene<br />

gut beschreiben lassen. Dennoch ist e<strong>in</strong>e systematischere Studie der Pion-Nukleon<br />

Streuung im Rahmen e<strong>in</strong>er effektiven Feldtheorie mit expliziten b..'s notwendig, um die<br />

quantitativen Effekte weiter spezifizieren zu können.<br />

4. Schließlich haben wir im Kapitel 5 die elektromagnetischen und starken isosp<strong>in</strong>brechenden<br />

Effekte <strong>in</strong> der Nukleon-Nukleon Streuung bei niedrigen Energien betrachtet. Dabei haben<br />

wir den KSW Formalismus benutzt, der <strong>in</strong> Ref. [91] entwickelt wurde. Wir fassen jetzt die<br />

Ergebnisse dieser Untersuchung zusammen.<br />

• Zuerst haben wir die isosp<strong>in</strong>brechenden Teile der effektiven Lagrangedichte betrachtet.<br />

Die mit dem pionischen und pionisch-nukleonischen System zusammenhängenden<br />

Terme wurden <strong>in</strong> den Referenzen [199], [222]-[224] diskutiert. Die isosp<strong>in</strong>brechende<br />

Lagrangedichte im Zwe<strong>in</strong>ukleonensektor wurde von van Kolck <strong>in</strong> Ref. [75] ausgearbeitet.<br />

Wir haben die entsprechenden Terme unter Benutzung e<strong>in</strong>es anderen Formalismus,<br />

nämlich der Methode der äußeren Felder, aufgeschrieben.<br />

• Nach e<strong>in</strong>er kurzen E<strong>in</strong>führung <strong>in</strong> den KSW Formalismus haben wir die führenden isosp<strong>in</strong>brechenden<br />

Effekte <strong>in</strong> der 1 So Welle diskutiert. Die führende Brechung der Ladungs<br />

<strong>in</strong>varianz entsteht aus e<strong>in</strong>er Komb<strong>in</strong>ation der neutralen und geladenen Pionenmassenunterschiede<br />

im E<strong>in</strong>pionaustausch und e<strong>in</strong>er elektromagnetischen N N Kontaktwechselwirkung.<br />

Obwohl die zu dieser Kontaktwechselwirkung gehörende Kopplungskonstante<br />

wie Q-2 skaliert, wird sie durch die explizite Anwesenheit der Fe<strong>in</strong>strukturkonstante<br />

a rv 1/137 numerisch zusätzlich unterdrückt. Wir haben gezeigt, wie man


das KSW Abzählschema ("power count<strong>in</strong>g") <strong>in</strong> Anwesenheit der isosp<strong>in</strong>brechenden<br />

Operatoren modifizieren muß .<br />

• Wir haben die 1 So Streuphase für das np, das nn und für das Coulomb-bere<strong>in</strong>igte pp<br />

System zu nächst führender Ordnung explizit berechnet. Zusätzlich wurde das allgeme<strong>in</strong>e<br />

Klassifizierungsschema verschiedener CIB und CSB Korrekturen angegeben. Dies<br />

erlaubt es, e<strong>in</strong>ige phänomenologisch gefundene Ergebnisse zu erklären.<br />

Nach unserem besten Wissen wurde die exakte Projektion e<strong>in</strong>es Nukleon-Nukleon Potentials im<br />

Impulsraum, die im Abschnitt 2.3 ausgearbeitet wurde, vorher noch nie durchgeführt. In dieser<br />

Arbeit haben wir diesen Formalismus zum Studium e<strong>in</strong>iger Probleme angewandt, die im Kontext<br />

e<strong>in</strong>er effektiven Feldtheorie für das NN-System auftauchen. Diese Methode kann jedoch auch<br />

nützliche E<strong>in</strong>sichten <strong>in</strong> Bezug auf viele anderen <strong>in</strong>teressanten Fragenstellungen der Kernphysik liefern.<br />

Insbesondere können relativistische Effekte <strong>in</strong> e<strong>in</strong>er konsistenten Weise studiert werden, da<br />

die Impulskomponenten der Ordnung der Nukleonenmasse und höher aus<strong>in</strong>tegriert s<strong>in</strong>d und deshalb<br />

e<strong>in</strong>e konvergente relativistische Entwicklung zu erwarten ist. Außerdem wäre es <strong>in</strong>teressant,<br />

die Methode auf Drei- und Mehrnukleonensysteme zu verallgeme<strong>in</strong>ern.<br />

Desweiteren läßt sich sagen, daß die Methode e<strong>in</strong>er unitären Transformation (Projektionsformalismus)<br />

noch nie vorher im Kontext der effektiven chiralen Feldtheorie angewandt wurde. Frühere<br />

Berechnungen der Zwe<strong>in</strong>ukleonenwechselwirkung [73], [74], [76], [78] aus chiralen effektiven Lagrangdichten<br />

basierten auf der zeit geordneten Störungstheorie und führten zu energieabhängigen<br />

Potentialen. Wie oben schon betont wurde, besteht der wichtigste Vorteil unseres Formalismus gegenüber<br />

der zeitgeordneten Störungstheorie <strong>in</strong> der Energieunabhängigkeit des Potentials und <strong>in</strong> der<br />

Orthonormalitätseigenschaft der entsprechenden Wellenfunktionen. Die Abzählungsvorschriften<br />

("power count<strong>in</strong>g rules"), die e<strong>in</strong>e Rechnung <strong>in</strong> beliebiger Ordnung <strong>in</strong> der Niederimpulsentwicklung<br />

ermöglichen, wurden im Abschnitt 3.6 und <strong>in</strong> den Anhängen A, B und C ausgearbeitet.<br />

Unsere Ergebnisse fur die Nukleon-Nukleon Wechselwirkung, abgeleitet aus dem allgeme<strong>in</strong>sten<br />

chiral<strong>in</strong>varianten Hamiltonoperator, zeigen, daß die von We<strong>in</strong>berg vorgeschlagene Methode nicht<br />

nur qualitativ sondern sogar viel besser als erwartet, nämlich quantitativ, funktioniert. Sie erweitert<br />

die erfolgreichen Anwendungen der effektiven Feldtheorie (chiraler Störungstheorie ) <strong>in</strong><br />

den Pion und Pion-Nukleon Sektoren auf Systeme mit zwei und mehr Nukleonen. Es liegt nun<br />

nahe, auch diejenige Prozesse erneut zu betrachten, die bisher im Rahmen e<strong>in</strong>es komb<strong>in</strong>ierten<br />

Formalismus von We<strong>in</strong>berg [114] berechnet wurden (1f - d-Streuung [114], [217], "(d ---+ 1f o d [115],<br />

"(d ---+ "(d [116]). Die entsprechenden Prozesse <strong>in</strong> Systemen mit mehr als zwei Nukleonen sollten<br />

auch betrachtet werden. Zusätzlich sollten auch ladungs- und isosp<strong>in</strong>brechende Effekte neu<br />

untersucht werden (<strong>in</strong> Bezug auf frühere Studien siehe [218], [99]).<br />

E<strong>in</strong> sehr wichtiger und aktueller Untersuchungsbereich be<strong>in</strong>haltet die Anwendung der chiralen<br />

Störungstheorie auf 3N-Wechselwirkungen. Während die ersten Ergebnisse im Rahmen der<br />

KSW Methode und e<strong>in</strong>er effektiven <strong>The</strong>orie ohne Pionen schon publiziert wurden, siehe [119],<br />

[120], [121], [122] , wurde bisher noch ke<strong>in</strong>e komplette Berechnung im Potentialformalismus unter<br />

Berücksichtigung der führenden Dreiteilchenkraft im Rahmen der CHPT durchgeführt. Es wäre<br />

sehr <strong>in</strong>teressant zu sehen, ob die Mitnahme von den Dreiteilchenkräften dieses Typs zur Lösung<br />

des Ay-Problems <strong>in</strong> der elastischen nd-Streuung führen kann. Für e<strong>in</strong>e weitere Diskussion dieses<br />

Problems siehe u.a. [196].<br />

Wir möchten auch darauf h<strong>in</strong>weisen, daß die Renormier<strong>in</strong>g des effektiven Hamiltonoperators nach<br />

Elim<strong>in</strong>ierung der pionischen Freiheitsgrade sorgfältiger untersucht werden muß, als es im Abschnitt<br />

3.8.2 gemacht wurde. Insbesondere sollte man auch die Null- und E<strong>in</strong>teilchenoperatoren<br />

Vll


Vlll<br />

betrachten, um e<strong>in</strong>e komplette Renormierung <strong>in</strong> NLO und NNLO durchführen zu können. Ferner<br />

sollte man das Problem der Renormierung <strong>in</strong> e<strong>in</strong>er beliebigen Ordnung <strong>in</strong> der Entwicklung<br />

nach Impulsen untersuchen. Nach unserem besten Wissen wurde dieses Problem im Rahmen des<br />

Hamiltonformalismus noch nicht im Detail ausgearbeitet (auch nicht im Kontext e<strong>in</strong>er effektiven<br />

Feldtheorie) .<br />

Zu guter Letzt haben wir gezeigt, daß die Isosp<strong>in</strong>brechung <strong>in</strong> die Methode der effektiven Feldtheorie<br />

für das Zwe<strong>in</strong>ukleonensystem <strong>in</strong> der KSW Formulierung systematisch e<strong>in</strong>gebaut werden<br />

kann. Dafür muß man die allgeme<strong>in</strong>ste isosp<strong>in</strong>brechende Lagrangedichte konstruieren und das<br />

Abzählschema ("power count<strong>in</strong>g") entsprechend modifizieren. Wir haben gezeigt, daß diese Methode<br />

e<strong>in</strong>e systematische Klassifizierung verschiedener Beiträge zur Ladungsunabhängigkeits- und<br />

Ladungssymmetriebrechung (CIB und CSB) erlaubt. Speziell ermöglicht das Abzählschema zusammen<br />

mit der Dimensionsanalyse das Verständnis, warum die Beiträge e<strong>in</strong>er möglichen Ladungsabhängigkeit<br />

der Pion-Nukleon Kopplungskonstante unterdrückt s<strong>in</strong>d. Es wäre <strong>in</strong>teressant,<br />

diesen Formalismus zu anderen Partialwellen sowie zu höheren Energien zu erweitern, um z.B. Isosp<strong>in</strong>brechung<br />

<strong>in</strong> der Pion-Produktion zu untersuchen.


Contents<br />

1 Introduction<br />

2 Low-momentum effective theories for two nucleons 11<br />

2.1 What is effective? . . . . . . . . . . . . 11<br />

2.2 Two nucleons at very low energies . . . . 15<br />

2.3 Go<strong>in</strong>g to higher energies: a toy model . . 23<br />

2.3.1 Method of unitary transformation 24<br />

2.3.2 Regularization of the decoupl<strong>in</strong>g equation 29<br />

2.3.3 Numerical realization of the projection formalism . 32<br />

2.3.4 Unitary transformation for a potential of the Malfliet-Tjon type 33<br />

2.3.5 Implication for effective theories 37<br />

2.3.6 Coord<strong>in</strong>ate space representation . . . . . . . . . . . 46<br />

3 <strong>The</strong> derivation of nuclear forces from chiral Lagrangians 48<br />

3.1 <strong>Chiral</strong> symmetry . . . . . . . . . . . . 48<br />

3.2 <strong>Effective</strong> Lagrangians . . . . . . . . . . 55<br />

3.3 <strong>Chiral</strong> perturbation theory with pions 69<br />

3.4 Includ<strong>in</strong>g nucleons . . . . . . . . . . . 73<br />

3.5 Bloch-Horowitz scheme and the method of unitary transformation 78<br />

3.6 Application to chiral <strong>in</strong>variant Hamiltonians . . . . . . . . . 81<br />

3.7 Nuclear forces us<strong>in</strong>g the method of unitary transformation . 87<br />

3.8 Two-nucleon potential . . . . . . . . . . . . . . . . . . 91<br />

3.8.1 Expressions and discussion . . . . . . . . . . . . . . 91<br />

3.8.2 Renormalization of the N N potential at NLO . . . .<br />

3.8.3 Phenomenological <strong>in</strong>terpretation of some of the 7fN LECs and the role of<br />

100<br />

the ß(1232) . . . 105<br />

3.9 Three-nucleon potential . . . . . . . . . . . .<br />

113<br />

4 <strong>The</strong> two-nucleon system: numerical results<br />

4.1 Bound and scatter<strong>in</strong>g state equations .<br />

4.2 <strong>The</strong> fits . . . .<br />

4.3 Phase shifts . .<br />

4.3.1 S-waves<br />

4.3.2 P-waves<br />

4.3.3 D- and F-waves<br />

4.3.4 Peripheral waves<br />

4.4 Deuteron properties . .<br />

4.5 Results for the NNLO-ß approach<br />

IX<br />

1<br />

119<br />

119<br />

122<br />

128<br />

128<br />

133<br />

136<br />

140<br />

144<br />

149


x<br />

5 Isosp<strong>in</strong> violation <strong>in</strong> the two-nucleon system<br />

5.1 Isosp<strong>in</strong> violat<strong>in</strong>g effective Lagrangian . . . . . . . . . . . .<br />

5.2 Brief <strong>in</strong>troduction <strong>in</strong>to the KSW approach . . . . . ... .<br />

5.3 <strong>The</strong> lead<strong>in</strong>g CIB and CSB effects <strong>in</strong> the N N 1 So channel<br />

5.4 Numerical results . .<br />

5.5 Classification scheme<br />

6 Summary and outlook<br />

A Dimensional analysis of the projected decoupl<strong>in</strong>g equation (3.206)<br />

B Operators contribut<strong>in</strong>g to eq. (3.206) at order r<br />

C Small scale expansion with<strong>in</strong> the projection formalism<br />

D Divergent loop <strong>in</strong>tegrals<br />

E Anti-symmetrization of the contact <strong>in</strong>teractions<br />

F <strong>The</strong> complete set of N N contact <strong>in</strong>teractions with two derivatives<br />

G Partial wave decomposition of the N N potential<br />

H Formulae for the deuteron properties<br />

152<br />

153<br />

156<br />

159<br />

162<br />

163<br />

165<br />

172<br />

175<br />

177<br />

180<br />

181<br />

184<br />

192<br />

194


Chapter 1<br />

Introduction<br />

Nuclear physics as a science has a long history of almost 100 years. In 1911 Rutherford demonstrated<br />

that large-angle alpha-particle scatter<strong>in</strong>g can only be expla<strong>in</strong>ed <strong>in</strong> terms of a positively<br />

charged nucleus of a radius of about 10-12 cm, which is much smaller than the typical atomic<br />

radii of the size rv 10-8 cm. This important discovery allowed to make a crucial progress <strong>in</strong><br />

understand<strong>in</strong>g the atomic structure and stimulated the development of new theoretical concepts<br />

[1], [2]. A few years later Heisenberg [3] and Schröd<strong>in</strong>ger [4] formulated rigorously the pr<strong>in</strong>ciples<br />

of quantum mechanics.<br />

In spite of advances <strong>in</strong> the knowledge of atomic systems, the concept of the structure of the nucleus<br />

rema<strong>in</strong>ed unclear until 1932 when a neutral particle, the neutron, was discovered by Chadwick [5].<br />

After that it was proposed that nuclei are composed of neutrons and protons which have nearly<br />

the same mass. Already at that time Heisenberg suggested that the neutron and proton can be<br />

looked upon as correspond<strong>in</strong>g to two states of the same particle [6]. Four years later Cassen and<br />

Condon <strong>in</strong>troduced the concept of isotopic sp<strong>in</strong> to describe these two states [7].<br />

<strong>The</strong> basic problem <strong>in</strong> nuclear physics is determ<strong>in</strong><strong>in</strong>g the nature of the <strong>in</strong>teractions between neutrons<br />

and protons. Only if these forces are known we can understand various properties of nucleL<br />

<strong>The</strong> first and very successful concept of nuclear forces was proposed by Yukawa [8], who assumed<br />

that nucleons <strong>in</strong>teract due to the exchange of massive scalar particles (mesons).<br />

Although the meson-exchange theory of nuclear forces has undergone many developments and<br />

modifications with<strong>in</strong> the last 60 years, Yukawa's fundamental idea about a meson exchange orig<strong>in</strong><br />

of nuclear forces is still valid today. In order to keep the manuscript consistent, we would like to<br />

briefly summarize basic historical developments of the meson exchange models of nuclear forces.<br />

More detailed historical reviews can be found <strong>in</strong> [10], [11].<br />

First modifications of Yukawa's theory were due to Proca [12] and Kemmer [13]. <strong>The</strong>y extended<br />

Yukawa's model to pseudoscalar and pseudovector particles. A few years later models <strong>in</strong>clud<strong>in</strong>g<br />

comb<strong>in</strong>ations of pseudoscalar and pseudovector fields were considered by M�ller and Rosenfeld<br />

[14] and by Schw<strong>in</strong>ger [15]. In 1946 Pauli [16] predicted the existence of an isovector pseudoscalar<br />

meson s<strong>in</strong>ce the exchange of particles with these quantum numbers could correctly expla<strong>in</strong> the<br />

sign of the quadrupole moment um of the deuteron which was measured <strong>in</strong> 1939 [17] . Few years<br />

later 1l"-mesons were observed experimentally [9] and identified with the particles predicted by<br />

Pauli.<br />

In 1951 Taketani, Nakamura and Sasaki [18] <strong>in</strong>troduced a new concept. <strong>The</strong> whole range of<br />

nucleon-nucleon <strong>in</strong>teractions is divided <strong>in</strong>to three regions: a long range part (r 2: 2 fm), an<br />

<strong>in</strong>termediate region (1 fm � r � 2 fm) and a short range or core part with r � 1 fm. S<strong>in</strong>ce the<br />

1


2 1. Introduction<br />

nuclear force of Yukawa type due to exchange of particles with the mass m is proportional to<br />

exp (-mr)/(mr), where r denotes the distance between two nucleons, exchanges of the heavier<br />

particles are, <strong>in</strong> general, of shorter range. While the long range part of the nuclear force is<br />

dom<strong>in</strong>ated by one-pion exchange, two-pion exchange as well as exchanges of heavier mesons<br />

become important <strong>in</strong> the <strong>in</strong>termediate region. In the core region nucleons are overlapp<strong>in</strong>g with<br />

each other. So, the "classical" meson-exchange picture of the nuclear force is not adequate any<br />

more. Taketani and the co-workers proposed a phenomenological treatment of the short-range<br />

nuclear force.<br />

After, <strong>in</strong> the 1950s, the long-range part of the nuclear <strong>in</strong>teractions due to the one-pion exchange<br />

became well established, more attention has been paid to the two-pion exchange contributions.<br />

Various approaches have been proposed to attack this problem [19], [20]. Soon it became clear<br />

that the two-pion exchange itself can not account for a sufficiently strong sp<strong>in</strong>-orbit force, whose<br />

evidence was transparent from the data.<br />

<strong>The</strong> situation has changed after the experimental discovery of heavy mesons <strong>in</strong> 1969s, which has<br />

motivated developments of the one-boson exchange models (OBE) of the nuclear force. One assumed<br />

<strong>in</strong> such models that the two- and more-pion exchanges can be parametrized <strong>in</strong> terms of<br />

multi-pion resonances. With only few parameters one could achieve a quite remarkable quantitative<br />

agreement with the exist<strong>in</strong>g nucleon-nucleon scatter<strong>in</strong>g data [21], [22], [23].<br />

Apart from the one-boson exchange models other concepts like dispersion relations and field theoretical<br />

approaches were suggested to describe the nucleon-nucleon <strong>in</strong>teraction. In particular,<br />

dispersion theory was applied to calculate the two-pion exchange contributions to the N N amplitude<br />

start<strong>in</strong>g from 7r N and 7r7r scatter<strong>in</strong>g data. <strong>The</strong> most detailed work <strong>in</strong> this direction was<br />

performed by the Stony Brook [24], [25] and the Paris [26], [27] groups. <strong>The</strong> short range part<br />

of the nuclear force <strong>in</strong> these models was parametrized by OBE and by some phenomenological<br />

terms. <strong>The</strong> nucleon-nucleon <strong>in</strong>teraction developed by the Paris group became known as the Paris<br />

potential. <strong>The</strong> field theoretical approach to the 27r-exchange contributions us<strong>in</strong>g the technique of<br />

Feynman diagrams was considered by Lomon and collaborators [28].<br />

One of the most detailed and successful works with<strong>in</strong> the meson-exchange models was performed<br />

by the Bonn group. Start<strong>in</strong>g from the OBE model [23] based on relativistic time-ordered perturbation<br />

theory, Erkelenz, Hol<strong>in</strong>de, Machleidt and Elster calculated two- and some of the threeand<br />

four-pion exchange diagrams and extended the model to take <strong>in</strong>to account effects of virtual<br />

isobar excitations. <strong>The</strong> so constructed Bonn-potential, which <strong>in</strong>cludes apart from these terms<br />

exchanges of heavy mesons, allows for an accurate description of the nucleon-nucleon scatter<strong>in</strong>g<br />

data. Recently, few attempts have been undertaken by the J ülich group to <strong>in</strong>corporate also<br />

correlated meson exchanges (like 7r7r, 7rp) [30], [31], [32].<br />

A series of modern high-quality potentials based on the pure one-boson exchange model was<br />

constructed by the Nijmegen group [33], who also performed a partial-wave analysis (PWA) l of<br />

all pp and np scatter<strong>in</strong>g data [36].2 With 15 free parameters they were able to achieve with the<br />

Nijmegen 93 potential a X2 / Ndata of about two. Fitt<strong>in</strong>g some of the free parameters <strong>in</strong> each partial<br />

wave separately <strong>in</strong> the case of the Nijmegen I,II potentials allows to describe the data perfectly<br />

with X2 / Ndata rv l.<br />

Another quite successful modern high-quality N N force is the so-called CD-Bonn potential,<br />

[36].<br />

1 Another partial-wave analysis has been performed by Arndt and collaborators [34], [35].<br />

2 <strong>The</strong> Nijmegen database consists of 1787 pp and 2514 np scatter<strong>in</strong>g date <strong>in</strong> the energy range from 0 to 350 MeV


which is also based on the one-boson exchange model [29]. This potential also takes <strong>in</strong>to account<br />

charge dependence of the nuclear force.<br />

Also, a more phenomenological approach of the Argonne group to keep <strong>in</strong> the potential explicitly<br />

only the one-pion exchange and to represent all rema<strong>in</strong><strong>in</strong>g contributions <strong>in</strong> a general operator form<br />

led after fitt<strong>in</strong>g of 40 adjustable parameters to a quite accurate description of the two-nucleon<br />

scatter<strong>in</strong>g data with an excellent X 2 per datum of 1.09 [37].<br />

All these boson-exchange models appear to be very successful <strong>in</strong> describ<strong>in</strong>g the two-nucleon<br />

scatter<strong>in</strong>g data as weIl as the deuteron properties. In spite of this success <strong>in</strong> the pure twonucleon<br />

sector there exist so me situations <strong>in</strong> which the OBE models do not allow far satisfactory<br />

explanations and description of data. S<strong>in</strong>ce usually the two-nucleon scatter<strong>in</strong>g data are used to fix<br />

the free parameters <strong>in</strong> the potentials, only on-energy-shell physics is reproduced correctly. Offenergy-shell<br />

effects can only be tested <strong>in</strong> reactions with more than two nucleons and <strong>in</strong> processes<br />

with external probes.3 Consequently, due to this off-shell ambiguity, the value of, for <strong>in</strong>stance,<br />

the triton b<strong>in</strong>d<strong>in</strong>g energy varies remarkably when calculations are performed with the different<br />

two-nucleon forces. None of the exist<strong>in</strong>g so-called realistic potentials lead to a correct value of<br />

the triton b<strong>in</strong>d<strong>in</strong>g energy. Typically, one observes underb<strong>in</strong>d<strong>in</strong>g of about 5-10%, which can be<br />

expla<strong>in</strong>ed <strong>in</strong> terms of a miss<strong>in</strong>g three-nucleon force (3NF). Indeed, the <strong>in</strong>clusion of a three-body<br />

force allows to describe the triton b<strong>in</strong>d<strong>in</strong>g energy correctly. One should po<strong>in</strong>t out that up to<br />

now much less is known about the nature of the three-body forces compared to the two-body<br />

<strong>in</strong>teractions. This has partly historical reasons: only relatively recently it became possible to<br />

solve the three-body Faddeev equations exactly for any type of realistic two-body force, after all<br />

necessary technical and computational tools were worked out and sufficient computer powers were<br />

available [38], [39], [41]. In addition to these technical and computational difficulties, the effects<br />

of the three-body force <strong>in</strong> most cases are small and require precise experimental measurements of<br />

the observables.<br />

At presence several models for the three-body force are available. Some of them like the Fujita­<br />

Miyazawa [42] or the Tucson-Melbourne [43] forces are based on the two-pion exchange with one<br />

<strong>in</strong>termediate ß excitation. Such a two-pion exchange <strong>in</strong>teraction represents the longest range<br />

part of the 3NF. Another model proposed by the Brazil group <strong>in</strong>cludes <strong>in</strong> addition 7f-P and p-p<br />

exchanges [44]. <strong>The</strong> Urbana-Argonne group has worked out a purely phenomenological 3NF [45].<br />

F<strong>in</strong>ally, the Tucson-Melbourne force has been extended to take <strong>in</strong>to account also the 7f-P and<br />

p-p exchanges (the so-called Tucson-Melbourne model) [46], [47]. For various comb<strong>in</strong>ations of<br />

the two- and three-nucleon <strong>in</strong>teractions one can always adjust parameters (typically the values of<br />

the cut-off <strong>in</strong> the 3NF) to exactly reproduce the triton b<strong>in</strong>d<strong>in</strong>g energy [40]. For some observables<br />

the <strong>in</strong>clusion of the 3NF does, however, not lead to an improved description compared to the<br />

calculations with the purely two-body <strong>in</strong>teractions [41]. <strong>The</strong> most prom<strong>in</strong>ent example of such an<br />

observable is an analyz<strong>in</strong>g power Ay <strong>in</strong> elastic nd scatter<strong>in</strong>g at low energies. <strong>The</strong> purely twonucleon<br />

calculations yield results which are about 25% off the experimental values. Inclusion of<br />

3 To avoid misunderstand<strong>in</strong>g we note that, <strong>in</strong> general, only on-energy-shell effects can be observed. One should<br />

understand the "off-energy-shell effects" <strong>in</strong> this context as follows. Assume, one has some def<strong>in</strong>ite two- and morebody<br />

forces. <strong>The</strong>n, one can always unitarily transform the full Hamiltonian and obta<strong>in</strong> new two- and more-body<br />

<strong>in</strong>teractions. <strong>The</strong> old and new two-body potentials are phase-equivalent and give the same two-body S-matrix.<br />

However, to calculate three- and more-body observables one needs the off-shell two-body T-matrix, which is, <strong>in</strong><br />

general, modified after perform<strong>in</strong>g the unitary transformation. This is precisely what we understand under such<br />

"off-energy-shell effects" . <strong>The</strong> differences <strong>in</strong> the off-shell T-matrices are compensated by the modified many-body<br />

<strong>in</strong>teraction and the f<strong>in</strong>al result for on-shell quantities is, clearly, the same before and after perform<strong>in</strong>g the unitary<br />

transformation.<br />

3


4 1. Introduction<br />

the Thcson-Melbourne 3NF does not lead to a significant improvement. This problem still rema<strong>in</strong>s<br />

unsolved [196].<br />

In spite of a very successful description of most of the experimental data the modern realistic<br />

N N potentials are quite phenomenological approaches. For <strong>in</strong>stance, one of the basic <strong>in</strong>gredients<br />

of these models is a fictitious (J' (550 MeV) boson, which is needed to produce the rather strong<br />

attraction <strong>in</strong> the central part of the potential. This attraction is evident from the N N scatter<strong>in</strong>g<br />

data, see also discussion <strong>in</strong> ref. [48]. Such a (J'-meson, however, has never been observed experimentally.<br />

For a recent discussion about the experimental evidence of the (J'-meson see ref. [49].<br />

Another common feature of the boson-exchange models is the ad hoc <strong>in</strong>troduction of the strong<br />

form-factors4 at each meson-nucleon vertex <strong>in</strong> order to correct the large momentum behavior of<br />

the potential and to allow for practical calculations. Such form-factors are usually <strong>in</strong>terpreted<br />

<strong>in</strong> terms of higher-order (<strong>in</strong> a coupl<strong>in</strong>g constant) meson-nucleon and meson-meson <strong>in</strong>teractions,<br />

dress<strong>in</strong>g each vertex. Because of the non-perturbative nature of such <strong>in</strong>teractions one is not able to<br />

directly calculate these form-factors and approximates them typically by some smooth functions<br />

of momenta. Only <strong>in</strong> the case of the so-called Ruhr-potential (RuhrPot) [50] the form-factors<br />

are generated dynamically by solv<strong>in</strong>g the correspond<strong>in</strong>g <strong>in</strong>tegral equations. Another <strong>in</strong>terest<strong>in</strong>g<br />

feature of this potential is its manifest energy <strong>in</strong>dependence result<strong>in</strong>g from the method of unitary<br />

transformation [51], [53] which has been used to def<strong>in</strong>e the nuclear force. On the contrary, the<br />

standard approach based on the time-ordered perturbation theory leads necessarily to an effective<br />

Hamiltonian which depends on the <strong>in</strong>itial energy of the nucleons (i.e. to an operator which<br />

depends explicitly on its own eigenvalue). Such an energy dependence of the nuclear forces causes<br />

many complications <strong>in</strong> practical calculations for more than two nucleons. Another problem of the<br />

various meson-exchange potentials is how to systematicaHy improve these models and whether<br />

the one-boson exchange approximation is well justified. Indeed, if one takes the meson-exchange<br />

picture of the nuclear force seriously, one would expect that two- and more-meson exchanges are<br />

also important (because of the strong meson-nucleon coupl<strong>in</strong>g). Usually one argues at this po<strong>in</strong>t<br />

that the force based on the two- and more-meson exchanges are, <strong>in</strong> general, of shorter range than<br />

the one-meson exchange force and thus are less relevant for the energy region of nuclear physics<br />

(with exception of pion-exchange <strong>in</strong>teractions). Although quite plausible, such arguments should<br />

be considered more qualitative than quantitative.<br />

<strong>The</strong> ma<strong>in</strong> conceptual problem of the OBE models, however, can be illustrated <strong>in</strong> terms of the<br />

follow<strong>in</strong>g "classical" picture [54]: ass urne that hadrons are hard spheres. <strong>The</strong> charge radius of the<br />

proton is .J(rI) rv 0.6 fm, while the typical size of light mesons is about 0.5 fm. <strong>The</strong>n mesons<br />

can not mediate the nuclear force at distances below rv 2 x 0.6 fm + 2 x 0.5 fm = 2.2 fm. Even if<br />

this picture is very much simplified and does not take <strong>in</strong>to account quantum mechanical effects,<br />

it becomes clear that the traditional meson-exchange picture should not be adequate to describe<br />

the nuclear matter phenomena at distances below 2 fm.<br />

One hopes that quantum chromodynamics (QCD), the fundamental theory of the strong <strong>in</strong>teraction,<br />

can help to avoid these problems of the OBE models and provide us with a deeper understand<strong>in</strong>g<br />

of the nature of the nuclear forces. QCD is a SU(3)color gauge theory of the strong<br />

<strong>in</strong>teraction, formulated <strong>in</strong> terms of quarks and gluons. <strong>The</strong> structure of nucleons as weH as <strong>in</strong>teractions<br />

between them are, <strong>in</strong> pr<strong>in</strong>ciple, completely determ<strong>in</strong>ed by QCD. Direct calculations of the<br />

nuclear force from QCD are not possible up to now. This is because at low energies the <strong>in</strong>teraction<br />

is too strong to apply the usual perturbative methods. However, many attempts were made<br />

to <strong>in</strong>corporate more <strong>in</strong>formation from QCD <strong>in</strong> models of the N N <strong>in</strong>teractions. In the so-called<br />

4 Such form-factors are anyway not well-def<strong>in</strong>ed <strong>in</strong> quantum field theory.


quark models one typically represents nucleonic degrees of freedom <strong>in</strong> terms of 3-quark states.<br />

This allows to fit simply the quantum numbers of the nucleons as well as to provide their color<br />

neutrality. <strong>The</strong> property of conf<strong>in</strong>ement which is an important phenomenon of QCD is usually<br />

simulated by some phenomenological conf<strong>in</strong><strong>in</strong>g potentials [55].<br />

Recently a comb<strong>in</strong>ed model of the nuclear force, the so-called Moscow potential, has been proposed<br />

[56]. This can be considered as furt her extension and improvement of earlier models of the<br />

comb<strong>in</strong>ed type, which have been developed by Faessler et al. [57], [58]. <strong>The</strong>re the <strong>in</strong>teractions<br />

at large separations are described <strong>in</strong> terms of meson-exchanges. At short distances one notes<br />

that the six-quark state no longer resembles two dist<strong>in</strong>ct nucleons (Le. two three-quark nucleon<br />

clusters), as it happens for large separations. Such considerations lead to a suppression of the local<br />

repulsive co re of the nuclear force, which is an obligatory attribute of boson-exchange models.5<br />

<strong>The</strong> effects of the repulsive core are simulated by additional deeply-ly<strong>in</strong>g bound states, which are<br />

generated by the Moscow-type potentials. As a consequence, additional <strong>in</strong>ternal nodes appear<br />

<strong>in</strong> the deuteron and scatter<strong>in</strong>g wave functions. Furthermore, such a suppression of the repulsive<br />

co re leads to a sm aller value for the wN N coupl<strong>in</strong>g constant compared to boson-exchange models,<br />

which is consistent with the one predicted from SU(3)-symmetry. <strong>The</strong> suppression of the repulsive<br />

core <strong>in</strong> quark model calculations was also po<strong>in</strong>ted out earlier by Harvey [59].<br />

A more systematic attempt to <strong>in</strong>clude <strong>in</strong>formation from QCD is based on effective field theories<br />

(EFT). Already 20 years aga We<strong>in</strong>berg [60] po<strong>in</strong>ted out that requir<strong>in</strong>g the (approximate) SU(2) x<br />

SU(2) chiral symmetry, which is evident from the QCD Lagrangian, leads to a model-<strong>in</strong>dependent<br />

and systematic low-energy expansion <strong>in</strong> momenta for the S-matrix. <strong>Chiral</strong> symmetry of the QCD<br />

Lagrangian is not a symmetry of the physical vacuum, which is only <strong>in</strong>variant under a smaller<br />

SU(2) subgroup. Thus, chiral symmetry is spontaneously broken, which can also be verified<br />

from the hadronic spectrum. As a consequence, accord<strong>in</strong>g to Goldstone's theorem [61], [62], one<br />

observes three light pseudoscalar bosons, which would be massless <strong>in</strong> the exact chiral limit and can<br />

be identified with pions. We<strong>in</strong>berg illustrated his idea with a systematic low-energy expansion<br />

of the amplitude on the example of 11'11' scatter<strong>in</strong>g. Such an expansion is possible, s<strong>in</strong>ce <strong>in</strong> the<br />

exact chiral limit only derivative <strong>in</strong>teractions between pions are allowed. Thus, for vanish<strong>in</strong>g<br />

momenta pions become free particles. <strong>The</strong> orig<strong>in</strong>al idea of We<strong>in</strong>berg has been worked out <strong>in</strong><br />

detail <strong>in</strong> calculations by Gasser and Leutwyler for 11'11' scatter<strong>in</strong>g and many other processes [63],<br />

[64]. For a review article see ref. [65] . Once the coupl<strong>in</strong>g constants of mesonic <strong>in</strong>teractions <strong>in</strong><br />

the most general chiral <strong>in</strong>variant Lagrangian are fixed from some processes, various predictions<br />

can be made for other reactions and observables, allow<strong>in</strong>g for non-trivial tests of the Standard<br />

Model. Even two-loop calculations have been performed recently [66]. Further, external fields can<br />

be <strong>in</strong>corporated quite naturally and systematically. This opens the possibility to study various<br />

processes <strong>in</strong>clud<strong>in</strong>g photons.<br />

It is well-known how to couple non-Goldstone degrees of freedom <strong>in</strong> a chiral <strong>in</strong>variant manner<br />

[67]. In 1988 the technique of the effective Lagrangian has been applied to calculate various pionnucleon<br />

amplitudes to one-loop [68]. In this approach, the relativistic treatment of nucleon fields<br />

<strong>in</strong> loops caused an <strong>in</strong>tr<strong>in</strong>sic problem with chiral power count<strong>in</strong>g. This is because an additional<br />

scale, namely the nucleon mass, which rema<strong>in</strong>s f<strong>in</strong>ite <strong>in</strong> the chiral limit is <strong>in</strong>troduced due to<br />

baryon propagators. <strong>The</strong> problem was successfully solved with<strong>in</strong> the heavy baryon formulation<br />

of chiral perturbation theory (CHPT) [69], [70]. <strong>The</strong> basic idea of this scheme is to <strong>in</strong>tegrate<br />

out the "heavy" component of the baryon field. This can be carried out explicitly <strong>in</strong> a Lorentz<br />

covariant way <strong>in</strong> terms of velocity-dependent fields. This allowed numerous applications for the<br />

5<strong>The</strong> local repulsive core results <strong>in</strong> the boson-exchange models from exchanges of vector wand p mesons.<br />

5


6 1. Introduction<br />

pion-nucleon system as well as for the processes with electroweak probes [71]. For arecent review<br />

see ref. [72].<br />

Motivated by successful applications of CHPT <strong>in</strong> the 7f7f and 7f N sectors We<strong>in</strong>berg proposed <strong>in</strong><br />

1990 to extend the formalism to the N N <strong>in</strong>teraction [73]. <strong>The</strong> crucial difference is, however,<br />

that the nucleon-nucleon <strong>in</strong>teraction is non-perturbative at low energies: it is strong enough to<br />

b<strong>in</strong>d two nucleons <strong>in</strong> the deuteron. Thus, direct application of CHPT to the N N amplitude will<br />

necessarily fail. <strong>The</strong> way out of this problem, proposed by We<strong>in</strong>berg, is to apply CHPT not to<br />

the amplitude but to a kernel of the correspond<strong>in</strong>g <strong>in</strong>tegral Lippmann-Schw<strong>in</strong>ger (LS) equation.<br />

Such a kernel (or potential) can be def<strong>in</strong>ed with<strong>in</strong> time-ordered perturbation theory as a sum over<br />

all irreducible diagrams with two <strong>in</strong>com<strong>in</strong>g and outgo<strong>in</strong>g nucleon l<strong>in</strong>es. Irreducible means here<br />

that no pure 2N <strong>in</strong>termediate states are allowed. Reducible diagrams are then generated due to<br />

iterations of the kernel <strong>in</strong> the LS equation. We<strong>in</strong>berg has shown that a systematic power count<strong>in</strong>g<br />

for the potential can be derived <strong>in</strong> a similar manner as <strong>in</strong> the case of the 7f7f and 7f N systems.<br />

<strong>The</strong> correspond<strong>in</strong>g Lagrangian should be extended to allow apart from the 7f7f and 7f N also N N<br />

contact <strong>in</strong>teractions, which are not constra<strong>in</strong>ed by chiral but only by isosp<strong>in</strong> symmetry.<br />

<strong>The</strong>se ideas have been extensively studied by the Texas-Seattle group [74], [75], [76], [77], [78].<br />

<strong>The</strong>y have obta<strong>in</strong>ed an energy dependent two-nucleon potential at next-to-next-to-lead<strong>in</strong>g order.<br />

With altogether 26 free parameters6 they were able to achieve a qualitative agreement with the<br />

N N scatter<strong>in</strong>g data and some deuteron properties. Also three-body forces have been considered<br />

by this group. Apply<strong>in</strong>g this formalism to many-body problems allows to establish a beautiful<br />

hierarchy of the two- and many-body forces: the three-body forces should be weaker than the<br />

two-body ones, the four-body forces should be weaker than the three-body ones and so on.<br />

S<strong>in</strong>ce that time the derivation of the nucleon-nucleon <strong>in</strong>teraction us<strong>in</strong>g the technique of effective<br />

theories became a subject of quite remarkable <strong>in</strong>terest and <strong>in</strong>tense discussions. Cohen and collab<br />

orators [79], [80], [81], [83] considered <strong>in</strong> detail an effective theory with pions <strong>in</strong>tegrated out.<br />

In such a case simple analytic calculations for the two-nucleon S-matrix can be performed, s<strong>in</strong>ce<br />

all <strong>in</strong>teractions between nucleons are of the contact type. <strong>The</strong>y exam<strong>in</strong>ed different regularization<br />

schemes for divergent <strong>in</strong>tegrals <strong>in</strong> the LS equation like dimensional and cut-off regularizations and<br />

made some <strong>in</strong>terest<strong>in</strong>g observations. First, it turned out that <strong>in</strong> such a pionless effective theory<br />

the cut-off could be taken to <strong>in</strong>f<strong>in</strong>ity only if the effective range parameter of the <strong>in</strong>teraction is<br />

negative. This conclusion follows, <strong>in</strong> fact, from a theorem which had been proven by Wigner long<br />

time aga [84] and is based only on such general pr<strong>in</strong>ciples like causality and unitarity. <strong>The</strong> theorem<br />

says, that if a potential vanishes beyond some range R, then the rate d6(k)/dk at which the phase<br />

shift can change with energy is bounded from below by some function of R, k and 6(k). Secondly,<br />

an effective theory with a f<strong>in</strong>ite cut-off was found not to be "systematic" <strong>in</strong> the sense, that higherorder<br />

terms <strong>in</strong> the potential do not get systematically smaller as the order is <strong>in</strong>creased. Thus, the<br />

expansion does not seem to converge. We will comment more on that <strong>in</strong> the chapter 2. F<strong>in</strong>ally,<br />

the use of cut-off schemes and dimensional regularization was shown to lead to different results<br />

for the scatter<strong>in</strong>g amplitude. <strong>The</strong> scatter<strong>in</strong>g amplitude calculated with dimensional regularization<br />

only maps to the effective range expansion for on-shell momenta k « 1/ JaTe, where a and Te<br />

are the scatter<strong>in</strong>g length and the effective range. For such small momenta both schemes produce<br />

identical results <strong>in</strong> agreement with the effective range expansion. <strong>The</strong> experimental values for the<br />

S-wave np scatter<strong>in</strong>g lengths and effective ranges are<br />

6 Some of these parameters are redundant.<br />

as = (-23.758 ± 0.010) fm ,<br />

at = (5.424 ± 0.004) fm ,<br />

Ts = (2.75 ± 0.05) fm ,<br />

Tt = (1.759 ± 0.005) fm .<br />

(1.1 )<br />

(1.2)


Thus, the effective theory with dimensional regularization has a quite small range of validity<br />

and provides an extremely poor fit to the data for the ISO partial wave [85]. <strong>The</strong> problem with<br />

the dimensional regularization is that it does not account for power law divergences of the type<br />

Jooo dnq qm, which turn out to be important for the renormalization of the LS equation. In dimensional<br />

regularization divergent <strong>in</strong>tegrals <strong>in</strong> four dimensions are extended to an arbitrary number<br />

of dimensions D. After the regularization is performed, they are typically expressed <strong>in</strong> terms of<br />

f-functions which depend on D. Ultraviolet divergences correspond to poles of these functions.<br />

<strong>The</strong>y have to be subtracted <strong>in</strong> order to provide a f<strong>in</strong>ite result. In the m<strong>in</strong>imal subtraction scheme<br />

(MS), which is frequently used <strong>in</strong> field-theoretical calculations with renormalizable theories, all<br />

1/(D-4) poles are subtracted before tak<strong>in</strong>g the limit D --+ 4. This allows to remove all logarithmic<br />

divergences. In the effective theory for N N scatter<strong>in</strong>g without pions no such logarithmic divergences<br />

appear and the regularized <strong>in</strong>tegrals <strong>in</strong> four dimensions rema<strong>in</strong> f<strong>in</strong>ite and scale <strong>in</strong>dependent.<br />

<strong>The</strong> only divergences that appear <strong>in</strong> such an effective theory are the power law divergences, which<br />

vanish after perform<strong>in</strong>g dimensional regularization. Kaplan, Savage and Wise (KSW) proposed to<br />

subtract also poles <strong>in</strong> D = 3 dimensions to keep trace of power law divergences [90]. <strong>The</strong>y called<br />

this formalism power divergence subtraction (PDS). Us<strong>in</strong>g PDS, Kaplan et al. worked out a new<br />

power count<strong>in</strong>g scheme (KSW approach) for systems with a large scatter<strong>in</strong>g length and extended<br />

it to take <strong>in</strong>to account pionic degrees of freedom. Equivalent formalisms with different regularization<br />

schemes are discussed <strong>in</strong> refs. [86], [87], [88]. <strong>The</strong> lead<strong>in</strong>g and non-perturbative contribution<br />

to the scatter<strong>in</strong>g amplitude <strong>in</strong> these methods is due to N N contact <strong>in</strong>teractions without derivatives.<br />

Pion exchanges start to contribute at sublead<strong>in</strong>g order and can be treated perturbatively.<br />

That is why analytic calculations are possible. <strong>The</strong> correspond<strong>in</strong>g S-matrix is (approximately)<br />

unitary7 and does not depend on the renormalization scale which is <strong>in</strong>troduced due to PDS. <strong>The</strong><br />

expansion for the S-matrix is expected to break down at momenta k rv 300 MeV. For a series<br />

of <strong>in</strong>terest<strong>in</strong>g applications of the KSW approach to various processes see references [90]-[99]. In<br />

spite of a successful description of many observables at low energies the formalism fails badly to<br />

describe the shape parameters <strong>in</strong> the ISO and 3S1 _3 D 1 channels, as has been shown by Cohen and<br />

Hansen [100], [101]. <strong>The</strong>y have po<strong>in</strong>ted out that predictions for these quantities would provide<br />

a sensitive test for the correct <strong>in</strong>elusion of pionic physics. Note furt her that different potential<br />

models give very elose predictions for the shape parameters. This is, accord<strong>in</strong>g to ref. [102] , due<br />

to the correct treatment of the one-pion exchange. Thus, it rema<strong>in</strong>s unelear, whether such a<br />

perturbative treatment of the pion exchange is justified8 [103].<br />

An <strong>in</strong>terest<strong>in</strong>g work with<strong>in</strong> the power count<strong>in</strong>g scheme proposed by We<strong>in</strong>berg has been performed<br />

by Park et al. [104], [105]. <strong>The</strong>y concentrated on np scatter<strong>in</strong>g for the ISO partial wave and the<br />

deuteron channel and were able to reproduce the empirical scatter<strong>in</strong>g phase shifts up to momenta<br />

k rv 300 Me V. <strong>The</strong> potential they considered conta<strong>in</strong>ed apart from the contact N N <strong>in</strong>teraction<br />

without and with two derivatives also the lead<strong>in</strong>g OPE term. <strong>The</strong> cut-off dependence of the<br />

results was <strong>in</strong>vestigated. Quite recently they also <strong>in</strong>eluded the lead<strong>in</strong>g two-pion exchange as weH<br />

as contact <strong>in</strong>teractions with four derivatives [106]. For the application of the effective field theory<br />

technique to the solar proton burn<strong>in</strong>g process p + p --+ d + e+ + Ve see reference [107].<br />

<strong>The</strong> Munich group considered recently the peripheral np partial waves with<strong>in</strong> chiral perturbation<br />

theory [108]. No contact terms without and with two derivatives contribute <strong>in</strong> such partial waves<br />

(start<strong>in</strong>g from the D-waves) because of the large values of angular momenta. <strong>The</strong> <strong>in</strong>teraction is<br />

7 A different approach has been recently proposed by Lutz [89], which preserves unitarity of the S-matrix exactly<br />

and allows far the description of the N N phase shifts at high er energies.<br />

8 Certa<strong>in</strong>ly, for very small energies E « M" � 140 Me V one can even completely <strong>in</strong>tegrate out pionic degrees of<br />

freedom.<br />

7


8 1. Introduction<br />

completely dom<strong>in</strong>ated by pion exchanges. That is why parameter-free predictions are possible,<br />

s<strong>in</strong>ce the 7r N low-energy coupl<strong>in</strong>g constants are known from pion-nucleon scatter<strong>in</strong>g processes.<br />

Furt her , the <strong>in</strong>teraction <strong>in</strong> these channels is much weaker than <strong>in</strong> the S- and P-waves. That<br />

opens the possibility to use standard perturbation theory. Kaiser et al. have used the technique<br />

of Feynman diagrams to def<strong>in</strong>e the two-nucleon T-matrix. <strong>The</strong>y obta<strong>in</strong>ed renormalized expressions<br />

for lead<strong>in</strong>g and sublead<strong>in</strong>g two-pion exchanges. It was found that the model-<strong>in</strong>dependent<br />

27r-exchange corrections are too large for the D- and F-waves. This <strong>in</strong>dicates the <strong>in</strong>creas<strong>in</strong>g<br />

importance of shorter range effects <strong>in</strong> these channels. For G- and higher waves the 27r-exchange<br />

corrections br<strong>in</strong>g the chiral predictions close to empirical phase shifts. In a follow<strong>in</strong>g publication<br />

[109J also some two-loop diagrams were considered as weIl as the contributions from virtual<br />

�-excitations and from exchange of vector p and w exchange. <strong>The</strong>se corrections improved the<br />

predictions for the F-waves and for the D-waves below 50-80 MeV laboratory energy. Quite<br />

recently also so me classes of the two-loop diagrams have been ca1culated by Kaiser [110], [111].<br />

Similar <strong>in</strong>vestigations for some peripheral partial waves but us<strong>in</strong>g a different technique were performed<br />

by the Brazilian group [112]. Recently they also analyzed some three-pion exchange<br />

contributions [113] and found quite surpris<strong>in</strong>gly that they have a long range of about 1.5 fm and<br />

tend to enhance the OPEP.<br />

Instead of try<strong>in</strong>g to describe many-body processes completely <strong>in</strong> terms of effective field theory<br />

We<strong>in</strong>berg proposed <strong>in</strong> 1992 to apply chiral perturbation theory to generate the irreducible kernel<br />

and comb<strong>in</strong>e these with phenomenological external nuclear wave functions [114]. <strong>The</strong>se ideas were<br />

adopted by Beane et al. to ca1culate neutral pion photoproduction on deuterium [115]. <strong>The</strong> results<br />

agree weIl with experiment and allowed for a first quite successful prediction from CHPT <strong>in</strong> the<br />

two-nucleon sector . A similar formalism was applied recently to study Compton scatter<strong>in</strong>g on the<br />

deuteron [116] and neutral pion electroproduction off deuterium [117].<br />

Also many-body <strong>in</strong>teractions became a subject of <strong>in</strong>tense <strong>in</strong>vestigations <strong>in</strong> the context of effective<br />

theories. While Friar et al. [118] tried to constra<strong>in</strong> the possible form of the three-nucleon force from<br />

chiral symmetry, a different strategy has been chosen by Bedaque and collaborators. Motivated<br />

by the successful application of the KSW approach to two-nucleon problems, they considered the<br />

three-body system at very low energies with pions <strong>in</strong>tegrated out [119], [120], [121]. BasicaIly,<br />

they found a good agreement with experiment <strong>in</strong> the J = 3/2 channel without hav<strong>in</strong>g any free<br />

parameter. Here, the three-body force does not play any significant rule s<strong>in</strong>ce, due to the Pauli<br />

pr<strong>in</strong>ciple, particles can not be very close to each other. <strong>The</strong> situation is different <strong>in</strong> the J = 1/2<br />

channel. Here it was shown that a three-body short-range force is required <strong>in</strong> order to elim<strong>in</strong>ate<br />

the cut-off dependence of the amplitude. Recently the quartet S-wave phase shift <strong>in</strong> nd scatter<strong>in</strong>g<br />

was ca1culated <strong>in</strong>clud<strong>in</strong>g perturbative pions [122].<br />

<strong>The</strong> purpose of this thesis is to <strong>in</strong>vestigate <strong>in</strong> detail the two-nucleon system with<strong>in</strong> a cut-off<br />

effective theory. <strong>The</strong> pioneer<strong>in</strong>g ca1culations along this l<strong>in</strong>e performed by Ord6iiez et al. [78]<br />

leave much room for improvements. First, as already stressed before, some of the parameters<br />

correspond<strong>in</strong>g to the contact <strong>in</strong>teractions <strong>in</strong> this work are redundant. As we will show later, one<br />

can elim<strong>in</strong>ate them due to anti-symmetrization of the potential. Secondly, we will use the values of<br />

the 7r N low-energy constants consistent with CHPT ca1culations <strong>in</strong> the one nucleon sector <strong>in</strong>stead<br />

of determ<strong>in</strong><strong>in</strong>g them from the fitt<strong>in</strong>g to the N N data. Thus, the number of free parameters <strong>in</strong><br />

calculations to the same order <strong>in</strong> the low-momentum expansion decreases dramatically from 26<br />

as it was the case <strong>in</strong> ref. [78] to 9 <strong>in</strong> the present work. We hope that this will allow to make<br />

clearer statements about the role of chiral symmetry <strong>in</strong> the N N dynamies. Thirdly, we will use<br />

a different formalism for deriv<strong>in</strong>g the NN <strong>in</strong>teraction, which leads to an energy-<strong>in</strong>dependent


potential. Furt her , we will apply cut-off functions, which do not <strong>in</strong>troduce any additional angular<br />

dependence. That is why the contact <strong>in</strong>teractions will only contribute to the S- and P-waves and<br />

to the E1 mix<strong>in</strong>g angle. <strong>The</strong> results for higher partial waves are parameter free predictions. That<br />

establishes a connection with the recent work by the Munich group [108], [109]. Furthermore, we<br />

will demonstrate how to redef<strong>in</strong>e the contact <strong>in</strong>teractions <strong>in</strong> order to have separate parameters<br />

<strong>in</strong> each low partial wave. This allows for an enormous simplification of the fitt<strong>in</strong>g procedure.<br />

F<strong>in</strong>aIly, our results for the S-waves and for various deuteron properties will be shown to achieve<br />

the level of precision of modern phenomenological potentials. Thus, we believe, that quantitative<br />

calculations for the N N system us<strong>in</strong>g the effective field theory approach are possible.<br />

<strong>The</strong> manuscript is organized as follows. In chapter 2 we will give an <strong>in</strong>troduction to effective<br />

theories. For a better understand<strong>in</strong>g of the philosophy of effective theories the quantum mechanical<br />

two-body scatter<strong>in</strong>g problem will be considered. We will apply the method of unitary<br />

transformation [51], [53] to a model two-nucleon Hamiltonian <strong>in</strong> order to construct from it an<br />

effective potential, which operates <strong>in</strong> a subspace of momenta below a given cut-off A [123], [124].<br />

For concrete numerical <strong>in</strong>vestigations we will restrict ourselves to a potential of the Malfiiet-Tjon<br />

type [125], [126]. This force consists of two terms, an attractive one due to the exchange of a light<br />

meson and a repulsive term parametrized <strong>in</strong> terms of a heavy meson exchange. <strong>The</strong> S-matrices<br />

<strong>in</strong> the full space and <strong>in</strong> the subspace of low momenta after perform<strong>in</strong>g the unitary transformation<br />

will be shown to be identical. S<strong>in</strong>ce we are <strong>in</strong>terested only <strong>in</strong> the region of low momenta, weIl<br />

below the mass of the heavy meson, we can "<strong>in</strong>tegrate out" the heavy meson. More precisely,<br />

we will keep <strong>in</strong> the potential the light meson exchange unchanged and represent effects of the<br />

heavy meson exchange <strong>in</strong> terms of the N N contact <strong>in</strong>teractions. This i,s rat her similar to what<br />

is usually done for the real two-nucleon system. <strong>The</strong> crucial advantage of our model is, however,<br />

that the exact effective Hamiltonian for low momenta is known from the unitary transformation.<br />

This allows us to compare these two effective theories, the one with contact forces and the exact<br />

one, and to study effects of f<strong>in</strong>e tun<strong>in</strong>g which are important for reproduc<strong>in</strong>g the large value of the<br />

scatter<strong>in</strong>g length. F<strong>in</strong>aIly, we will address some furt her issues related to the chiral perturbation<br />

theory approach of the two-nucleon system.<br />

We will beg<strong>in</strong> chapter 3 with a brief <strong>in</strong>troduction to chiral symmetry and construct the twoand<br />

three-nucleon potential, based on the most general chiral effective pion-nucleon Lagrangian<br />

us<strong>in</strong>g the method of unitary transformations [127]. For that, a power count<strong>in</strong>g scheme consistent<br />

with this projection formalism has been developed. <strong>The</strong> details are discussed <strong>in</strong> appendices A, B.<br />

Us<strong>in</strong>g this power count<strong>in</strong>g scheme it has been shown how to calculate the effective potential to<br />

an arbitrary order <strong>in</strong> the small moment um scale Q. In appendix C we have also generalized the<br />

above approach to the case of the so-called "small scale expansion" for the potential, <strong>in</strong> which<br />

not only the pion mass and external momenta of the nucleons but also the tlN mass splitt<strong>in</strong>g<br />

are considered as small quantities and are treated <strong>in</strong> the same foot<strong>in</strong>g. Such an expansion allows<br />

to take <strong>in</strong>to account effects <strong>in</strong> the potential due to <strong>in</strong>termediate excitations of the tl-isobar. To<br />

the best of our knowledge, this is the first time that the method of unitary transformation is<br />

systematically applied <strong>in</strong> the context of chiral effective field theory. We discuss <strong>in</strong> detail the<br />

similarities and differences to the exist<strong>in</strong>g chiral nucleon-nucleon potentials and show that, to<br />

lead<strong>in</strong>g order <strong>in</strong> the power count<strong>in</strong>g, the three-nucleon forces vanish lend<strong>in</strong>g credit to the result<br />

obta<strong>in</strong>ed by We<strong>in</strong>berg us<strong>in</strong>g old-fashioned time-ordered perturbation theory. We will also consider<br />

the problem of the renormalization of the potential. For that we will use the express ions for the<br />

divergent <strong>in</strong>tegrals presented <strong>in</strong> appendix D and perform anti-symmetrization of various contact<br />

<strong>in</strong>teractions as expla<strong>in</strong>ed <strong>in</strong> appendix E. F<strong>in</strong>ally, we have analyzed the contact terms <strong>in</strong> the<br />

effective Lagrangian with four nucleon legs and two derivatives and found that seven of fourteen<br />

9


10 1. Introduction<br />

such <strong>in</strong>teractions written down by Ord6iiez et al. [74], [77], [78] are redundant or have coefficients<br />

suppressed by two powers of the <strong>in</strong>verse nucleon mass, see appendix F. This has no consequences<br />

for the two-nucleon scatter<strong>in</strong>g or bound state problem but becomes quite important for systems<br />

with three and more nucleons andjor for two-nucleon problems with external probes.<br />

In chapter 4 we will concentrate on practical applications of the derived potential for study<strong>in</strong>g<br />

bound and scatter<strong>in</strong>g states <strong>in</strong> the two-nucleon system [128]. To that aim we will determ<strong>in</strong>e<br />

the ni ne parameters related to the contact <strong>in</strong>teractions by a fit to the np S- and P-waves and<br />

the mix<strong>in</strong>g parameter EI far laboratory energies below 100 MeV. <strong>The</strong> correspond<strong>in</strong>g partial wave<br />

decomposition of the potential is expla<strong>in</strong>ed <strong>in</strong> appendix G. An alternative determ<strong>in</strong>ation of some<br />

of these constants from the lead<strong>in</strong>g effective range parameters is considered as weIl. Other lowenergy<br />

constants are obta<strong>in</strong>ed from pion-nucleon scatter<strong>in</strong>g. We will discuss numerical results<br />

for phase shifts and show that the predicted partial waves and mix<strong>in</strong>g parameters for higher<br />

energies and higher angular momenta are mostly well described for energies below 300 MeV. We<br />

will also consider various deuteron properties follow<strong>in</strong>g from our potential. <strong>The</strong> role of virtual<br />

�-excitations is also discussed.<br />

In the chapter 5 we will consider charge symmetry and charge <strong>in</strong>dependence break<strong>in</strong>g <strong>in</strong> an effective<br />

field theory approach for the two-nucleon system. We first discuss various terms <strong>in</strong> the effective<br />

Lagrangian, which lead to isosp<strong>in</strong> violat<strong>in</strong>g effects. For that <strong>in</strong>vestigation we use the formalism<br />

proposed by Kaplan, Savage and Wise [91] and calculate the nn, np and pp I So phase shifts.<br />

We do not explicitely <strong>in</strong>clude virtual photons <strong>in</strong> this analysis. <strong>The</strong> charge dependence observed<br />

<strong>in</strong> the nucleon-nucleon scatter<strong>in</strong>g lengths is due to one-pion exchange and one electromagnetic<br />

four-nucleon contact term. This gives a parameter free expression for the charge dependence of<br />

the correspond<strong>in</strong>g effective ranges, which is <strong>in</strong> agreement with the rat her small and uncerta<strong>in</strong><br />

empirical determ<strong>in</strong>ations. We also compare the low energy phase shifts of the nn and the np<br />

system with data. F<strong>in</strong>ally, we summarize our f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> chapter 6.


Chapter 2<br />

Low-momentum effective theories for<br />

two nucleons<br />

2.1 What is effective?<br />

All known <strong>in</strong>teractions <strong>in</strong> nature can be classified <strong>in</strong> terms of four fundamental types: strong,<br />

weak, electromagnetic and gravitational. <strong>The</strong> first three of them have been unified and build the<br />

basis of the Standard Model. <strong>The</strong> crucial role <strong>in</strong> the development of this model has been played<br />

by the requirement of renormalizability. One can easily check the property of renormalizability of<br />

a theory by <strong>in</strong>troduc<strong>in</strong>g a parameter ßi characteriz<strong>in</strong>g an <strong>in</strong>teraction of type i, which conta<strong>in</strong>s fi<br />

(bi) fermionic (bosonic) fields. In four dimensions it is def<strong>in</strong>ed by<br />

ß· = 4-d·--f· -b·<br />

2 - 2<br />

3<br />

2 2 2 , (2.1)<br />

where di is the number of derivatives. This quantity simply def<strong>in</strong>es the mass dimension of a<br />

related coupl<strong>in</strong>g constant.1 This allows for the follow<strong>in</strong>g classification of all <strong>in</strong>teractions: those<br />

with ßi 2: 0 are called renormalizable, whereas <strong>in</strong>teractions with ßi < 0 are non-renormalizable<br />

[132]. One def<strong>in</strong>es furthermore a subclass of superrenormalizable <strong>in</strong>teractions with ßi > O. For<br />

<strong>in</strong>stance, the <strong>in</strong>teraction of electrons with photons <strong>in</strong> quantum electrodynamics (QED), -e1{;j'ljJ,<br />

is renormalizable s<strong>in</strong>ce accord<strong>in</strong>g to eq. (2.1) one has ß = 4 - 0 - 3/2 x 2 - 1 = 0, whereas the<br />

electron mass term -m1j;'ljJ is an example of a superrenormalizable <strong>in</strong>teraction. Obviously, only<br />

a f<strong>in</strong>ite number of renormalizable theories exists s<strong>in</strong>ce ßi is bounded from above. It has been<br />

shown that the theory is renormalizable (i. e. that ultraviolet divergences aris<strong>in</strong>g <strong>in</strong> calculations<br />

of observables cancel as so on as all parameters2 of the theory are expressed <strong>in</strong> terms of physical<br />

or renormalized quantities) if all <strong>in</strong>teractions are renormalizable, see e.g. [133].<br />

For quite a long time it was commonly believed that renormalizability is a fundamental pr<strong>in</strong>cipIe.<br />

Indeed, a non-renormalizable quantum field theory is not well-def<strong>in</strong>ed if a f<strong>in</strong>ite number of<br />

<strong>in</strong>teractions enters the correspond<strong>in</strong>g Lagrangian. Although one can always perform tree-Ievel<br />

calculations, quantum corrections will produce ultraviolet divergences that cannot be absorbed <strong>in</strong><br />

are-def<strong>in</strong>ition of the parameters <strong>in</strong> the Lagrangian. In fact, renormalization can also be carried<br />

out <strong>in</strong> the case of non-renormalizable theories if one <strong>in</strong>cludes <strong>in</strong> the Lagrangian all <strong>in</strong>teractions<br />

(an <strong>in</strong>f<strong>in</strong>ite number), that are consistent with symmetry pr<strong>in</strong>ciples of the correspond<strong>in</strong>g theory<br />

[133]. Such symmetry pr<strong>in</strong>ciples restrict, of course, the structure of possible <strong>in</strong>teractions, but<br />

1 In this thesis we will always use "natural" units with 1i = c = l.<br />

2<strong>The</strong>re is always a f<strong>in</strong>ite number of parameters <strong>in</strong> such renormalizable theories.<br />

11


12 2. Low-momentum effective theories for two nucleons<br />

these constra<strong>in</strong> <strong>in</strong> the same way the ultraviolet divergences. This makes it possible to absorb all<br />

ultraviolet divergences aris<strong>in</strong>g from loops <strong>in</strong> parameters of the Lagrangian and the theory becomes<br />

well-def<strong>in</strong>ed.<br />

At first sight, such non-renormalizable field theories seem to be completely useless, because an<br />

<strong>in</strong>f<strong>in</strong>ite number of vertices <strong>in</strong> the Lagrangian would lead to an <strong>in</strong>f<strong>in</strong>ite set of possible diagrams,<br />

which contribute to a def<strong>in</strong>ite process. In such a case, practical calculations would be, of course, not<br />

possible. However, as we will see below, <strong>in</strong> some cases <strong>in</strong> the low-energy limit non-renormalizable<br />

<strong>in</strong>teractions become weak and are strongly suppressed compared to renormalizable ones. This is<br />

because coupl<strong>in</strong>g constants of non-renormalizable <strong>in</strong>teractions can be expressed like Ci / An, w here<br />

A is so me mass scale, n > 0, and Ci is so me dimensionless number. Thus, if no additional mass<br />

scale appears <strong>in</strong> the correspond<strong>in</strong>g theory or if all mass sc ales are much smaller than A, one<br />

observes <strong>in</strong> the low-energy limit E ---+ 0 a strong suppression of non-renormalizable <strong>in</strong>teractions<br />

due to factors E / A. 3 So, <strong>in</strong> spite of <strong>in</strong>f<strong>in</strong>itely many parameters enter<strong>in</strong>g the Langangian, the<br />

theory possesses a predictive power. Indeed, if calculations are performed to a certa<strong>in</strong> f<strong>in</strong>ite level<br />

of accuracy, only a f<strong>in</strong>ite number of <strong>in</strong>teractions is relevant. As so on as all relevant coupl<strong>in</strong>gs are<br />

fixed from so me processes, predictions can be made for other processes and observables. This is<br />

w hat is usually understood under effective field theories (EFTs).<br />

Figure 2.1: <strong>The</strong> lead<strong>in</strong>g l/m! contribution to photon-photon scatter<strong>in</strong>g at<br />

second order <strong>in</strong> the f<strong>in</strong>e structure constant CI' can be represented by a contact<br />

<strong>in</strong>teraction (filled cirele).<br />

<strong>The</strong>re are many physical situations, <strong>in</strong> which EFTs provide a very useful and sometimes the only<br />

available way of perform<strong>in</strong>g practical calculations. If the fundamental theory is known, EFT can<br />

be useful as its low-energy approximation. For example, the lead<strong>in</strong>g photon-photon scatter<strong>in</strong>g<br />

diagram <strong>in</strong> QED, shown <strong>in</strong> fig. 2.1, can be calculated from the QED Lagrangian at one loop order<br />

where 'I/J denotes the electron fields, Fftv == 8ft AV - 8V Aft is the field strength tensor, me and<br />

CI' = e 2 /(47r) rv 1/137 denote the electron mass and electromagnetic f<strong>in</strong>e structure constant,<br />

respectively. In eq. (2.2) we have not shown gauge fix<strong>in</strong>g terms. Already <strong>in</strong> 1936 Euler, Kockel<br />

3 This statement obviously holds at the tree-level. Quantum corrections <strong>in</strong>clude loop <strong>in</strong>tegrals, which may<br />

be ultraviolet divergent and should be regularized and renormalized. This requires more careful considerations.<br />

We<strong>in</strong>berg has shown that quantum corrections are also suppressed [60).<br />

(2.2)


2.1. What is eHective 13<br />

and Heisenberg proposed to use an effective Lagrangian for calculat<strong>in</strong>g photon-photon scatter<strong>in</strong>g<br />

at energies much smaller than the electron mass [134], [135], [136]<br />

where F/LV = (-1/2) EJtvpu Fpu is the dual of the field strength tensor FJtv <strong>The</strong> ellipsis represent<br />

further corrections ofhigher order <strong>in</strong> 1/me and a. We learn from the effective Lagrangian (2.3) that<br />

photon-photon scatter<strong>in</strong>g at second order <strong>in</strong> a result<strong>in</strong>g from the process, which <strong>in</strong>cludes creation<br />

and destruction of electron-positron pairs, can be represented at very low energies by simple fourphoton<br />

contact <strong>in</strong>teractions without know<strong>in</strong>g anyth<strong>in</strong>g about the structure of photon-electron<br />

<strong>in</strong>teraction. This is because one cannot probe details of photon-electron coupl<strong>in</strong>g at energies<br />

much smaller than the electron mass. In fact, the effective Lagrangian (2.3) is quite general, s<strong>in</strong>ce<br />

it <strong>in</strong>cludes all possible terms with four field strength tensors and without additional derivatives,<br />

which are allowed by Lorentz and gauge symmetry. All <strong>in</strong>formation about the structure of photonelectron<br />

<strong>in</strong>teractions <strong>in</strong> QED is hidden <strong>in</strong> the values of the coupl<strong>in</strong>g constants of the (F,wFJtV) 2<br />

and (F'WFJtV) 2 contact <strong>in</strong>teractions.4 In QED one can derive these perturbatively to all orders of<br />

a. If the fundamental theory (QED) would be not known, these coefficients could be fixed from<br />

experiment. This simple example illustrates one of the basic pr<strong>in</strong>ciples of the effective field theory<br />

method: the dynamics of a system at low energies is not sensitive to details of the <strong>in</strong>teraction at<br />

high energies.<br />

<strong>The</strong> method of effective Lagrangians allows to calculate not only the lead<strong>in</strong>g low-energy approximation<br />

of the scatter<strong>in</strong>g amplitude but also to systematically account for corrections. In the<br />

case of photon-photon <strong>in</strong>teractions this corrections are of two forms. First, even at order a 2<br />

there are additional <strong>in</strong>teractions conta<strong>in</strong><strong>in</strong>g at most four field strength tensors FJtv, FJtv and any<br />

positive number of derivatives,5 like F Jtv (O/m�)FJtv FQßFQß , FJtv (0 2 /m�)FJtv FQßFQß , . . . . Secondly,<br />

there are vertices at order a > 2 with and without derivatives. Some of them have the<br />

same structure as the terms at order a = 2 but also many new <strong>in</strong>teractions like, for <strong>in</strong>stance,<br />

1/m�(F Jtv FJtV)3 with more photons appear. Apart from various tree corrections loop diagrams<br />

will contribute at higher orders. At each order <strong>in</strong> the low-momentum expansion one can absorb<br />

all ultraviolet divergences aris<strong>in</strong>g from loops by correspond<strong>in</strong>g counter terms <strong>in</strong> the effective Lagrangian.<br />

Thus, calculations with an arbitrary accuracy can be performed with<strong>in</strong> such an effective<br />

theory. For one-loop calculations with the effective Lagrangian of Euler et al., see ref. [138].<br />

In the above example for scatter<strong>in</strong>g of light by light the use of effective Lagrangians might be<br />

useful, s<strong>in</strong>ce it allows to simplify calculations at low-energies. For much more complicated full<br />

QED calculation of the same process see the reference [139]. In some cases calculations with<strong>in</strong><br />

an underly<strong>in</strong>g fundamental theory are not possible: either the theory is not known or standard<br />

perturbative methods are not available. This happens, <strong>in</strong> particular, far QCD at low energies. In<br />

such situations effective field theories provide a simple and powerful way to perform a systematic<br />

analysis of low-energy phenomena.<br />

<strong>Effective</strong> field theory is not only an extremely useful tool for perform<strong>in</strong>g practical calculations,<br />

which is alternative to standard methods of renarmalizable field theories. Presumably, it is the<br />

only k<strong>in</strong>d of physical theories that we have at present. Indeed, there is no evidence that the<br />

4 Such a situation, when the strengths of coupl<strong>in</strong>gs is controlled by some (heavy) resonances, happens quite often<br />

<strong>in</strong> various effective theories. This is called resonance saturation. For some particular examples see ref. [137)<br />

5 <strong>The</strong>re are no such terms with more than four field strength tensors at order Q2 s<strong>in</strong>ce <strong>in</strong> this case one would<br />

need to couple at least six electrons, which requires three powers of Q (or more).


14 2. Low-momentum effective theories for two nucleons<br />

fundamental theories like QED or the Standard Model are really fundamental <strong>in</strong> the sense that they<br />

rema<strong>in</strong> valid for arbitrary high energies. Rather, these renormalizable theories may be low-energy<br />

approximations of some other and more fundamental underly<strong>in</strong>g theories. As already po<strong>in</strong>ted<br />

out before, non-renormalizable <strong>in</strong>teractions are usually suppressed by <strong>in</strong>verse powers of energy,<br />

at which new physics appear. For example, the <strong>in</strong>teractions <strong>in</strong> the effective QED Lagrangian<br />

(2.3) are suppressed by four powers of the <strong>in</strong>verse electron mass. In pr<strong>in</strong>ciple, there are two<br />

ways of test<strong>in</strong>g new physical effects beyond the Standard Model: either one can try to perform<br />

more precise measurements of observables to test effects of non-renormalizable <strong>in</strong>teractions or one<br />

can <strong>in</strong>crease the energy. At present, no experimental <strong>in</strong>consistencies of the Standard Model to<br />

data have been observed. This <strong>in</strong>dicates that the energies at which new physics might become<br />

significant are quite high and, probably, <strong>in</strong> the TeV region [140].<br />

Up to now we have only considered effective field theories. <strong>The</strong> discussed ideas f<strong>in</strong>d also many<br />

<strong>in</strong>terest<strong>in</strong>g applications <strong>in</strong> quantum mechanics and <strong>in</strong> other fields of physics. For example, the<br />

standard multipole expansion of a complicated current source J(r, t) of size d, which generates<br />

radiation with large wavelengths A » d, already uses the basic idea of effective theories: large<br />

distance physics should be not very sensitive to details of the structure at short distances. That<br />

is why one usually observes quick convergence of such multipole expansions.<br />

In the next sections of this chapter we will concentrate, basically, on purely quantum mechanical<br />

problems. All ideas and methods of effective theories, that we have discussed <strong>in</strong> the context of<br />

relativistic quantum field theories, rema<strong>in</strong>, of course, valid <strong>in</strong> this case. In particular, as already<br />

stressed above, the low-energy behavior of a theory is not sensitive to details of the short-distance<br />

<strong>in</strong>teraction. 6 Follow<strong>in</strong>g Lepage's lecture [141], we would like to enumerate here the basic steps of<br />

construct<strong>in</strong>g the effective theory:<br />

• First, one should correctly <strong>in</strong>corporate the low-energy physics <strong>in</strong>to the effective theory. This<br />

must be known from the underly<strong>in</strong>g theory. Note that if the underly<strong>in</strong>g <strong>in</strong>teraction has a<br />

f<strong>in</strong>ite range, one can always restrict an effective theory to very low energies, at which the<br />

details of the <strong>in</strong>teraction are not important.7 In such a case one does not need to know<br />

anyth<strong>in</strong>g about the underly<strong>in</strong>g theory.<br />

• Secondly, one should <strong>in</strong>troduce an ultraviolet cut-off to exclude high-moment um states. <strong>The</strong><br />

cut-off furthermore provides f<strong>in</strong>iteness of various <strong>in</strong>tegrals aris<strong>in</strong>g by perform<strong>in</strong>g calculations.<br />

• F<strong>in</strong>ally, the missed short-range physics is represented <strong>in</strong> form of local correction terms with<br />

arbitrary coefficients to the effective Hamiltonian. <strong>The</strong>se coefficients have to be fixed from<br />

the data. It is important that one should keep all local terms allowed by the symmetries of the<br />

underly<strong>in</strong>g theory. Putt<strong>in</strong>g new correction terms systematically removes the dependence of<br />

the low-energy observables on the cut-off, which is compensated by "runn<strong>in</strong>g" of parameters<br />

<strong>in</strong> the effective Hamiltonian. Any given precision can be achieved with a f<strong>in</strong>ite number of<br />

correction terms.<br />

60ne needs, <strong>in</strong> general, higher energies to probe shorter-distance physics. This follows immediately from Heisenberg's<br />

uncerta<strong>in</strong>ty relation.<br />

7 A counter example is the Coulomb potential which has an <strong>in</strong>f<strong>in</strong>ite range. In the language of quantum field<br />

theory, the Coulomb force results from the exchange of photons. S<strong>in</strong>ce photons are massless, they can not be<br />

completely <strong>in</strong>tegrated out even at very low energies. One can, however, separate photons <strong>in</strong>to "soft" and "hard"<br />

on es and keep only "soft" photons explicitly with<strong>in</strong> an effective theory.


2.2. Two nuc1eons at very low energies<br />

2.2 Two nucleons at very low energies<br />

In this section we would like to apply the ideas formulated above to the scatter<strong>in</strong>g problem of two<br />

nucleons at very low energies. We will consider proton-neutron scatter<strong>in</strong>g and concentrate only<br />

on the strong <strong>in</strong>teraction between these two particles. Possible electromagnetic corrections due<br />

to the magnetic moments of neutron and proton are very small and will be neglected. Here we<br />

will, basically, follow the considerations of refs. [81], [83]. A detailed analysis of the two-nucleon<br />

system with<strong>in</strong> a pionless effective theory at next-to-next-to-Iead<strong>in</strong>g order <strong>in</strong> the low-momentum<br />

expansion can be found <strong>in</strong> ref. [98].<br />

<strong>The</strong> longest range part of the nuclear force is due to the exchange of pions. S<strong>in</strong>ce we are <strong>in</strong>terested<br />

<strong>in</strong> very low energies, even pionic degrees of freedom can be <strong>in</strong>tegrated out. Thus, the effective<br />

Hamiltonian entirely consists of contact <strong>in</strong>teractions with four nucleon legs. <strong>The</strong>se terms may<br />

conta<strong>in</strong> any even number of derivatives (terms with an ocid number of derivatives would break<br />

parity <strong>in</strong>variance) and <strong>in</strong>sertions of sp<strong>in</strong> and isosp<strong>in</strong> matrices. Apart from parity <strong>in</strong>variance, one<br />

should also provide rotational <strong>in</strong>variance as weIl as symmetry under time reversal operation. In<br />

many cases it appears to be very useful to require also exact isosp<strong>in</strong> <strong>in</strong>variance of the effective<br />

Hamiltonian. Because of the low-energy limit, a nonrelativistic treatment of nucleons is weIl<br />

justified. Relativistic corrections may be systematically <strong>in</strong>corporated <strong>in</strong> the same way as the<br />

corrections to <strong>in</strong>teraction between nucleons, i.e. by putt<strong>in</strong>g local one-nucleon terms with more<br />

than two derivatives <strong>in</strong> the Hamiltonian.<br />

In what follows, we will only consider S-waves. For nonrelativistic nucleons, one can express the<br />

effective Hamiltonian <strong>in</strong> the two-nucleon center of mass system <strong>in</strong> the form<br />

H(p',p) == (S p'lHIS p) = J(p' -p) + V(p',p) ,<br />

m<br />

where m is the nucleon mass. Here, we have cancelled <strong>in</strong> the first term <strong>in</strong> eq. (2.4) the factors<br />

p2 result<strong>in</strong>g from the k<strong>in</strong>etic energy operator and from the three-dimensional J-function. <strong>The</strong><br />

potential V(p',p) is given by<br />

p ,p = 0 + 2 P + p + 4 P + p + 4P P + . .. , (2.5)<br />

V( ' ) C C ( ,2 2 ) C1( ,4 4 ) C 2 ,2 2<br />

where the C's are (unknown) coefficients.8 Note that terms like p'p do not arise <strong>in</strong> the S-channel<br />

after perform<strong>in</strong>g a partial wave decomposition. This can be seen from the formulae of appendix<br />

G. For <strong>in</strong>stance, the term p' . p, which could lead to such a structure, vanishes after project<strong>in</strong>g<br />

onto the S-state because of its angular dependence. <strong>The</strong> off-shell g two-body T-matrix can be<br />

found from the Lippmann-Schw<strong>in</strong>ger <strong>in</strong>tegral equation<br />

T(p',p;k) = V(p',p) + m (OO q2dqV(p',q) k2 \ .<br />

Jo -<br />

q T(q,p;k) ,<br />

+ ZE<br />

where k is the off-shell momentum and E ---+ 0+. An iterative solution to this equation is represented<br />

diagrammatically <strong>in</strong> fig. 2.2. Clearly, this equation is not well-def<strong>in</strong>ed if one uses the potential<br />

(2.5): each iteration would produce ultraviolet divergences. As already stressed <strong>in</strong> the last section,<br />

one should cut off the <strong>in</strong>tegral enter<strong>in</strong>g the LS equation (2.6). Alternatively, one can <strong>in</strong>troduce a<br />

regularized potential, for <strong>in</strong>stance, like<br />

8 This def<strong>in</strong>ition of C's differs by the factor 21r2 from the one given <strong>in</strong> [81], [83).<br />

9 <strong>The</strong> matrix TUb, eh , q) is called on-shell if Iql I = 1il2 I = q, half-shell if Iq 2 1 = q i=- ql and off-shell otherwise.<br />

15<br />

(2.4)<br />

(2.6)<br />

(2.7)


16 2. Low-momentum effective theories for two nucleons<br />

x<br />

+ +<br />

• • •<br />

Figure 2.2: <strong>The</strong> diagrammatic representation of the <strong>in</strong>tegral equation (2.6).<br />

<strong>The</strong> shaded blob corresponds to the T-matrix and the filled circles denote the<br />

effective potential.<br />

where the regulator function JA(p 2 ) is 1 for p « A and 0 for p » A.lO We will now solve the<br />

equation (2.6) analytically with the renormalized potential (2.7). We will not restrict ourselves to<br />

a concrete choice of the function JA(p 2 ). <strong>The</strong> solution of the Lippmann-Schw<strong>in</strong>ger equation can<br />

be expressed as<br />

T(p' ,p; k) �<br />

IA(P"<br />

) (�o P'''Yij(k)P'j) JA(p') . (2.8)<br />

<strong>The</strong> number n depends on how many terms are kept <strong>in</strong> the potential (2.5). We will consider only<br />

the first two terms <strong>in</strong> the expansion (2.5) and hence take n = 1. It is convenient to express the<br />

potential v;.eg (pi, p) <strong>in</strong> the form<br />

where the matrix )..ij is given by<br />

<strong>The</strong> LS equation (2.6) can now be expressed <strong>in</strong> a matrix form like<br />

with<br />

I(k)<br />

r(k) = ).. + )"I(k) r(k) ,<br />

roo q<br />

2 dq q2 fJ. (q2)<br />

JO k<br />

)<br />

2 -q2 +ic<br />

2 d q4 fJ.(q2)<br />

00<br />

Io q q kLq2+ic<br />

(2.9)<br />

(2.10)<br />

(2.11)<br />

(2.12)<br />

lO<strong>The</strong> function JA (p2) must decrease fast enough far large p to ensure that all ultraviolet divergences <strong>in</strong> the LS<br />

equation are removed.


2.2. Two nucleons at very low energies<br />

Here In and I(k) are def<strong>in</strong>ed by<br />

Note that In and I(k) depend on A. Solv<strong>in</strong>g the l<strong>in</strong>ear matrix equation (2.11) one obta<strong>in</strong>s<br />

r (k) = � ( -Co - Ci(h + k 2 h t k 4 h � k 6 I(k)) C2( -1 + C2(h + k 2 h + k4 I(k))) )<br />

w C2( -1 + C2(h + k h + k I(k))) -Ci(h + k 2 I(k))<br />

with the constant w given by<br />

w = - (-1<br />

+ C2h) 2 + (h + k 2 I(k)) (Co + C2(C2h - k 2 (-2 + C2h)))<br />

Us<strong>in</strong>g eq. (2.8) one f<strong>in</strong>ds for the on-shell T-matrix Ton(k) == T(k, k; k):<br />

Ton (k) = fÄ (k 2 )<br />

Co + C2(C2h + k 2 (2 - C2h))<br />

(-1 + C2h)2 - (h + k2I(k))(Co + C2(C2h + P(2 - C2h)))<br />

17<br />

(2.13)<br />

(2.14)<br />

(2.15)<br />

(2.16)<br />

This is the f<strong>in</strong>al result for the on-shell T-matrix at next-to-Iead<strong>in</strong>g order, which follows from our<br />

effective theory. ll<br />

We are now <strong>in</strong> the position to fix the unknown constants Co and C2 from the data. One way to do<br />

that is to fit the phase shift b correspond<strong>in</strong>g to eq. (2.16) to the experimental one. Alternatively,<br />

one can require that the scatter<strong>in</strong>g length a and the effective range r, which are the lead<strong>in</strong>g two<br />

coefficients <strong>in</strong> the effective range expansion for the S-wave phase shift<br />

1 1<br />

k cot(b) = --+ -rk 2 + v2k 4 + v 3 k 6 + v4k8 + O(k10) ,<br />

a 2<br />

(2.17)<br />

are exactly reproduced. In this formula the v's denote the so-called shape parameters. We prefer<br />

here the second way, s<strong>in</strong>ce it allows for analytic expressions of Co and C2• For the derivation of the<br />

effective range expansion of phase shifts <strong>in</strong> scatter<strong>in</strong>g theory the reader is referred to refs. [142],<br />

[143]. We can easily obta<strong>in</strong> the effective range expansion for the T-matrix us<strong>in</strong>g the def<strong>in</strong>ition of<br />

the on-shell S-matrix projected onto the S-wave:<br />

Thus, the phase shift b can be expressed as<br />

Apply<strong>in</strong>g the relation<br />

with z = i - 2j(7rkmTon) to eq. (2.19) leads to<br />

so n (k) = exp(2ib(k)) = 1 - i7rkmTon(k) .<br />

b = ; i In (1 - i7rkmTon(k)) .<br />

_ 1 (iZ - 1) In = arccot(z) ,<br />

2i iz + 1<br />

1 7rm<br />

-T (kcotb-ik)<br />

-- -- + - rk + V2k + V3k + V4k + O(k ) - zk<br />

2 a 2<br />

7rm ( 1 1 2 4 6 8 10 · )<br />

11 At lead<strong>in</strong>g order one should keep <strong>in</strong> the potential (2.5) only the first constant term.<br />

(2.18)<br />

(2.19)<br />

(2.20)<br />

(2.21)


18 2. Low-momentum effective theories for two nucleons<br />

Let us now consider the on-shell T-matrix (2.16). <strong>The</strong> imag<strong>in</strong>ary part of its <strong>in</strong>verse is given by<br />

Here we have used the equality<br />

k2 _<br />

P i7r<br />

q2 - 2k<br />

i<br />

= -7rkm .<br />

2<br />

8(k - q) ,<br />

(2.22)<br />

(2.23)<br />

where P stays for the pr<strong>in</strong>cipal value <strong>in</strong>tegral. Thus, the imag<strong>in</strong>ary parts of the T-matrix <strong>in</strong><br />

eqs. (2.21) and (2.16) agree automatically. This has to be expected from the unitarity of the Smatrix.<br />

Before fix<strong>in</strong>g the constants Co and C 2 we have to def<strong>in</strong>e the low-momentum expansions<br />

of iX(k2) and of the pr<strong>in</strong>cipal value <strong>in</strong>tegral P(I):<br />

1 + hk2 + i 4 k 4 + O(k6) ,<br />

m (to + t 2 k2 + t4 k4 + O(k6))<br />

(2.24)<br />

(2.25)<br />

where fi and ti are some constants. No negative powers of k2 <strong>in</strong> eq. (2.25) are allowed s<strong>in</strong>ce<br />

otherwise P (fo oo dq fÄ ( q2) / (k2 - q2)) would not exist for k = O. Expand<strong>in</strong>g the <strong>in</strong>verse of the<br />

T-matrix (2.16) and compar<strong>in</strong>g the first two terms of this expansion with those <strong>in</strong> eq. (2.21) we<br />

obta<strong>in</strong> the follow<strong>in</strong>g two conditions for Co and C 2 :<br />

7rm<br />

2a<br />

7rmr<br />

4<br />

Solv<strong>in</strong>g the second equation leads to two solutions for C 2 :<br />

where<br />

C 2 = � ±<br />

2ah + 7rm<br />

13 hVi5<br />

D = (7r2m2 + 2am7r(2h - hh) + a2( 41l + rm7r h - 4mhto))<br />

For the constant Co one obta<strong>in</strong>s from eq. (2.26)<br />

C _<br />

Is (2ah + m7r)( -2a1j + 2ahIs + Ism7r ± 2Vi5Is)<br />

_ _<br />

0 - 12 3 D12 3<br />

(2.26)<br />

(2.27)<br />

(2.28)<br />

(2.29)<br />

(2.30)<br />

Let us now consider the conditions, under which real solutions for the constants Co and C 2 exist.<br />

For that we should require<br />

D > 0. (2.31)<br />

From the def<strong>in</strong>ition (2.13) we see that<br />

(2.32)<br />

where 0: is non-negative dimensionless constant. This simply follows from dimensional reasons.<br />

For the expansion coefficients tn, <strong>in</strong> <strong>in</strong> eqs. (2.24), (2.25) we have:<br />

1<br />

<strong>in</strong>


2.2. Two nucleons at very low energies 19<br />

For large A the term a2rm7fh <strong>in</strong> the expression (2.29) becomes dom<strong>in</strong>ant. Obviously, for positive<br />

effective range r > 0 an upper bound for the values of A exists, above which no real solutions<br />

for Co and C2 are available. This statement is quite general but not new: it can be derived from<br />

Wigner's theorem [84], which is based on such general pr<strong>in</strong>ciples like causality and unitarity. <strong>The</strong><br />

theorem says that the rate dJ(k)jdk by which the phase shift can change with energy is bounded<br />

from below by some function of the range R of the potential, the moment um k and the phase<br />

shift J. Thus, s<strong>in</strong>ce the effective range <strong>in</strong> the 1 So and 3 SI channels is positive, one cannot take<br />

the cut-off A to <strong>in</strong>f<strong>in</strong>ity. At first sight, this might look like a failure of the cut-off regularization.<br />

Indeed, the regularization scale (cut-off) is usually taken to <strong>in</strong>f<strong>in</strong>ity if the standard renormalization<br />

technique is used for renormalizable field theories. However, <strong>in</strong> an effective theory the cut-off<br />

becomes physically relevant. Introduc<strong>in</strong>g a cut-off <strong>in</strong> an effective theory provides f<strong>in</strong>iteness of<br />

the amplitude. At the same time, it leads to suppression of all high-moment um virtual states,<br />

for which no <strong>in</strong>formation is available. That is why <strong>in</strong> an effective theory one should take the<br />

cut-off below the scale, at which new physics is expected to appear. In the low-energy nucleonnucleon<br />

effective theory such new physics is associated with pions. We cannot expect that our<br />

derivative expansion of the potential will correctly represent effects of pion exchanges at energies<br />

rv Mn . Thus, if we would take the cut-off A much larger than the pion mass Mn , we would simply<br />

<strong>in</strong>corporate wrang physics. This expla<strong>in</strong>s why the cut-off should rema<strong>in</strong> f<strong>in</strong>ite and of the order of<br />

Mn ·<br />

Up to now we have only considered a general scatter<strong>in</strong>g problem <strong>in</strong> the S-channel. We have<br />

neither restricted ourselves to a concrete regularization scheme nor to a particular partial wave.<br />

Let us now consider the 1 So channel and compare different regularization schemes for that case.<br />

We will consider cut-off and dimensional regularizations. Let us start with the cut-off theory and<br />

specify the function JA (p2). For simplicity, we will take<br />

This leads to<br />

(k) = -i7fm m 1 A + k<br />

I<br />

2k + 2k n A - k .<br />

Further, one f<strong>in</strong>ds for the particular choice (2.34) of the function JA(p2) that<br />

Ii = 0, ti = (i + l )Ai+l 1<br />

.<br />

For the constants Co and C2 one obta<strong>in</strong>s<br />

with<br />

Co<br />

9D + m(7f - 2aA) (m(97f - 8aA) ± 18VD)<br />

5DAm<br />

- 3 ( m (7f - 2aA))<br />

mA3 1 ± VD '<br />

D = �m2 (37f2 - aA (127f + aA(7frA - 16))) .<br />

For the <strong>in</strong>verse of the T-matrix we get from eq. (2.16) a quite simple expression:<br />

1 = Am (1 + (7f - 2aA)2 ) _<br />

To n (k) 2aA(7f - 2aA) - a2(4 - 7frA)k2<br />

I(k)k2 .<br />

(2.34)<br />

(2.35)<br />

(2.36)<br />

(2.37)<br />

(2.38)<br />

(2.39)<br />

(2.40)


20 2. Low-momentum effective theories for two nucleons<br />

One can immediately check that the first two terms <strong>in</strong> the effective range expansion (2.21) are<br />

correctly reproduced. Let us now take a look at the experimental data <strong>in</strong> the 1 S o channel. All<br />

<strong>in</strong>formation we need to this order of ca1culation is conta<strong>in</strong>ed <strong>in</strong> the scatter<strong>in</strong>g length a and the<br />

effective range r. One could first try to estimate their values from simple dimensional analysis:<br />

s<strong>in</strong>ce the longest range part of the nuclear force is given by the OPE, it is natural to assume that<br />

the scale enter<strong>in</strong>g the values of the coefficients <strong>in</strong> the effective range expansion is of the order of<br />

the pion mass M'/[ . <strong>The</strong> experimental values of this quantities are given <strong>in</strong> eq. (1.1). Our naive<br />

estimation works fairly well for the effective range r:<br />

2<br />

r = (2.75 ± 0.05) fm '" - ,<br />

M'/[<br />

but it fails to describe the scatter<strong>in</strong>g length, for which we have<br />

17<br />

a = (-23.758 ± 0.010) fm '" - M'/[ .<br />

(2.41 )<br />

(2.42)<br />

<strong>The</strong> scatter<strong>in</strong>g length takes an unnatural large value <strong>in</strong> the 1 So channel. As already stressed<br />

before, we have to take the cut-off A of the order of the pion mass. That is why we can make use<br />

of the relation<br />

aA ' " aM'/[ » 1 ,<br />

(2.43)<br />

to simplify the express ions (2.37)-(2.40). From eq. (2.39) we obta<strong>in</strong><br />

<strong>The</strong> coupl<strong>in</strong>g constants Co and C2 take the values<br />

Co '"<br />

1 ( 192 - 97frA 36� )<br />

mA 80 - 57frA ± 5V16 - 7frA '<br />

__<br />

3 ( ) 2�<br />

_ 1±<br />

mA3 V16 - 7frA<br />

.<br />

(2.44)<br />

(2.45)<br />

(2.46)<br />

As already discussed above, the <strong>in</strong>verse of the on-shell T -matrix can be represented at very low<br />

energies <strong>in</strong> terms of the effective range expansion (2.21). This follows from analytic properties of<br />

the amplitude. From the expression (2.40) we see that the effective range expansion is reproduced<br />

provided that<br />

2A(7f - 2aA)<br />

k2 <<br />

' " 4A2<br />

.<br />

(2.47)<br />

a (4 - 7fr A) 7fr A - 4<br />

S<strong>in</strong>ce the cut-off A as well as the <strong>in</strong>verse of the effective range are of the order of the pion mass,<br />

one obta<strong>in</strong>s from the <strong>in</strong>equality (2.47)<br />

(2.48)<br />

In these estimations we do not care about the numerical factors like 4/7f. <strong>The</strong> condition (2.47)<br />

shows that the range of applicability of our effective range theory is <strong>in</strong> accordance with our<br />

expectation: we reproduce physics correctly at momenta smaller than the cut-off A. This holds<br />

also for a --+ 00.


2.2. Two nuc1eons at very low energies 21<br />

In quantum field theories dimensional regularization (DR) appears to be a simple and powerful<br />

calculational tool, which allows to preserve all known symmetries. We will now try to apply it to<br />

the low-energy 1. effective theory for two nueleons. S<strong>in</strong>ce we will not use the cut-off we should put<br />

JA(p2) = Further, all <strong>in</strong>tegrals In have to be generalized to an arbitrary number of dimensions<br />

d:<br />

1000 d3q 1000 ddq<br />

I - -2m7f2 -- q n __<br />

-3 ---+ -2m7f2J-L3-d q n-3<br />

n -<br />

(2.49)<br />

0 (27f)3 0 (27f)d '<br />

where f.L is the mass scale <strong>in</strong>troduced due to the regularization. It turns out that all power law<br />

divergences like those <strong>in</strong> eq. (2.49) vanish after perform<strong>in</strong>g the dimensional regularization, see, for<br />

example, [82]. This will be of crucial importance for our furt her considerations. Thus, we obta<strong>in</strong><br />

a very simple expression for the <strong>in</strong>verse<br />

1<br />

of the T-matrix from eq. (2.16):<br />

(2.50)<br />

Aga<strong>in</strong>, we can fix the constants Co and C2 requir<strong>in</strong>g that the first two terms <strong>in</strong> the effective range<br />

expansion (2.21) of the on-shell T-matrix are exact reproduced. This lead to<br />

Co = 2a<br />

7fm<br />

,<br />

(2.51)<br />

<strong>The</strong> <strong>in</strong>verse T-matrix (2.50) with the constants Co, C2 given by eq. (2.51) maps to the effective<br />

range expansion only for:<br />

(2.52)<br />

This has to be compared with the correspond<strong>in</strong>g result (2.47) for cut-off regularization. Dimensional<br />

regularization provides a very small doma<strong>in</strong> of validity of the effective theory if the<br />

scatter<strong>in</strong>g length is large. For the case a ---+ 00 such a theory even becomes completely useless.<br />

<strong>The</strong> failure of dimensional regularization can easily be understood if one considers a simple model<br />

[83] with an S-wave separable potential given by<br />

2) -1/2<br />

( 2 12) -1/2 ( V (pI, p) = - : 1 + � 1 + 7f m 2 � 2 ' (2.53)<br />

where 9 is a dimensionless coupl<strong>in</strong>g and A is a scale that characterizes the range of the <strong>in</strong>teraction.<br />

<strong>The</strong> on-shell T-matrix can be obta<strong>in</strong>ed from the LS equation (2.6),<br />

Ton(k) = V(k, k) [1 - m (oo q2 dq k2 V(q ; q) . ] -1 = _� [�(1 + A k :) - (A + ik)] -l . (2.54)<br />

io - q + ZE 7fm 9<br />

Compar<strong>in</strong>g this result with the effective range expansion (2.21) allows to read off the scatter<strong>in</strong>g<br />

1 length and effective range:<br />

-1 9 2<br />

- Ag ' r = gA . (2.55)<br />

Both quantities are <strong>in</strong>versely proportional to the range of the potential A, as it follows from<br />

dimensional reasons. Further, the scatter<strong>in</strong>g length takes an unnatural large value if the coupl<strong>in</strong>g<br />

constant 9 is elose to one. This can be seen as a result of the cancelation between the two<br />

terms <strong>in</strong> the first bracket <strong>in</strong> eq. (2.54). <strong>The</strong> first term results from the tree-contribution to the<br />

amplitude, whereas the second one comes from virtual excitations <strong>in</strong> the loops, see fig. (2.2). In the<br />

a - - -


22 2. Low-momentum effective theories for two nucleons<br />

effective theory the potential is represented <strong>in</strong> form of an expansion <strong>in</strong> powers of momenta. Thus,<br />

loop contributions can be expressed <strong>in</strong> terms of the power law divergences In and the <strong>in</strong>tegral<br />

I, which yields the imag<strong>in</strong>ary part of the S-matrix. For cut-off regularization these power law<br />

divergences In are given by eq. (2.13) and are, <strong>in</strong> general, proportional to A n . It is crucial, that all<br />

power law divergences vanish if one uses dimensional regularization, see eq. (2.49). That is why<br />

the cancelation between tree- and loop-contributions to the amplitude, which is responsible for<br />

large scatter<strong>in</strong>g length, becomes impossible <strong>in</strong> this case. This expla<strong>in</strong>s the failure of dimensional<br />

regularization of the L8 equation for a ---+ 00. 12<br />

Let us now make one more remark concern<strong>in</strong>g the predictive power of our effective theory. <strong>The</strong><br />

question is, whether we are do<strong>in</strong>g better than the effective range expansion (2.21). With other<br />

words, once we have fixed free parameters from the first two terms of the effective range expansion,<br />

can we make predictions for higher terms <strong>in</strong> this expansion? To answer this quest ion we can simply<br />

calculate the next coefficient V2 <strong>in</strong> eq. (2.21) with<strong>in</strong> the cut-off approach (2.34). We obta<strong>in</strong> from<br />

eq. (2.40):<br />

(2.56)<br />

In the last equation we made use of the limit of a large scatter<strong>in</strong>g length. Thus, the value of<br />

V2 obta<strong>in</strong>ed from the effective theory at next-to-lead<strong>in</strong>g order depends strongly on the cut-off<br />

A. Clearly, the coefficient V2 cannot be predicted with<strong>in</strong> our effective theory. This is because we<br />

have not <strong>in</strong>corporated any additional <strong>in</strong>formation about the nucleon-nucleon <strong>in</strong>teraction apart<br />

from its parity and rotational <strong>in</strong>variance as weIl as symmetry under time revers al operation. Our<br />

effective theory should equally weIl describe low-energy properties of any underly<strong>in</strong>g theory, which<br />

satisfy these constra<strong>in</strong>ts. For <strong>in</strong>stance, the experimental value of the shape parameter V2 for the<br />

neutron-proton 1 So channel is V2 rv -0.48 fm3. However, if the nucleon-nucleon <strong>in</strong>teraction would<br />

be as simple as the one <strong>in</strong> eq. (2.53), we would have V2 = O. Various symmetries that we have<br />

<strong>in</strong>corporated <strong>in</strong> the effective theory do not allow to extract additional <strong>in</strong>formation about higherorder<br />

terms <strong>in</strong> the effective range expansion from its first two coefficients. In some sense, the<br />

effective theory considered <strong>in</strong> this section is trivial, s<strong>in</strong>ce it only reparametrizes the effective range<br />

expansion. <strong>Effective</strong> theory becomes non-trivial if one can <strong>in</strong>corporate more <strong>in</strong>formation from<br />

the underly<strong>in</strong>g theory. In the next section we will consider such an example. In chapters 3 and<br />

4 we will show how to systematically <strong>in</strong>corporate the property of chiral symmetry <strong>in</strong>to the N N<br />

effective theory and demonstrate its remarkable predictive power.<br />

Before f<strong>in</strong>is h<strong>in</strong>g this section we would like to comment on the convergence of the effective theory.<br />

To show that the derivative expansion (2.5) of the effective potential converges one should demonstrate,<br />

that the higher terms <strong>in</strong> this expansion give sm aller corrections to low-energy observables.<br />

<strong>The</strong> authors of refs. [81], [83] have analyzed the convergence of the expansion (2.5) <strong>in</strong> the 1 S0 channel for cut-off values satisfy<strong>in</strong>g<br />

1 4<br />

- « A « - .<br />

(2.57)<br />

a Kr<br />

12 Kaplan, Savage and Wise [90] po<strong>in</strong>ted out that this is not a problem with dimensional regularization, but rather<br />

with the subtraction scheme. Usually, only such poles of regularized expressions are subtracted, which correspond<br />

to physical number of space-time dimensions d (i.e. d = dphys = 4). This allows to keep track of logarithmic<br />

divergences. In the case of the LS equation with contact <strong>in</strong>teractions the regularized expressions rema<strong>in</strong> f<strong>in</strong>ite<br />

s<strong>in</strong>ce there are no logarithmic divergences at all. In order to account for l<strong>in</strong>ear divergences one can subtract poles<br />

correspond<strong>in</strong>g to d = dphys - 1 dimensions. Such power divergence subtraction scheme (PDS) looks, <strong>in</strong> some sense,<br />

like a compromise between cut-off and dimensional regularizations: for n > 1 one has In --7 ° like <strong>in</strong> dimensional<br />

regularization with the standard subtraction scheme, whereas h cx A, similar to cut-off approach.


2.3. Go<strong>in</strong>g to high er energies: a toy model 23<br />

To estimate the quantum averages of the various terms <strong>in</strong> the expansion (2.5) they used the lead<strong>in</strong>g<br />

order wave function of the low-energy bound state. (In the real world no bound state exists <strong>in</strong> this<br />

partial wave.) Such a wave function corresponds to the potential V(p' ,p) = Co()(A2_p'2)e(A 2 _p2)<br />

and is proportional to<br />

'IjJ (O)(p) cx ()(A2 -p2)<br />

mB+p2 ,<br />

(2.58)<br />

where B denotes the b<strong>in</strong>d<strong>in</strong>g energy. For this case it has been shown that the quantum averages of<br />

all terms <strong>in</strong> the expansion (2.5) with two and more powers of momenta are of the same size. Here<br />

we refra<strong>in</strong> from do<strong>in</strong>g similar estimations. We do not want to restrict ourselves to cut-off values<br />

much smaller than 1/r as it is guaranteed by the second equality <strong>in</strong> (2.57). Requir<strong>in</strong>g only aA » 1<br />

does not lead to simple scal<strong>in</strong>g properties of an coupl<strong>in</strong>g constants, which would be present for<br />

rA « 1, as it follows from eqs. (2.45), (2.46). Also the lead<strong>in</strong>g order wave function of the bound<br />

state might be a too naive approximation for calculat<strong>in</strong>g quantum averages. Rather , one should<br />

take low-energy scatter<strong>in</strong>g states. A more careful <strong>in</strong>vestigation of convergence of the expansion<br />

(2.5) would necessarily require a more complicated algebra and apply<strong>in</strong>g numerical methods. l3 In such a case the outcome might be different. We will co me back to this question <strong>in</strong> the next<br />

section, where a more <strong>in</strong>terest<strong>in</strong>g example will be considered and the outcome is <strong>in</strong>deed different.<br />

To summarize, we have illustrated the ideas discussed <strong>in</strong> sec. 2.1 with the example of two-nucleon<br />

scatter<strong>in</strong>g at low energies. <strong>The</strong> effective potential consists of contact <strong>in</strong>teractions with any number<br />

of derivatives. Such an effective theory works as wen as the effective range expansion for the<br />

<strong>in</strong>verse of the T -matrix. Cut-off regularization is an appropriate tool to provide f<strong>in</strong>iteness of the<br />

amplitude. One should keep the cut-off f<strong>in</strong>ite and of the order of the pion mass. <strong>The</strong>re exists<br />

an upper bound for the cut-off, above which no real solutions for the constants Ci are available.<br />

Dimensional regularization with the standard subtraction scheme fails to provide an adequate<br />

description of the amplitude if the scatter<strong>in</strong>g length is very large.<br />

2.3 Go<strong>in</strong>g to higher energies: a toy model<br />

In the last section we have considered the effective theory for nucleon-nucleon scatter<strong>in</strong>g at very<br />

low energies. This analysis was quite general and applicable, <strong>in</strong> pr<strong>in</strong>ciple, to any underly<strong>in</strong>g<br />

theory. <strong>The</strong> only <strong>in</strong>formation we used is that the underly<strong>in</strong>g <strong>in</strong>teraction has a f<strong>in</strong>ite range of<br />

order rv Such a theory can clearly fit the data for nucleonic three-momenta sm aller<br />

1/M7r•<br />

than M7r• It was shown that the effective theory <strong>in</strong> this case reproduces the effective range<br />

expansion for the amplitude but cannot go beyond it. We will now consider another example<br />

and go to higher energies. Our start<strong>in</strong>g po<strong>in</strong>t is a simple model of the S-wave nucleon-nucleon<br />

<strong>in</strong>teraction, which conta<strong>in</strong>s long and short range parts. <strong>The</strong> parameters of this model are adjusted<br />

to reproduce phase shifts <strong>in</strong> the 1 So and 3 SI channels. This model is our "fundamental" theory.<br />

We will construct an effective theory for that case and keep explicitly the long range part of<br />

the <strong>in</strong>teraction. This is different to the considerations of the last section. Short range physics<br />

is aga<strong>in</strong> represented by contact <strong>in</strong>teractions. To make the scatter<strong>in</strong>g amplitude f<strong>in</strong>ite we will<br />

<strong>in</strong>troduce a sharp cut-off A <strong>in</strong> the momentum space, which is chosen between the two scales<br />

correspond<strong>in</strong>g to long and short range parts of the underly<strong>in</strong>g force. Thus, our effective theory<br />

is def<strong>in</strong>ed on the subspace of momenta below A. An <strong>in</strong>terest<strong>in</strong>g and new po<strong>in</strong>t is that we are<br />

ahle to explicitly <strong>in</strong>tegrate out high moment um components from the underly<strong>in</strong>g theory [124].<br />

For that we divide the moment um space <strong>in</strong>to two subspaces, spann<strong>in</strong>g the values from zero to A<br />

1 3 For <strong>in</strong>stance, at higher orders <strong>in</strong> the derivative expansion one has more complicated non-l<strong>in</strong>ear conditions for<br />

fix<strong>in</strong>g the constants Ci .


24 2. Low-momentum effective theories for two nuc1eons<br />

and from A to 00, respectively. Consequently, the two-nucleon Hamiltonian can be regarded as<br />

a two-by-two matrix connect<strong>in</strong>g the two momentum subspaces. By an unitary transformation it<br />

can be block-diagonalized decoupl<strong>in</strong>g the two subspaces. In this mann er one can construct an<br />

effective unitarily transformed Hamiltonian14 act<strong>in</strong>g only <strong>in</strong> the low moment um subspace. <strong>The</strong><br />

so constructed Hamiltonian comprises the full physics for low-Iy<strong>in</strong>g bound and scatter<strong>in</strong>g states<br />

with appropriate boundary conditions. Specifically, for the scatter<strong>in</strong>g states the <strong>in</strong>itial momenta<br />

should belong to the low momentum subspace. Nevertheless, and this is an important remark, the<br />

physics of the high momenta is by the very construction <strong>in</strong>cluded <strong>in</strong> the effective low moment um<br />

theory. S<strong>in</strong>ce the projection formalism <strong>in</strong> the moment um space has not yet been worked out <strong>in</strong><br />

the literature, we will give a rather detailed description of this method <strong>in</strong> the next sections.<br />

We will furt her try to approximate the unitarily transformed Hamiltonian by the effective one.<br />

This is justified s<strong>in</strong>ce both are now def<strong>in</strong>ed on the same range of momenta. To be more precise,<br />

we will keep the long range part of the <strong>in</strong>teraction unchanged and cast the rema<strong>in</strong><strong>in</strong>g short range<br />

forces <strong>in</strong>to the form of a str<strong>in</strong>g of contact <strong>in</strong>teractions of <strong>in</strong>creas<strong>in</strong>g powers <strong>in</strong> the momenta. <strong>The</strong><br />

low-momentum theory obta<strong>in</strong>ed by the exact moment um space projection plays the role of QCD<br />

and the expansion <strong>in</strong> terms of contact <strong>in</strong>teractions for the heavy meson exchange is our model of<br />

the effective field theory. For a consistent power count<strong>in</strong>g to emerge, the coefficients accompany<strong>in</strong>g<br />

these terms should be of natural size. In other words, there should be a momenturn scale (the<br />

naturalness scale Ascale) such that the properly normalized coefficients are of order one. In fact,<br />

we can precisely calculate these coefficients from fitt<strong>in</strong>g the phase shifts or directly from the<br />

unitarily transformed Hamiltonian. This will allow to study scal<strong>in</strong>g properties of these coefficients.<br />

A furt her issue that will be addressed is the <strong>in</strong>vestigation of the convergence properties of the<br />

expansion <strong>in</strong> terms of local operators.<br />

<strong>The</strong> effective <strong>in</strong>teraction is naturally constructed <strong>in</strong> moment um space, but one can consider it<br />

<strong>in</strong> configuration space as weIl. Clearly, one has to expect the effective potential to look totally<br />

different compared to the orig<strong>in</strong>al potential and as a consequence, the deuteron wave function<br />

will also change. More precisely, the projection of the orig<strong>in</strong>al potential <strong>in</strong>to the subspace of<br />

small momenta <strong>in</strong>duces non-Iocalities <strong>in</strong> momentum space which <strong>in</strong> turn lead to very complicated<br />

co-ord<strong>in</strong>ate space expressions. We will show so me <strong>in</strong>structive examples of this phenomenon.<br />

2.3.1 Method of unitary transformation<br />

In this section we develop <strong>in</strong> detail the formalism which allows to study the nucleon-nucleon<br />

<strong>in</strong>teraction <strong>in</strong> a space of momenta below a chosen cut-off. Besides be<strong>in</strong>g <strong>in</strong>terest<strong>in</strong>g <strong>in</strong> itself, such<br />

a theory <strong>in</strong> a space of low momenta can also be used to study various aspects of effective field<br />

theory approaches to the nucleon-nucleon <strong>in</strong>teraction. <strong>The</strong> formalism is quite general and can be<br />

applied to any potential.<br />

To be specific, consider a momenturn space Hamiltonian for the two-nucleon system of the form<br />

H(p,p') = Ho (p)J(p -p') + V(p, p') , (2.59)<br />

where Ho stands for the k<strong>in</strong>etic energy and V for the sp<strong>in</strong>-<strong>in</strong>dependent model force. We <strong>in</strong>troduce<br />

the projection operators<br />

! d3p lp) (pl<br />

! d3p Ip) (pi<br />

Ipl � A,<br />

Ipl > A,<br />

(2.60)<br />

(2.61)<br />

14 We stress that the <strong>in</strong>teraction result<strong>in</strong>g from the unitary transformation is not an effective <strong>in</strong>teraction considered<br />

<strong>in</strong> the last sections. This important dist<strong>in</strong>ction should be kept <strong>in</strong> m<strong>in</strong>d.


2.3. Go<strong>in</strong>g to higher energies: a toy model 25<br />

where A is a momenturn cut-off which separates the low from the high moment um region. Its<br />

precise value will be given below. Apparently, 7]2 = 7], .>..2 = .>.., 7]'>" = '>"7] = 0 and 7] + .>.. = 1. Us<strong>in</strong>g<br />

the 7] and .>.. projectors, the Schröd<strong>in</strong>ger equation takes the form<br />

(2.62)<br />

Obviously, the low and the high momentum components of the state \[f are coupled. Our aim is to<br />

derive a Hamiltonian act<strong>in</strong>g only on low moment um states and which furthermore <strong>in</strong>corporates aH<br />

the physics related to the possible bound and scatter<strong>in</strong>g states with <strong>in</strong>itial asymptotic momenta<br />

from the 7] states. This can be accomplished by an unitary transformation U<br />

H -+ H' = UtHU (2.63)<br />

such that<br />

7]H'.>.. = .>..H'7] = 0 . (2.64)<br />

We choose a parametrization of U given by Okubo15 [51],<br />

where A has to satisfy the condition<br />

-At(1 + AAt)-lj2<br />

'>"(1 + AAt)-lj2<br />

(2.65)<br />

A = '>"A7] .<br />

(2.66)<br />

Different transformations as weH as the relations between the result<strong>in</strong>g effective Hamiltonians are<br />

discussed <strong>in</strong> ref. [52]. One can easily check that U given by eq. (2.65) is <strong>in</strong>deed unitary provided<br />

that the operator A satisfy the condition (2.66):<br />

t _<br />

(<br />

7](I +AtA)-lj2 (1 + AtA)-lj2At ) ( 7](I +AtA)-lj2 -At(I +AAt)-lj2 )<br />

U U - -(1 + AAt)-lj2 A '>"(1 + AAt)-lj2 A(1 + At A)-lj2 '>"(1 + AAt)-lj2<br />

( 7](1 + AtA)-lj2(1 + AtA)(1 + AtA)-lj2 0 )<br />

o '>"(1 + AAt)-lj2(1 + AAt)(1 + AAt)-lj2<br />

(2.67)<br />

It is then straightforward to recast the conditions (2.64) <strong>in</strong> a different form,<br />

.>.. (H - [A, H] - AHA) 7] = O . (2.68)<br />

This is a nonl<strong>in</strong>ear equation for the operator A, which takes the explicit form<br />

V(p, ij) J d3 q , A( p, � q �')V(�' q ,q �) + / d3 p , V( p,p � �')A(�' p ,q �)<br />

J d3 q , d3 p , A( p, � q �')V(�' q ,p �')A(�' p ,q �)<br />

(Eq - Ep) A(p, ij) (2.69)<br />

15Note that one obviously can perform additional unitary transformations <strong>in</strong> 1)- and A-subspaces. We do not<br />

consider such transformations here. <strong>The</strong> condition (2.66) shows that we are look<strong>in</strong>g for those transformations that<br />

map 1)- and A-subspaces <strong>in</strong>to each other. We refra<strong>in</strong> from a further discussion ofthe generality of the parametrization<br />

(2.65)


26 2. Low-momentum effective theories for two nucleons<br />

Here we denoted the momenta from the TJ- and ),-spaces by if and p, respectively, and Eq, Ep stand<br />

for the correspond<strong>in</strong>g k<strong>in</strong>etic energies. Once A and thus U have been determ<strong>in</strong>ed, the effective<br />

Hamiltonian <strong>in</strong> the TJ-space takes the form<br />

This <strong>in</strong>teraction is by its very construction energy-<strong>in</strong>dependent and hermitian [51], [53] .<br />

(2.70)<br />

After this block-diagonalization, the Schröd<strong>in</strong>ger equation separates <strong>in</strong>to two uncoupled equations<br />

<strong>in</strong> the respective subspaces. Accord<strong>in</strong>g to eq. (2.63) the connection between the eigenstates of H<br />

and H' is<br />

w' = utw ,<br />

(2.71)<br />

so that the transformed problem separates <strong>in</strong>to<br />

TJH'TJW'<br />

),H' ),w'<br />

ETJW' ,<br />

E),w' .<br />

Let us now def<strong>in</strong>e the potential after perform<strong>in</strong>g the unitary transformation via<br />

v' == H' -Ho .<br />

(2.72)<br />

(2.73)<br />

(2.74)<br />

Note that <strong>in</strong> this def<strong>in</strong>ition we have used the free Hamiltonian Ho, which is not unitarily transformed.16<br />

That is why<br />

v' i= U t VU . (2.75)<br />

In what follows, we will nevertheless refer, for brevity, to V' as to a unitarily transformed potential.<br />

<strong>The</strong> <strong>in</strong>equality (2.75) should always be kept <strong>in</strong> m<strong>in</strong>d.<br />

Let us now consider the transformed scatter<strong>in</strong>g states correspond<strong>in</strong>g to an asymptotic momentum<br />

if:<br />

IWq'<br />

� (+) ) = lim iEG'(Eq + iE) lif) ,<br />

(2.76)<br />

f--+O<br />

where Iq) is a momentum eigenstate, Ho Iq) = Eq Iq) and G'(z) is the transformed resolvent<br />

operator<br />

o<br />

(z - ),H' ),)-1 )<br />

. (2.77)<br />

Obviously, z should not be <strong>in</strong> the spectrum of H. Note that the resolvent operator of the transformed<br />

Hamiltonian H' is block-diagonal. As a consequence, the scatter<strong>in</strong>g states IW:Z(+)) lie <strong>in</strong><br />

the TJ- (),-) space, if the correspond<strong>in</strong>g asymptotic momentum if belongs to the TJ- (),-) space,<br />

respectively. Immediately, the crucial question arises about the connection between the scatter<strong>in</strong>g<br />

states Iw�+)) == limHo iEG(Eq + iE) lif) and Iw:z(+)). It is not obvious that eq. (2.71) holds also<br />

for these scatter<strong>in</strong>g states, which are def<strong>in</strong>ed through specific boundary conditions, see eq. (2.76).<br />

Note that if the transformed and orig<strong>in</strong>al scatter<strong>in</strong>g states are not connected via an unitary operator,<br />

then the S-matrix would change after perform<strong>in</strong>g the unitary transformation. We sketch<br />

now a proof, show<strong>in</strong>g that eq. (2.71) is <strong>in</strong>deed valid <strong>in</strong> this case and that the relation<br />

(2.78)<br />

16<strong>The</strong> unitary operator U does, <strong>in</strong> general, not commute with the free Hamiltonian Ho . In this sense, equation<br />

(2.74) corresponds to a non-trivial def<strong>in</strong>ition of the potential V' . We will comment more on that later on.


2.3. Go<strong>in</strong>g to higher energies: a toy model 27<br />

is satisfied. <strong>The</strong> follow<strong>in</strong>g steps appear highly plausible but do not replace a mathematically<br />

rigorous proof. Consider the left hand side of this equation:<br />

lim iEG'(Eq + iE) Iv = lim iEUt G(Eq + iE) U Iq')<br />

€-+o €-+o<br />

Ut !� iEG(Eq +iE) ((77 + >'A77) (1 + AtA)- 1/2<br />

+ (>' - 77At>.) (1 + AAt) - 1/2 ) Icf) .<br />

In the last l<strong>in</strong>e we used eq. (2.65). Let us def<strong>in</strong>e the operators B and C by<br />

<strong>The</strong>n eq. (2.79) takes the form<br />

with<br />

B<br />

C<br />

( ) - 77B77 = 77 1 + At A 1/2 - 'TJ ,<br />

>'C>' = >. (1 + AAt) - 1/2 _ >. .<br />

(2.79)<br />

(2.80)<br />

(2.81)<br />

(2.82)<br />

(2.83)<br />

Note that the operator A and, as a consequence, B and C depend on the <strong>in</strong>teraction V and are at<br />

least l<strong>in</strong>ear <strong>in</strong> V to lowest order. This is obvious from eq. (2.69). Further it can be excluded that<br />

the matrix element (q'IFIq') is <strong>in</strong>f<strong>in</strong>itely large. This is because we ass urne that the operator F can<br />

be represented <strong>in</strong> terms of a (convergent) expansion <strong>in</strong> powers of the smooth potential V and that<br />

is why its matrix element (plFlcf) does not conta<strong>in</strong> terms like 8(p - cf). Stated differently, it is<br />

not possible that Flq') = alq') + ... , where a is some f<strong>in</strong>ite constant and the ellipses correspond to<br />

other states. <strong>The</strong>refore, no pole cx 1 j (iE) can be generated <strong>in</strong> the application of G (Eq + iE). This<br />

can be seen us<strong>in</strong>g a perturbative argument and expand<strong>in</strong>g the full resolvent operator as follows:<br />

lim itG(Eq + iE) F Icf) = lim iE (f (Go(Eq + iE)V)i) Go(Eq + iE) F Iq')<br />

(2.84)<br />

€-+o €-+o<br />

i=O<br />

Because of the above mentioned property of F it is clear that (p lFlq') does not conta<strong>in</strong> a term<br />

proportional to 8(p - cf) and therefore one can not generate a pole term 1j(iE) through the<br />

application of Go(Eq + iE) onto FIif). That is why each s<strong>in</strong>gle term of the series on the right hand<br />

side of this equation equals zero. As a consequence, one obta<strong>in</strong>s<br />

lim iEG(Eq + iE) F Iq') = 0 ,<br />

€-+o<br />

(2.85)<br />

and thus eq. (2.78) is <strong>in</strong>deed satisfied. We thus have shown that the scatter<strong>in</strong>g states \ji�+) <strong>in</strong>itiated<br />

by momenta cf from the low momentum 77-space are connected to the transformed states \ji:r(+)<br />

via the unitary operator U. <strong>The</strong> correspond<strong>in</strong>g >.-components of \ji:r(+) are strictly zero.<br />

After consider<strong>in</strong>g the scatter<strong>in</strong>g states, we now turn our attention to the bound states. Aga<strong>in</strong>,<br />

the obvious question is: Where do the transformed bound states of H reside? If the cut-off A is<br />

sufficiently large then A goes to zero. This is a simple consequence of the fact that V is assumed<br />

to fall off sufficiently fast for high momenta. Consequently, >.H' >. is approximately equal to >.H >.


28 2. Low-momentum efIective theories for two nucleons<br />

which conta<strong>in</strong>s only a small portion of V and, thus, can not support bound states at all. <strong>The</strong><br />

transformed bound states have therefore to be solutions of eq. (2.72) and the 'x-components of<br />

the transformed bound states have to be exactly zero. It is not known to us whether this rema<strong>in</strong>s<br />

true choos<strong>in</strong>g sm aller and sm aller cut-off values. For the physically reasonable choices used <strong>in</strong><br />

next seetions this turns out to be true. Trivially there can not be solutions to the same bound<br />

state energy for both equations (2.72) and (2.73), s<strong>in</strong>ce this would contradict the non-degeneracy<br />

assumption for the bound states of H.<br />

One can argue just <strong>in</strong> the same way to see the validity of the equation (2.71) for the states<br />

Iwq(-)) == limHo ifG(E q - if) Iq) and Iwif(-)) == limt----to ifG'(E q - if) Iq). <strong>The</strong>refore, the Smatrices<br />

<strong>in</strong> the orig<strong>in</strong>al and transformed problem are the same:<br />

(2.86)<br />

As a consequence, the on-shell T-matrix element evaluated by means of the Lippman-Schw<strong>in</strong>ger<br />

(LS) equation<br />

T' = V' + V'GoT' , (2.87)<br />

yields exactly the same matrix elements as ga<strong>in</strong>ed via the LS equation of the orig<strong>in</strong>al problem<br />

T = V + VGoT . (2.88)<br />

Note that <strong>in</strong> eq. (2.88) one <strong>in</strong>tegrates over the whole (<strong>in</strong>f<strong>in</strong>ite) moment um range whereas <strong>in</strong><br />

eq. (2.87) only momenta up to the cut-off A are <strong>in</strong>volved.<br />

An important observation is that after perform<strong>in</strong>g the unitary transformation most local operators<br />

become non-Iocal. For an arbitrary local operator O(ih,ih) = O(pd 8(Pl -P2) one obta<strong>in</strong>s <strong>in</strong> the<br />

transformed space<br />

(2.89)<br />

which, <strong>in</strong> general, conta<strong>in</strong>s the usual 8-function part but <strong>in</strong> addition also a strong non-Iocal piece.<br />

<strong>The</strong>se non-Iocalities, which are easy to handle, are noth<strong>in</strong>g but the trace of the high momentum<br />

components from the full space. Note, however, that the momentum operator P of a particle<br />

and, as a consequence, the free particle Hamiltonian Ho are required to be unchanged, <strong>in</strong> order<br />

to def<strong>in</strong>e free asymptotic states. Certa<strong>in</strong>ly, one could also unitarily transform the operators Ho<br />

and p. This would not yield any new aspects s<strong>in</strong>ce the orig<strong>in</strong>al and the unitarily transformed<br />

problems would be trivially identical, the unitary transformation only leads to change of basis.<br />

We shall not consider this trivial case any furt her. Physical observables such as the deuteron<br />

b<strong>in</strong>d<strong>in</strong>g energy and phase shifts are identical <strong>in</strong> the orig<strong>in</strong>al and transformed problems as shown<br />

before. We remark that for <strong>in</strong>stance the average momentum <strong>in</strong> the deuteron will change <strong>in</strong> the<br />

transformed problem because the moment um operator is not unitarily transformed. This is not<br />

a problem s<strong>in</strong>ce it is not direct observable. From the other side, all current operators have to be<br />

unitarily transformed and this guarantees the equivalence of all observables.<br />

Let us now discuss an alternative way of determ<strong>in</strong><strong>in</strong>g the operator A, as exhibited <strong>in</strong> ref. [52J.<br />

That method uses the knowledge of the scatter<strong>in</strong>g states to the orig<strong>in</strong>al Hamiltonian H. Let<br />

us now look <strong>in</strong> some more detail at this formalism. As it was already po<strong>in</strong>ted out ab ove , the<br />

connection between the scatter<strong>in</strong>g states <strong>in</strong> the orig<strong>in</strong>al and transformed problem is given by<br />

u Iwif(+))<br />

(2.90)<br />

((1J + ,XA1J) (1 +AtA)- 1 /2 1J+ ('x- 1JAt,X) (1+AAt)-1 /2 ,X) Iwif(+))


2.3. Go<strong>in</strong>g to higher energies: a toy model 29<br />

For momenta ij from the 1]-space this equation takes a simpler form<br />

(2.91)<br />

s<strong>in</strong>ce the resolvent operator of the transformed Hamiltonian H' is block-diagonal as already<br />

po<strong>in</strong>ted out before, cf eq. (2.77). Now we act with the operator (1] + )'A1]) on both sides of<br />

this equation. Because of the trivial relation (1] + )'A1]) (1] + )'A1]) = 1] + )'A1] we conclude from<br />

eq. (2.91) for all momenta ij E 1] that<br />

), Iw�+) ) =<br />

q E 1] " q E Ti<br />

)'A'l1 Iw�+) )<br />

Project<strong>in</strong>g this equation onto the state (pi, p > A, and mak<strong>in</strong>g use of the relation<br />

(2.92)<br />

(2.93)<br />

where T(Pl ,P 2 , z) is the ord<strong>in</strong>ary off-shell T-matrix, we end up with the follow<strong>in</strong>g l<strong>in</strong>ear <strong>in</strong>tegral<br />

equation for the operator A:<br />

A(� ;1\ _ T(p, ij, Eq) _ ! d3 , A(p, ij') T(ij',ij,Eq)<br />

.<br />

p, q ) - E E q E E<br />

q - p q - q' + Zf<br />

(2.94)<br />

Here the <strong>in</strong>tegration over q ' goes from 0 to A. Consequently, the dynamical <strong>in</strong>put <strong>in</strong> this method<br />

is the T-matrix T(ql,q""2,Eq2 ). Note that this is not a usual Lippmann-Schw<strong>in</strong>ger equation, s<strong>in</strong>ce<br />

the position of the pole, Eq, <strong>in</strong> the <strong>in</strong>tegration over q' is not fixed but moves with q. It is the<br />

second argument <strong>in</strong> A which varies, the first one is a parameter for the <strong>in</strong>tegral equation.<br />

To end this section we would like to rewrite the decoupl<strong>in</strong>g equation (2.69), which is given <strong>in</strong> the<br />

three-dimensional vector space of momenta, <strong>in</strong> a more convenient partial wave decomposed form.<br />

For two particles with sp<strong>in</strong> 1/2 one obta<strong>in</strong>s, us<strong>in</strong>g the standard Ilsj) representation, the follow<strong>in</strong>g<br />

equation<br />

Vi:! (p, q)<br />

� 0<br />

InA [00 . . .<br />

'2 ' '2 ' SJ , sJ " sJ ,<br />

q dq P dp All (p, q )Vil' (q ,p )Al'l'(p ,q)<br />

A<br />

11'<br />

(Eq - Ep) A:f, (p, q )<br />

(2.95)<br />

where Vi:!(p,q ) == (lsj,plVll'sj,q) and A:f,(p,q) == (lsj,pIAll'sj,q). In the uncoupled case 1 is<br />

conserved and equals j. In the coupled cases it takes the values 1 = j ± 1. Analogously, we can<br />

partial wave decompose the l<strong>in</strong>ear equation (2.94):<br />

sj ( ) A AS2( ') T!j( , E)<br />

ASj ( ) - Tl!' p,q, Eq _ " In '2 d ' 11 p,q 11' q , q, q<br />

q p _<br />

11' p, q -<br />

E - E � q q E - E +'<br />

I<br />

0 q q' Zf<br />

2.3.2 Regularization of the decoupl<strong>in</strong>g equation<br />

(2.96)<br />

<strong>The</strong> factor (Eq - Ep) <strong>in</strong> eq. (2.69) multiply<strong>in</strong>g A(p, ij) requires some caution when p == IPI and<br />

q == l


30 2. Low-momentum effective theories for two nucleons<br />

powers of the <strong>in</strong>teraction V(p, ij), then one can show that A(p, ij) becomes <strong>in</strong>f<strong>in</strong>ite at each order<br />

<strong>in</strong> V(p, ij) if both p and q approach A. For <strong>in</strong>stance, the lead<strong>in</strong>g approximation for A(p, ij) is<br />

given by<br />

A( � ;;'l V (p, ij)<br />

p,q =<br />

(2.97)<br />

} E q - E p '<br />

from which this s<strong>in</strong>gularity can easily be read off. Note that also the l<strong>in</strong>ear equation (2.94) is not<br />

well-def<strong>in</strong>ed if both p ---7 A, q ---7 A. We proceed by regulariz<strong>in</strong>g the orig<strong>in</strong>al potential V (k', k). We<br />

multiply it with some smooth functions f(k') and f(k) which are zero <strong>in</strong> a narrow neighborhood<br />

of the po<strong>in</strong>ts k' = A and k = A and one elsewhere. <strong>The</strong> precise form of this regularization does,<br />

<strong>in</strong> fact, not matter [123]. For the actual calculations presented here, we choose<br />

f(k)<br />

f(k)<br />

f(k)<br />

f(k)<br />

1 ,<br />

1 ( Cr(k -A+a)))<br />

"2 1 + cos<br />

1 ( Cr(k - A - a)) )<br />

"2 1 + cos<br />

0,<br />

b<br />

b<br />

'<br />

'<br />

for<br />

for<br />

for<br />

for<br />

kSA-a and k'2A+a,<br />

A-aSkSA-a+b, (2.98)<br />

A+a-bSkSA+a,<br />

A-a+bSkSA+a-b,<br />

with a and b parameters of dimension [energy]. This modification of the potential V <strong>in</strong> a onedimensional<br />

case is depicted <strong>in</strong> fig. 2.3. <strong>The</strong> operator A(p, ij) based on that modified potential is<br />

weIl def<strong>in</strong>ed far p, q ---7 A.<br />

Further, we would like to quantify the effect of this regularization. <strong>The</strong> unregularized and regularized<br />

T-matrices satisfy the follow<strong>in</strong>g LS equations:<br />

T(ql, q2) V( - � ) + / d3 k V(ql, ql,q2<br />

k)T(k, q2)<br />

E E + .<br />

q2 - k 2E<br />

f(qt)V(ql, q2)f(q2)<br />

+ f(qt) / d3k V(ql,k)f(k)Treg�k, q2) .<br />

Eq2 - Ek + ZE<br />

(2.99)<br />

(2.100)<br />

Let us choose, for simplicity, b = o. <strong>The</strong>n the function f can be <strong>in</strong>terpreted as the projection<br />

operator <strong>in</strong> the moment um space<br />

f = 1 -g, (2.101)<br />

where 1 is the unit operator and 9 is the projector onto the moment um states A - a < p < A + a.<br />

<strong>The</strong> projectors 9 and f satisfy the usual algebra g2 = g, f2 = f, fg = O. Subtract<strong>in</strong>g eq. (2.99)<br />

from eq. (2.100) and project<strong>in</strong>g this difference on the f-subspace we obta<strong>in</strong> the follow<strong>in</strong>g <strong>in</strong>tegral<br />

equation for f(tlT)f == f(Treg - T)f<br />

f(tlT)f = -fVg GoTf + fVfGo(tlT)f . (2.102)<br />

To simplify the notation we have used here the operator form. As <strong>in</strong> the usual LS equation,<br />

f(tlT)f is a half-shell quantity. Note that the first term on the right-hand side of this equation<br />

is of the order 0 ( a) beca use of the <strong>in</strong>sertion of the pro j ector g. In general, each <strong>in</strong>sertion of 9<br />

leads to an additional power of a. <strong>The</strong> formal solution of this equation can be written as<br />

f(tlT)f = - (1 - fV fGO)-l fV 9 GoTf . (2.103)<br />

Assum<strong>in</strong>g the existence of the <strong>in</strong>verse operator (1-fV fGO)- l with a f<strong>in</strong>ite norm for positive energies<br />

one can estimate the upper bound for the quantity f(tlT)f. <strong>The</strong> most important observation


2.3. Go<strong>in</strong>g to higher energies: a toy model<br />

2<br />

o<br />

-2<br />

-4<br />

-6<br />

-8<br />

-10<br />

o<br />

q<br />

0.6<br />

0.4<br />

q ' [GeV]<br />

Figure 2.3: Modification of the potential due to the regularization.<br />

which follows from eq. (2.103) is that the difference between the regularized and unregularized<br />

T -matrix is l<strong>in</strong>ear <strong>in</strong> a.<br />

This means that for any fixed q < A - a, q > A + a and any f<strong>in</strong>ite E > 0 one can choose a such<br />

that ITreg(q, q) - T(q, q)1 < E.<br />

Similarly, the lead<strong>in</strong>g correction to the b<strong>in</strong>d<strong>in</strong>g energy E of a bound state \)1 due to the regularization<br />

of the potential can be obta<strong>in</strong>ed by cakulat<strong>in</strong>g the expectation value of (\)1 IV - V reg I \)1):<br />

ll'<br />

31<br />

(2.104)<br />

where we have used the partial wave decomposed form. Aga<strong>in</strong>, for any fixed q < A - a, q> A + a<br />

and any f<strong>in</strong>ite E > 0 one can choose a such that IEreg - EI < E. Later we will give numerical<br />

examples of the effects caused by that potential modification <strong>in</strong> some specific cases. We will show<br />

numerically that the effective potential V' (q, q') is affected only with<strong>in</strong> the width a for q, q' ---+ A.<br />

<strong>The</strong>re both V' and V go to zero.


32 2. Low-momentum effective theories for two nucleons<br />

2.3.3 Numerical realization of the projection formalism<br />

Let us now consider <strong>in</strong> more detail the numerical realization of the projection formalism. To<br />

simplify the notation we will omit all <strong>in</strong>dices l, s and j and consider the uncoupled case. <strong>The</strong><br />

generalization to a coupled case is straightforward. <strong>The</strong> nonl<strong>in</strong>ear equation (2.95) can only be<br />

solved numerically. We do this by iteration start<strong>in</strong>g with the value of A(p, q) given by17<br />

p,q V(p, q)<br />

E - E .<br />

A( ) =<br />

q p<br />

(2.105)<br />

Certa<strong>in</strong>ly, the iteration method does not always lead to a convergent solution. We have found<br />

that one can achieve a better convergence if one slightly modifies the usual iteration method:<br />

after each four iterations we perform an averag<strong>in</strong>g over the values of the operator A with suitably<br />

chosen weight factors. <strong>The</strong>se weight factors are found numerically for each particular value of<br />

the cut-off A requir<strong>in</strong>g that the number of iterations, needed to calculate the function A(p, q)<br />

with so me given precision, is m<strong>in</strong>imal. This scheme allows to obta<strong>in</strong> the operator A(p, q) even <strong>in</strong><br />

those cases, when the usual iteration method fails to provide the convergence. Of course, also this<br />

algorithm does not work <strong>in</strong> all cases.<br />

Alternatively, we have derived the operator A(p, q) from the l<strong>in</strong>ear equation (2.96). For that<br />

we have first calculated the usual half-shell T-matrix by solv<strong>in</strong>g the correspond<strong>in</strong>g LS-equation<br />

(2.100), which can be rewritten for the S-channel as<br />

(2.106)<br />

where we have omitted the <strong>in</strong>dices l, s and j and have not shown explicitly the regulariz<strong>in</strong>g<br />

function f. <strong>The</strong> term -mJooodkq�V(ql, q2)T(q2,q2)/(q� - k2) which equals zero is added to the<br />

right-hand side of this equation <strong>in</strong> order to replace the pr<strong>in</strong>cipal value <strong>in</strong>tegration by the ord<strong>in</strong>ary<br />

one, which can easily be handled numerically. We have solved this equation us<strong>in</strong>g the standard<br />

methods, which are described <strong>in</strong> ref. [39]. In particular, we discretize it us<strong>in</strong>g the ord<strong>in</strong>ary Gauss­<br />

Legendre quadrature rules. Choos<strong>in</strong>g n quadrat ure po<strong>in</strong>ts {q{} leads to n + 1 coupled equations<br />

for the matrix elements T(qL q2) and T(q2, q2), which can also be expressed <strong>in</strong> a matrix form. We<br />

have solved this matrix equation by <strong>in</strong>version us<strong>in</strong>g standard FORTRAN rout<strong>in</strong>es. Note that the<br />

on-shell po<strong>in</strong>t q2 should, clearly, not belong to the set of quadrat ure po<strong>in</strong>ts {qD.<br />

Once the half-shell T-matrix is calculated, one can obta<strong>in</strong> the operator A(p, q) for each fixed<br />

value of p from the l<strong>in</strong>ear equation (2.96) . As already po<strong>in</strong>ted out before, this equation has a socalled<br />

mov<strong>in</strong>g s<strong>in</strong>gularity, which makes it more difficult to handle than the Lippmann-Schw<strong>in</strong>ger<br />

equation. Indeed, one has to discretize both q and q' po<strong>in</strong>ts <strong>in</strong> this equation. But this does not<br />

allow to solve this equation as <strong>in</strong> the last case. <strong>The</strong> difference Eq - Eql can be exactly zero, s<strong>in</strong>ce q<br />

and q' belongs now to the same set of quadrat ure po<strong>in</strong>ts. Thus, one cannot calculate the pr<strong>in</strong>cipal<br />

value <strong>in</strong>tegral <strong>in</strong> the same manner as for the LS equation. To solve this equation we have used<br />

a method proposed by Glöckle et al. [144] . <strong>The</strong> idea is to expand the function A(p, q) <strong>in</strong>to cubic<br />

spl<strong>in</strong>es Si(q)<br />

(2.107)<br />

I 7Rere and <strong>in</strong> what follows we will always consider the regularized potential vreg(qI, eh) = !(qI) V(qI , q2 ) !(q2)<br />

and suppress the <strong>in</strong>dex "reg" for brevity.


2.3. Go<strong>in</strong>g to higher energies: a toy model 33<br />

based on a set of suitably chosen grid po<strong>in</strong>ts {qi} <strong>in</strong> the <strong>in</strong>terval [0, A]. Insert<strong>in</strong>g this expression<br />

for the unknown function A(p, q) <strong>in</strong> eq. (2.96) and choos<strong>in</strong>g q = qi one obta<strong>in</strong>s for each i<br />

A( .) - T(p,qi) _" A( .)1000 '2 d ,Sj(q')T(q',qi)<br />

p, qt -m 2 _ 2 � m p, % q q 2 _ + qi P j 0 qi q '2 ZE<br />

' .<br />

(2.108)<br />

<strong>The</strong> <strong>in</strong>tegral can easily be performed, s<strong>in</strong>ce the q-dependence of A(p, q) is now given by the known<br />

functions Si(q). For each <strong>in</strong>terval qj � q � qj+l these functions are expressed by cubic polynomials<br />

(spl<strong>in</strong>es), which satisfy Si(qj) = Oij. <strong>The</strong>ir precise form can be found <strong>in</strong> the reference [144]. This<br />

procedure leads to a system of l<strong>in</strong>ear equations for the expansion coefficients A(p, qi), which can<br />

be solved by the standard methods.<br />

It is important to note that for each p the second derivative of the function A(p, q) has to vanish<br />

at the ends of the <strong>in</strong>terval of <strong>in</strong>terpolation:<br />

d2A(p, q)<br />

d 2 .<br />

(2.109)<br />

I =0<br />

q q=A<br />

<strong>The</strong>se conditions are necessary for the spl<strong>in</strong>e method to work. Clearly, only one of these conditions<br />

is satisfied, namely those for q = A. This is guaranteed by the regularization of the potential, the<br />

details of which are described <strong>in</strong> the last section. Practically, if the function A(p, q) is smooth<br />

enough, one can simply ignore these requirements and obta<strong>in</strong> a good approximate solution tak<strong>in</strong>g<br />

a large number of grid po<strong>in</strong>ts.<br />

Hav<strong>in</strong>g calculated the operator A, we are now <strong>in</strong> the position to consider observables. First, we<br />

need the transformed Hamiltonian H'. <strong>The</strong> determ<strong>in</strong>ation of H' accord<strong>in</strong>g to eq. (2.70) requires<br />

the calculation of (TI + At A) -1/2. This is done <strong>in</strong> the follow<strong>in</strong>g manner: as already described <strong>in</strong><br />

section 2.3.2, we first def<strong>in</strong>e the function B(q, q') as given <strong>in</strong> eq. (2.80). Putt<strong>in</strong>g the projector TI<br />

onto the left-hand side of this equation and tak<strong>in</strong>g the square of it we end up with the follow<strong>in</strong>g<br />

equation:<br />

(2.110)<br />

This can be rewritten (for the S-channel) as the follow<strong>in</strong>g nonl<strong>in</strong>ear <strong>in</strong>tegral equation for the<br />

function B(q, q'):<br />

B(q, q') = -1100 p2 dp A(p, q)A(p, q') -1 fo A<br />

- 100 p2 dp fo A<br />

;p dij B(ij, q)B(ij, q') (2.111)<br />

ij2 dij A(p, q)A(p, ij) (B(ij, q') + fo A<br />

ij, 2 dij' B(ij, ij')B(ij', q'))<br />

Note that q,q' E [O,A]. <strong>The</strong> function B(q,q') def<strong>in</strong>ed <strong>in</strong> eq. (2.80) is obviously symmetrie <strong>in</strong> the<br />

arguments q, q': B(q, q') = B(q', q). This is because the function A(p, q) is real, which can be seen<br />

from eq. (2.69). We have solved the equation (2.111) by iteration, us<strong>in</strong>g the same Gauss-Legendre<br />

quadrat ure po<strong>in</strong>ts as discussed before and start<strong>in</strong>g with B(q, q') = -(1/2) If p2 dp A(p, q)A(p, q').<br />

We have found a very fast convergence of the iteration method <strong>in</strong> this case. <strong>The</strong> <strong>in</strong>tegrations<br />

present <strong>in</strong> eq. (2.70) to determ<strong>in</strong>e H' are performed by standard Gauss-Legendre quadratures<br />

and we end up with an effective potential V' (q', q) def<strong>in</strong>ed for q, q' � A.<br />

2.3.4 Unitary transformation for a potential of the Malfliet-Tjon type<br />

We will now present the results obta<strong>in</strong>ed us<strong>in</strong>g the formalism <strong>in</strong>troduced <strong>in</strong> the last sections. Our<br />

start<strong>in</strong>g po<strong>in</strong>t is a model potential which captures the essential features of the nucleon-nucleon


34<br />

2. Low-momentum effective theories for two nuc1eons<br />

(N N) <strong>in</strong>teraction. We choose a moment um space N N potential with an attractive and a repulsive<br />

part correspond<strong>in</strong>g to the exchange of a light and a heavy scalar meson:<br />

1 ( VH VL<br />

ql, q2 = )<br />

21r2 t + J-Lk - t + J-LI '<br />

� �<br />

V( )<br />

(2.112)<br />

with t = (1]1 - 1]2)2. Here, J-LL and J-LH are the masses of the light and heavy mesons, respectively.<br />

<strong>The</strong> strengths of the meson exchanges and the masses of the correspond<strong>in</strong>g mesons are choosen<br />

as given <strong>in</strong> ref. [126]: VH = 7.291, VL = 3.177, J-LH = 613.7 MeV and J-LL = 305.9 MeV.18 That<br />

(Eq - Ep)A(p, q)<br />

[GeV-2]<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

o<br />

-0.2<br />

-0.4<br />

o<br />

q [GeV]<br />

.5<br />

p [GeV]<br />

Figure 2.4: <strong>The</strong> function (Eq - Ep)A(p, q) for A = 400 MeV.<br />

potential supports one bound state at E = -2.23 MeV and leads to S-wave phase shifts <strong>in</strong> the 3 SI<br />

partial wave <strong>in</strong> fair agreement with results from N N partial wave analysis. Thus, this potential<br />

captures some essential features of the N N <strong>in</strong>teraction. Next, we have to select a value for the<br />

cut-off A. In pr<strong>in</strong>ciple, A could take any value, <strong>in</strong> particular also above the larger of the two<br />

effective meson masses <strong>in</strong> the potential. We shall comment on that below. We are, however,<br />

mostly <strong>in</strong>terested <strong>in</strong> an effective theory with small momenta only and thus will choose the cut-off<br />

between A = 300 and A = 400 MeV. To be more precise, by "small" we mean a scale which is<br />

below the mass of the exchanged heavy particle, so that one can consider the situation with a<br />

propagat<strong>in</strong>g light meson and the heavy meson <strong>in</strong>tegrated out and substituted by a str<strong>in</strong>g of local<br />

contact terms (as will be discussed <strong>in</strong> more detail below) .<br />

18 For the light meson, we could have chosen the pion mass. However, s<strong>in</strong>ce nuclear b<strong>in</strong>d<strong>in</strong>g is largely due to<br />

correlated two-pion exchange, a somewhat larger value was chosen. All conclusions drawn <strong>in</strong> what follows are,<br />

however, <strong>in</strong>variant und er the precise choice of this number.


2.3. Go<strong>in</strong>g to higher energies: a toy model 35<br />

In what follows, we will restrict our considerations to N N S-waves. Because of no sp<strong>in</strong> dependence<br />

one can work out the correspond<strong>in</strong>g S-wave potential simply by <strong>in</strong>tegrat<strong>in</strong>g over angles. This leads<br />

to<br />

(2.113)<br />

with ql,2 = ItZi,21. Correspond<strong>in</strong>gly, we have to set s = [ = [' = j = 0 <strong>in</strong> the decoupl<strong>in</strong>g equation<br />

(2.95).<br />

As already po<strong>in</strong>ted out before, we first need to regularize the equation (2.95) by multiply<strong>in</strong>g<br />

the potential V(ql, q2) by functions f(ql), f(q2)' <strong>The</strong> presice form of the function f is given <strong>in</strong><br />

eq. (2.98). <strong>The</strong> nonl<strong>in</strong>ear <strong>in</strong>tegral equation (2.95) is solved by the iteration method as described<br />

<strong>in</strong> the last section. This leads to a matrix equation. Typically, we choose a =<br />

20 keV, b = 10 keV<br />

and 100 Gauss-Legendre po<strong>in</strong>ts to discretize eq. (2.95). <strong>The</strong> shift <strong>in</strong> the b<strong>in</strong>d<strong>in</strong>g energy due to the<br />

regularization is 0.012 keV, which is a 0.01 permille effect. Thus, the effects of the regularization<br />

are quite small and can be made smaller if so desired. For the value of the cut-off A = 400 MeV<br />

we show the result<strong>in</strong>g function (Eq - Ep)A(p, q) <strong>in</strong> fig. 2.4. Here we have multiplied the function<br />

A(p, q) by (Eq - Ep) <strong>in</strong> order to avoid a peak at p, q ---+ A. A typical total number of iterations is<br />

40-100 to achieve an accuracy of 0.0001 Ge V-3 for the function A(p, q) related to typical values<br />

of A 0f the order 1 GeV -3.<br />

Hav<strong>in</strong>g calculated the operator A, we are now <strong>in</strong> the position to consider observables. After the<br />

function B(q, q') is evaluated from equation (2.111), as described <strong>in</strong> the last section, we perform<br />

the <strong>in</strong>tegrations present <strong>in</strong> eq. (2.70) to determ<strong>in</strong>e H' us<strong>in</strong>g aga<strong>in</strong> Gau�s-Legendre quadratures<br />

and end up with an effective potential V' (q', q) def<strong>in</strong>ed for q, q' ::; A. It is displayed <strong>in</strong> the left<br />

panel of fig. 2.5 <strong>in</strong> comparison to the orig<strong>in</strong>al underly<strong>in</strong>g potential for A = 400 MeV. Note that<br />

the very small region of the regularization is aga<strong>in</strong> not shown to keep the presentation elearer.<br />

One f<strong>in</strong>ds that the effective and the orig<strong>in</strong>al potentials have a similar shape for momenta below<br />

the cut-off. <strong>The</strong> ma<strong>in</strong> effect of <strong>in</strong>tegrat<strong>in</strong>g out of high moment um components at the level of the<br />

potential seems to be given <strong>in</strong> this case just by an overall shift. Indeed, from the right panel of<br />

fig. (2.5) one can see that the variation of the difference between the two potentials is only about<br />

8% for all values of momenta q, q'. <strong>The</strong> solution of the effective LS equation (2.87) is now very<br />

simple s<strong>in</strong>ce the <strong>in</strong>tegration is conf<strong>in</strong>ed to q ::; A. <strong>The</strong> effective bound state wave function obeys<br />

a correspond<strong>in</strong>g homogeneous <strong>in</strong>tegral equation<br />

2 A<br />

�'lt(q) + r iP dijV'(q,ij)'lt(ij) = E'lt(q) , (2.114)<br />

mN Ja<br />

with mN = 938.9 MeV the nueleon mass. Us<strong>in</strong>g 40 quadrature po<strong>in</strong>ts the result<strong>in</strong>g b<strong>in</strong>d<strong>in</strong>g energy<br />

agrees with<strong>in</strong> 9 digits with the result ga<strong>in</strong>ed from the correspond<strong>in</strong>g homogeneous equation driven<br />

by the orig<strong>in</strong>al potential V and def<strong>in</strong>ed <strong>in</strong> the whole moment um range. Furthermore, the S-wave<br />

phase shifts agree perfectly solv<strong>in</strong>g either eq. (2.88) <strong>in</strong> the full moment um space or eq. (2.87) <strong>in</strong> the<br />

space of only low momenta. This is shown <strong>in</strong> fig. 2.6. Note that due to the regularization the phase<br />

shifts go to zero for q ---+ A. Further, the phase shifts are shown as a function of the k<strong>in</strong>etic energy<br />

<strong>in</strong> the lab frame and the zero occurs at 7lab = 2A2/mN = 341 (85) MeV for A = 400 (200) MeV.<br />

One can repeat this numerical exercise choos<strong>in</strong>g different cut-off values. Sett<strong>in</strong>g for <strong>in</strong>stance A = 2<br />

GeV, the correspond<strong>in</strong>g function (Eq - Ep)A(p, q) is shown <strong>in</strong> fig. 2.7 and the effective potential<br />

V'(q',q) turnes out to be rather elose to the orig<strong>in</strong>al one, [V(q',q) - V'(q',q)l/V(O,O) rv 0.02.<br />

Here we have choosen a =200 keV and b =100 keV, which leads to the same shift <strong>in</strong> the deuteron


36<br />

2<br />

o<br />

-2<br />

-4<br />

-6<br />

-8<br />

-10 �<br />

-12<br />

t-


2.3. Go<strong>in</strong>g to high er energies: a toy model<br />

180<br />

160<br />

140<br />

120<br />

bO 100<br />


38<br />

(Eq - Ep )A(p, q)<br />

[GeV-2]<br />

2<br />

1.6<br />

1.2<br />

0.8<br />

0.4<br />

q [GeV]<br />

2. Low-momentum effective theories for two nucleons<br />

Figure 2.7: <strong>The</strong> function (Eq - Ep)A(p, q) for A =<br />

p [GeV]<br />

2<br />

GeV.<br />

our case given by the exchange of the light meson, and to represent the effects of the heavy<br />

meson exchange by add<strong>in</strong>g a str<strong>in</strong>g of local contact <strong>in</strong>teractions to the Hamiltonian. Proceed<strong>in</strong>g<br />

<strong>in</strong> this way one needs to <strong>in</strong>troduce a cut-off to remove all ultraviolet divergences caused by the<br />

contact <strong>in</strong>teractions. S<strong>in</strong>ce a precise choice of the regulat<strong>in</strong>g function is of no relevance for the<br />

low-energy observables, we can regard the same cut-off function as <strong>in</strong> the project<strong>in</strong>g formalism<br />

discussed above. Speak<strong>in</strong>g more precisely, we take the sharp cut-off. Now both the Hamiltonian<br />

with<strong>in</strong> the effective theory approach and the one derived from the unitary transformation are<br />

def<strong>in</strong>ed over the same range of small momenta. That is why we can obta<strong>in</strong> the values of the<br />

coupl<strong>in</strong>g constants accompany<strong>in</strong>g the contact terms from match<strong>in</strong>g the effective Hamiltonian to<br />

the unitarily transformed one. It is commonly believed that the coupl<strong>in</strong>g constants, scaled by<br />

some effective mass parameter Ascale, should have the property of "naturalness", which me ans they<br />

should be of the order of one. Only then this expansion makes sense and the power-count<strong>in</strong>g is<br />

self-consistent. <strong>The</strong> value of the scale Ascale is obviously closely related to the radius of convergence<br />

of this expansion. Let us first consider the simpler case when the pionic degrees of freedom are<br />

<strong>in</strong>tegrated out. In that case, the low-energy N N <strong>in</strong>teraction can be described entirely <strong>in</strong> terms of<br />

contact terms and one expects the scale Ascale to be of the order of the pion mass m-rr . <strong>The</strong>refore, all<br />

physical parameters which describe the N N phase shifts up to center of mass momenta of the order<br />

m-rr , such as the scatter<strong>in</strong>g length a and the effective range re , are expected to scale like appropriate<br />

<strong>in</strong>verse powers of m7f' This is, however, not the case <strong>in</strong> nuclear physics: the NN scatter<strong>in</strong>g length<br />

<strong>in</strong> the lSo-channel takes an unnatural large value, a = (-23.714 ± 0.013) fm » l/m7f. <strong>The</strong><br />

physics of this phenomenon is well understood (there is a virtual bound state very near zero


2.3. Go<strong>in</strong>g to higher energies: a toy model<br />

(Eq - Ep)A(p, q)<br />

[GeV-2]<br />

3<br />

-1<br />

-3<br />

-5<br />

q [GeV]<br />

p [GeV]<br />

Figure 2.8: <strong>The</strong> function (Eq - Ep)A(p, q) for A = 200 MeV.<br />

energy) and amounts to a f<strong>in</strong>e tun<strong>in</strong>g between different terms when the correspond<strong>in</strong>g phase shifts<br />

are calculated [83], [90]. To achieve such cancelations <strong>in</strong> the effective field theory calculations one<br />

has to "f<strong>in</strong>e tune" the parameters. We shall see below how this "f<strong>in</strong>e tun<strong>in</strong>g" works <strong>in</strong> our model.<br />

<strong>The</strong> situation is more complicated <strong>in</strong> the effective theory with pions s<strong>in</strong>ce different scales appear<br />

explicitly. That is why it is not clear a priori what scale enters the coefficients <strong>in</strong> the Hamiltonian.<br />

Us<strong>in</strong>g a modified dimensional regularization scheme and renormalization group equation<br />

arguments, the authors of [90] have argued that Ascale rv 300<br />

39<br />

MeV. On the other hand, it was<br />

stressed by the Maryland group [83] that no useful and systematic effective field theory (EFT)<br />

exists for two nucleons with a f<strong>in</strong>ite cut-off as a regulator. A systematic EFT is to be understood<br />

<strong>in</strong> the sense that the contributions of the higher-order terms <strong>in</strong> the effective Lagrangian to the<br />

observables at low momenta (i.e. the quantum averages of such operators) are small and, therefore,<br />

truncation of such operators at some f<strong>in</strong>ite order is justified. With<strong>in</strong> our realistic model, we<br />

can address this question <strong>in</strong> a quantitative manner as shown below.<br />

Let us now apply the concept of the effective theory to our case. <strong>The</strong> orig<strong>in</strong>al potential plays the<br />

role of the underly<strong>in</strong>g theory of N N <strong>in</strong>teractions <strong>in</strong> analogy to QCD underly<strong>in</strong>g the true EFT<br />

of N N scatter<strong>in</strong>g. Integrat<strong>in</strong>g out the momenta above some cut-off A < JLH, we arrive via the<br />

unitary transformation at the potential V'(q, q') def<strong>in</strong>ed on a subspace of small momenta. Now<br />

we would like to represent this unitarily transformed potential by the one obta<strong>in</strong>ed with<strong>in</strong> the<br />

effective theory procedure:<br />

(2.115)


40 2. Low-momentum effective theories for two nuc1eons<br />

V (VI) [GeV-2]<br />

-2<br />

-4<br />

9<br />

-6<br />

-8<br />

7<br />

-10<br />

5<br />

-12<br />

-14<br />

3<br />

[GeV]<br />

q [GeV] q [GeV]<br />

Figure 2.9: Left panel: effective two-nucleon potential VI (solid l<strong>in</strong>es) <strong>in</strong> comparison with the<br />

orig<strong>in</strong>al potential V (dashed l<strong>in</strong>es) for momenta less than 200 MeV. Right panel: difference between<br />

the orig<strong>in</strong>al and effective potential V - VI as a function of momenta q, ql .<br />

Bere, V�ontact is a str<strong>in</strong>g of local contact terms of <strong>in</strong>creas<strong>in</strong>g dimension, which is caused by the<br />

heavy mass particle and the high momenta p > A. We def<strong>in</strong>e the piece Vifght to be the light<br />

meson exchange contribution (for ql, q < A): Vifght = Viight , w here Viight denotes the second term<br />

<strong>in</strong> eq. (2.113). Specifically,<br />

with<br />

VI = V(O) + V(2) + V(4) + V(6) +<br />

contact<br />

V(O)<br />

V(2)<br />

V(4)<br />

V(6)<br />

Co ,<br />

C 2 (q12 + q2)<br />

C 4(q12 + q2)2 + C�q12q2 ,<br />

. . . ,<br />

C 6 (q12 + q2)3 + C� (qI2 + q2)q12q2 ,<br />

(2.116)<br />

(2.117)<br />

and the superscript I (2n)' gives the chiral dimension (i.e. the number of derivatives). Thus the first<br />

term on the right hand side of eq. (2.115) is the purely attractive part of the orig<strong>in</strong>al potential due<br />

to the light meson exchange. In this way, we have an effective theory for NN <strong>in</strong>teractions, <strong>in</strong> which<br />

the effects of the heavy meson exchange and the high momentum components are approximated<br />

by the series of N N contact <strong>in</strong>teractions and the light mesons are treated explicitly. Note that the<br />

constants Ci , CI <strong>in</strong> eq. (2.117) correspond to renormalized quantities s<strong>in</strong>ce the effective potential<br />

VI (ql, q) is regularized with the sharp cut-off A. <strong>The</strong> first question we address <strong>in</strong> our model is:<br />

what is the value of the scale Ascale and its relation to the cut-off A? Of course, a priori these two<br />

scales are not related. For the k<strong>in</strong>d of questions we will address <strong>in</strong> the follow<strong>in</strong>g, we can, however,<br />

derive some lose relation between these two scales as discussed below. S<strong>in</strong>ce we know VI (ql , q)


2.3. Go<strong>in</strong>g to higher energies: a toy model 41<br />

numerically, we can determ<strong>in</strong>e the constants Ci by fitt<strong>in</strong>g eq. (2.116) to V'(q', q) - VIight (q', q). This<br />

is done numerically us<strong>in</strong>g the standard FORTRAN subrout<strong>in</strong>es for polynomial fits to functions of<br />

one variable and tak<strong>in</strong>g the correspond<strong>in</strong>g polynomials typically of order ten to eleven. Once this is<br />

done for the functions V(q, 0) and V(q, q) all constants Ci, C: <strong>in</strong> eq. (2.117) can be easily evaluated.<br />

For the potential parameters used so far and the choices of A = 400 MeV and A = 300 Me V, the<br />

result<strong>in</strong>g constants are given <strong>in</strong> table 2.1:<br />

Co C' 4<br />

6<br />

1 A = 400 MeV 11 11.23 1 -32.27 1 86.73 1 113.9 -913.6<br />

I A = 300<br />

-265.2<br />

MeV 11 11.15 I -32.93 I 85.76 I 115.6 -232.6<br />

C'<br />

-783.7<br />

Table 2.1: <strong>The</strong> values of the coupl<strong>in</strong>g constants Ci, q <strong>in</strong> [GeV(-2-i )] for two choices of the cut-off<br />

A.<br />

Naturalness of the coupl<strong>in</strong>g constants Ci, q me ans that<br />

(2.118)<br />

C2n<br />

- = anAscale 2 ,<br />

C 2n+2<br />

where the an are numbers of order one. Indeed, as one can read off from table 2.1, such a common<br />

scale exists, namely<br />

Ascale =<br />

600<br />

MeV . (2.119)<br />

This is a reasonable value <strong>in</strong> the sense that it is very elose to the mass /1H of the heavy mesons,<br />

which is <strong>in</strong>tegrated out from the theory. Stated differently, the value for Ascale agrees with naive<br />

expectations. As it turns out, even for cut-off values like A = 300 MeV, there is only a small<br />

difference between the heavy meson mass and the ensu<strong>in</strong>g natural mass scale.<br />

Another observation is that the values of the Ci, CI depend very weakly on the concrete choice<br />

of the cut-off A. Clearly, for such an expansion of the heavy mass exchange <strong>in</strong> terms of contact<br />

<strong>in</strong>teractions to make sense, A has to be chosen below /1H. Furthermore, s<strong>in</strong>ce we explicitly keep<br />

the light meson, A should not be smaller than the mass /1L. If one were to select such a value<br />

for the cut-off, one could also consider the possibility of expand<strong>in</strong>g the light meson exchange <strong>in</strong> a<br />

str<strong>in</strong>g of contact terms. We do, however, not pursue this option <strong>in</strong> here. <strong>The</strong>refore, we conelude<br />

that one should set A < Ascale but it is not possible to f<strong>in</strong>d a more precise relation. In fig. 2.10<br />

MeV.<br />

we show how weIl the potential V' (q', q) is reproduced by the truncated expansion eq. (2.116) for<br />

A = 300<br />

We have also calculated the two-body b<strong>in</strong>d<strong>in</strong>g energy and the phase shifts us<strong>in</strong>g the form<br />

eq. (2.116) with the constants given <strong>in</strong> table 2.1. <strong>The</strong> correspond<strong>in</strong>g results are shown <strong>in</strong> fig. 2.11<br />

and <strong>in</strong> table 2.2. <strong>The</strong> agreement with the exact values is good. However, one sees that terms<br />

of rat her high order should be kept <strong>in</strong> the effective potential Vcontact <strong>in</strong> order to have the b<strong>in</strong>d<strong>in</strong>g<br />

energy correct with<strong>in</strong> a few percent. Note, however, that the value of the b<strong>in</strong>d<strong>in</strong>g energy is<br />

unnaturally small compared to a typical hadronic scale like the pion mass or the scale of chiral<br />

symmetry break<strong>in</strong>g. <strong>The</strong> phase shifts are described fairly weIl for k<strong>in</strong>etic energies (<strong>in</strong> the lab) up to<br />

about 100 MeV if one reta<strong>in</strong>s the first three terms <strong>in</strong> the expansion eq. (2.116). For A = 400 MeV,<br />

one can not expect any reasonably fast convergence for the b<strong>in</strong>d<strong>in</strong>g energy any more. This can<br />

be traced back to the fact that one is elose to the radius of convergence for momenta elose to<br />

the cut-off. More specificaIly, with q = q' = 400 Me V, the pert<strong>in</strong>ent expansion parameter is<br />

(q,2 + q2)j A;cale ::::' 0.9. <strong>The</strong> ensu<strong>in</strong>g very slow convergence is exhibited <strong>in</strong> table 2.2.<br />

Although we have found that Ascale rv 600 MeV and, therefore, the expansion of V' <strong>in</strong> terms of<br />

contact terms seems to converge for the chosen value of the cut-off A = 300 MeV, the ultimative


42<br />

-3<br />

-5<br />

-7<br />

-9<br />

2. Low-momentum effective theories for two nuc1eons<br />

0.3<br />

0.8<br />

0.6<br />

004<br />

0.2<br />

0<br />

-0.2<br />

-004<br />

q [GeV] 0.3 0<br />

Figure 2.10: Left panel: effective two-nucleon potential V' (solid l<strong>in</strong>es) <strong>in</strong> comparison with the<br />

truncated expansion (2.116) (dashed l<strong>in</strong>es) for A = 300 MeV. Right panel: difference ßV between<br />

the effective potential V' and the truncated expansion as a function of momenta q, q ' .<br />

I E [MeVJ<br />

I E [MeVJ<br />

V( o ) V(O) + V(2) I V(O) + V(2) + V(4) I V( o ) + V(2) + V(4) + V(6) I V�ontact I<br />

0.46 3.18 1.95 2.29 2.23 I<br />

0.67 7.15 1.82 3.15 2.23 J<br />

Table 2.2: <strong>The</strong> values of the b<strong>in</strong>d<strong>in</strong>g energy calculated with V�ontact' eq. (2.116), for A = 300<br />

(second row) and A =<br />

400<br />

MeV (third row).<br />

0.3<br />

Me V<br />

test of convergence of the expansion (2.116) should be to calculate the quantum averages of<br />

operators V(O), V(2), V(4), V(6) , ... for the low-energy scatter<strong>in</strong>g and the bound states, as it<br />

was proposed <strong>in</strong> [81], [83J. <strong>The</strong>re, the expectation values of various contact <strong>in</strong>teractions <strong>in</strong> a<br />

pionless theory were estimated for the deuteron us<strong>in</strong>g the lead<strong>in</strong>g-order approximation (2.58) for<br />

the deuteron wave function. This allows only for a very rough estimate of the size of the operators<br />

<strong>in</strong> eq. (2.116). Furthermore, the value of the cut-off was chosen much below the scale, at which the<br />

effects of new physics appear. l9 With these assumptions it was found that all contact operators<br />

start<strong>in</strong>g from the terms with two derivatives are of the same order. In our model we can perform<br />

numerically exact calculations of these quantities us<strong>in</strong>g not only the bound-state wave function<br />

but also the scatter<strong>in</strong>g wave functions without any additional and unnecessary assumptions. Us<strong>in</strong>g<br />

the relation eq. (2.93) one obta<strong>in</strong>s for an arbitrary operator 0<br />

(2.120)<br />

19 In the pionless theory considered <strong>in</strong> [81], [83] this scale is associated with the pion mass m" . In our model this<br />

scale is given by the mass of the heavy meson.


2.3. Go<strong>in</strong>g to bigber energies: a toy model 43<br />

150<br />

100<br />

bO 50<br />

Q)<br />

�<br />

�<br />

0<br />

-50<br />

:<br />

'.<br />

��:' ,<br />

, , , , , ,<br />

"<br />

order 0 --- - --order<br />

2 -- - - -- - .<br />

order 4 --- --order<br />

6 _._._.exact<br />

--<br />

- -<br />

_._._.-::... .��<br />

bO<br />

Q)<br />

�<br />

�<br />

150<br />

100<br />

50<br />

0<br />

-50<br />

order 0 - - - ---order<br />

2 ,- ----..<br />

order 4 -----exact<br />

--<br />

-'-_-'- -- -- -1_-L_-' -- -- -'-_-'-_ L---<br />

-L.- --I<br />

-1 00 -1 00 L-o<br />

20 40 60 80 1 00 120 140 160 1 80 200 0 20 40 60 80 1 00 120 140 160 1 80 200<br />

T1ab [MeV] l1ab [MeV]<br />

Figure 2.11: Phase shifts from the effective potential V' (solid l<strong>in</strong>e) and the truncated expansion<br />

(2.116) as a function of the k<strong>in</strong>etic energy <strong>in</strong> the lab frame for A =300 MeV. Left (right) panel:<br />

the constants Ci, C; are fitted to the effecti ve potential (to the NN phase shift).<br />

with<br />

11 J 12 d 'O( ') TI (q', q,Eq)<br />

q q q, q ,<br />

E E +'<br />

q - q'<br />

ZE<br />

J 1 2 d I 1 2 d I T'* (q�, q,Eq)<br />

O<br />

( I ' ) T'(q�, q,Eq)<br />

h = q1 q1 q2 q2 E E<br />

. q1 ' q2 + '<br />

- ZE E q - E q� ZE<br />

(2.121)<br />

<strong>The</strong> results for quantum averages of the operators v(2n), (n = 0,1,2,3), are shown <strong>in</strong> table 2.3.<br />

q - q �<br />

Note that the matrix elements for the bound and scatter<strong>in</strong>g states have different units. This<br />

is a consequence of different normalization of those states. One observes a good convergence <strong>in</strong><br />

agreement with the naive expectation. Indeed, s<strong>in</strong>ce the cut-off is chosen to be A =300 MeV and<br />

the scale A s cale ,...,.,600 MeV, one expects the expansion parameter to be of the order AI A s cale � 1/2.<br />

Such a value agrees wen with the one extracted from the results shown <strong>in</strong> table 2.3. Note furt her<br />

that for higher energies, the convergence is slower, which is also rather natural.<br />

deuteron 25.94 MeV -4.23 MeV 1.07 MeV -0.38 MeV<br />

E1ab = 10 MeV 31.34 GeV-2 -6.19 GeV-� 1.64 GeV-� -0.58 GeV-2<br />

E1ab = 50 MeV 11.54 GeV 2 -3.28 GeV -",;! 1.11 GeV 2 -0.44 GeV 2<br />

E1ab = 100 MeV 7.79 GeV-2 -3.09 GeV-� 1.40 GeV-2 -0.71 GeV-2<br />

Table 2.3: <strong>The</strong> quantum averages of the operators V(O), V(2), V(4) and V(6) for the bound (second<br />

row) and the scatter<strong>in</strong>g states (third to fifth rows) for A = 300 MeV.<br />

Hav<strong>in</strong>g calculated the quantum averages of the operators V(O), V(2), V(4) and V(6) we can now<br />

better understand the quite slow convergence of the effective theory expansion (2.116) observed


44<br />

2. Low-momentum effective theories for two nucleons<br />

for the two-body b<strong>in</strong>d<strong>in</strong>g energy as <strong>in</strong>dicated <strong>in</strong> table 2.2. Indeed, the b<strong>in</strong>d<strong>in</strong>g energy is given by<br />

E(i) = - (w(i) IHo lw(i)) - (w(i) IViigh tlw(i)) (2.122)<br />

- (w(i) IV(O) lw(i)) - (w(i) IV(2)lw(i) ) - ... - (w(i)lV(i)lw(i) ),<br />

where Ho is the free Hamiltonian and the superscript i denotes the order of calculation. Now<br />

putt<strong>in</strong>g the correct wave function (qlw) == (qlw(oo)) obta<strong>in</strong>ed from the unitarily transformed<br />

potential <strong>in</strong>stead of (qlw(i)) we end up us<strong>in</strong>g the values of (WIV(i)lw) from table 2.3 with the<br />

follow<strong>in</strong>g numerical estimation:<br />

E = -9.3<br />

MeV + 33.9 MeV<br />

-25.9 MeV + 4.2 MeV - 1.1 MeV + 0.4 MeV + ...<br />

2.3 MeV .<br />

(2.123)<br />

From this estimations we see that the rat her small value for the b<strong>in</strong>d<strong>in</strong>g energy results from the<br />

cancelation of various terms <strong>in</strong> the expansion (2.122). This is a similar sort of cancelation to that<br />

observed for the scatter<strong>in</strong>g length of the model potential eq. (2.53). In fact, the convergence for<br />

the b<strong>in</strong>d<strong>in</strong>g energy is not slow but simply moved to higher order: whereas already the lead<strong>in</strong>g<br />

order (LO) term (w(O)IV(O) lw(O)) provides a good approximation (±1O%) for the matrix element<br />

(wIVcontactlw) , only the NNLO result for the b<strong>in</strong>d<strong>in</strong>g energy shows a similar quality. Thus, we<br />

expect a fast convergence, like those for the terms (w(i) lV(i) Iw(i)), for the b<strong>in</strong>d<strong>in</strong>g energy start<strong>in</strong>g<br />

from NNLO. For <strong>in</strong>stance,<br />

IE - E(6)1<br />

'" 0.21 .<br />

(2.124)<br />

IE -E (4) I<br />

In the real world to which one applies the effective field theory, one does not know the true effective<br />

potential V' and therefore also the constants Ci , CI are unknown. <strong>The</strong>y have to be determ<strong>in</strong>ed by<br />

fitt<strong>in</strong>g such a type of effective potential to the N N data, like the low energy phase shifts andj or the<br />

deuteron b<strong>in</strong>d<strong>in</strong>g energy. We can perform this exercise also <strong>in</strong> our case. Keep<strong>in</strong>g aga<strong>in</strong> Viight (q' , q)<br />

as a separate piece we have determ<strong>in</strong>ed by trial and error the constants Co, C 2 , •<br />

. • by<br />

solv<strong>in</strong>g the<br />

<strong>in</strong>homogeneous LS equation and truncat<strong>in</strong>g the series at various orders. We have performed three<br />

different fits with V(O), V(O) + V(2) and V(O) + V(2) + V(4) represent<strong>in</strong>g the LO, NLO and NNLO<br />

results, respectively. To achieve stable values for C i 's we have performed the fits below 10 Me V at<br />

LO and below 25 and 100 MeV at NLO and NNLO.20 <strong>The</strong> results for the values of the coupl<strong>in</strong>g<br />

constants Co, C 2 , C 4 and C� are summarized <strong>in</strong> table 2.4. We have not performed the sixth<br />

LO 9.49 (9.63) - - -<br />

NLO 10.91 (11.01) -23.09 (-24.80) - -<br />

NNLO 10.82 (10.86) -25.79 (-27.74) 104.1 (121.9) -251.7 (-253.9)<br />

Table 2.4: <strong>The</strong> values of the constants C i determ<strong>in</strong>ed from fitt<strong>in</strong>g the phase shift (to the effective<br />

range parameters).<br />

order (N3LO) fit s<strong>in</strong>ce already the fourth (NNLO) order result gives an excellent reproduction<br />

of the phase shifts as shown <strong>in</strong> the right panel of fig. 2.11. Alternatively, one can determ<strong>in</strong>e the<br />

C i 's requir<strong>in</strong>g that the first terms <strong>in</strong> the effective range expansion (2.17) of the phase shift are<br />

2° This is different to the procedure of the ref. [124], where a larger range of energies was used to fix the coupl<strong>in</strong>g<br />

constants. <strong>The</strong>refore the values of C;'s given here and <strong>in</strong> [124] are slightly different.


2.3. Go<strong>in</strong>g to higher energies: a toy model 45<br />

exactly reproduced.21 For example, at NLO one can fix the constants Co and C 2 to reproduce<br />

the scatter<strong>in</strong>g length and the effective range correspond<strong>in</strong>g to the orig<strong>in</strong>al potential (2.112). As<br />

shown <strong>in</strong> table 2.4, both methods give similar results for the coupl<strong>in</strong>g constants.<br />

Let us now make two observations concern<strong>in</strong>g the obta<strong>in</strong>ed results. First, one observes a much<br />

better convergence for the low-energy phase shift with the coupl<strong>in</strong>gs from table 2.4 than with the<br />

true values of Ci ' So This has to be expected, s<strong>in</strong>ce now their values are optimized to obta<strong>in</strong> a good<br />

description for the phase shifts at low-energies or for the effective range parameters and not to<br />

precisely reproduce the true potential for low momenta, which is, <strong>in</strong> pr<strong>in</strong>ciple, not an observable.<br />

<strong>The</strong> same holds also for the two-body b<strong>in</strong>d<strong>in</strong>g energy given <strong>in</strong> table 2.5, which now shows a<br />

much better convergence than with the true values of coupl<strong>in</strong>gs. This <strong>in</strong>dicates that the "f<strong>in</strong>e<br />

tun<strong>in</strong>g" of the coupl<strong>in</strong>g constants may significantly improve the convergence for such "unnatural"<br />

quantities22 like the small b<strong>in</strong>d<strong>in</strong>g energy (or, equivalently, large scatter<strong>in</strong>g length). Indeed, small<br />

changes <strong>in</strong> the values of the Ci's lead to large variations of the b<strong>in</strong>d<strong>in</strong>g energy E, as follows from<br />

the estimation (2.123), and may allow for E to take its correct value already at 'lead<strong>in</strong>g orders.<br />

Secondly, one observes that all Ci'S (with the exception of C�) are with<strong>in</strong> 25% of their exact values.<br />

<strong>The</strong> deviation of the fitted value for C� from the exact one rem<strong>in</strong>ds us of the fact that such f<strong>in</strong>e<br />

tun<strong>in</strong>g can produce sizeable uncerta<strong>in</strong>ties <strong>in</strong> higher orders <strong>in</strong> such type of cut-off schemes and thus<br />

the <strong>in</strong>terpretation of such values has to be taken with so me caution. This is, <strong>in</strong> fact, even a more<br />

deep problem s<strong>in</strong>ce the potential itself is not an observable. Unitary transformations pro duces<br />

phase equivalent potentials without chang<strong>in</strong>g the observables. Although we have found only one<br />

solution for the Ci 's shown <strong>in</strong> table 2.4, fix<strong>in</strong>g the coupl<strong>in</strong>g constants from a fit to phase shifts or,<br />

equivalently, to the first terms <strong>in</strong> the effective range expansion may, <strong>in</strong> general, produce multiple<br />

solutions. An example of such multiple solutions was given <strong>in</strong> section 2.2. <strong>The</strong> precise connection<br />

between the unitarily transformed and effective Hamiltonian is still to be clarified. This might<br />

be quite important for the comparison between various transformed realistic N N <strong>in</strong>teractions<br />

act<strong>in</strong>g only below a certa<strong>in</strong> moment um cut-off and the effective potential derived us<strong>in</strong>g chiral<br />

perturbation theory.<br />

One can also perform a similar analysis for the two-nucleon 1 So channel, which is expected to<br />

be even more troublesome than the 3 SI channel for the effective field theory approach s<strong>in</strong>ce, as<br />

already stated before, the scatter<strong>in</strong>g length takes an unnatural large value. We will not consider<br />

here this case but note that all conclusions drawn above hold also <strong>in</strong> this particular channel. For<br />

more details the <strong>in</strong>terest<strong>in</strong>g reader is referred to reference [124].<br />

To end this section we would like to discuss one furt her issue. In section 2.2 we have considered an<br />

effective theory for two nucleons at very low energies. In such a case even the longest range part<br />

of the nuclear force can be considered as a short range effect. Thus, the effective potential entirely<br />

consists of the contact <strong>in</strong>teractions with <strong>in</strong>creas<strong>in</strong>g number of derivatives. It was demonstrated<br />

that such an effective theory reproduces the effective range expansion but cannot go beyond it.<br />

More precisely, only those first coefficients <strong>in</strong> the effective range expansion are reproduced which<br />

have been used to fix the free parameters of the potential. No predictions for furt her coefficients<br />

could be made. In our current model we have explicitly <strong>in</strong>corporated the long range part of the<br />

underly<strong>in</strong>g <strong>in</strong>teraction <strong>in</strong> the effective Hamiltonian. As a consequence, the predictive power of the<br />

effective theory <strong>in</strong>creases. In table 2.5 we show the values of the b<strong>in</strong>d<strong>in</strong>g energy and effective range<br />

21 At NNLO we obta<strong>in</strong> elose but not exact values of the first four coefficients <strong>in</strong> the effective range expansion.<br />

22 "Unnatural" means <strong>in</strong> this context that the correspond<strong>in</strong>g observable takes a very small or very large value as<br />

the result of a cancelation between some large numbers. For <strong>in</strong>stance, the scatter<strong>in</strong>g length given <strong>in</strong> eq. (2.55) is<br />

natural for all values of the coupl<strong>in</strong>g constant 9 not very elose to one and takes an unnaturally large value if 9 is<br />

accidentally elose to one.


46 2. Low-momentum effective theories for two nucleons<br />

LO 2.40 5.514 2.084 0.345 0.210 0.063<br />

NLO 2.23 5.514 1.893 0.105 0.005 -0.055<br />

NNLO 2.23 5.514 1.896 0.130 0.059 -0.018<br />

true values 2.23 5.514 1.893 0.130 0.059 -0.026<br />

Table 2.5: <strong>The</strong> values of the b<strong>in</strong>d<strong>in</strong>g energy E and effective range parameters from the unitarily<br />

transformed potential V' and the truncated expansion (2.116) for A =300 MeV. <strong>The</strong> coupl<strong>in</strong>gs<br />

are fixed by the requirement that the first terms <strong>in</strong> the effective range expansion are exactly<br />

reproduced.<br />

parameters calculated with the truncated expansion (2.116) us<strong>in</strong>g the values of the coupl<strong>in</strong>gs given<br />

<strong>in</strong> table 2.4, which are determ<strong>in</strong>ed requir<strong>in</strong>g that the first terms <strong>in</strong> the effective range expansion<br />

are exactly reproduced. For example, at NLO the two constants Co and C2 are fixed requir<strong>in</strong>g<br />

that a and r are exactly reproduced. This allows to make a prediction for V2.<br />

2.3.6 Coord<strong>in</strong>ate space representation<br />

Up to now we have only considered the potentials <strong>in</strong> momentum space. It is also <strong>in</strong>terest<strong>in</strong>g to<br />

see how the unitarily transformed potential looks like <strong>in</strong> coord<strong>in</strong>ate space, which usually provides<br />

more physical <strong>in</strong>sights. Denote by Vi(p' ,p) the effective moment um space potential for angular<br />

momentum l. <strong>The</strong> correspond<strong>in</strong>g r-space expression is obta<strong>in</strong>ed from<br />

Vi(x', x) = / p 2 dpp, 2 dp' jl(pX) Vi(P' ,p) jl(P'X') ,<br />

(2.125)<br />

with jl(Y) the conventional l t h spherical Bessel function. <strong>The</strong> S-wave potential (l = 0) for A =<br />

400 MeV is shown <strong>in</strong> the left panel of fig. 2.12. It is, of course, symmetrie under the <strong>in</strong>terchange of<br />

x and x', but looks very different from the orig<strong>in</strong>al local potential. In particular, for A = 400 MeV<br />

the unitarily transformed potential is strongly non-local and purely attractive for short distances.<br />

Of course, if one <strong>in</strong>creases the value of the the cut-off A, a peak along the diagonal x = x'<br />

resembl<strong>in</strong>g the delta function should develop and the superposition of the two Yukawa potentials<br />

related to the light and heavy meson exchanges, respectively, should appear along the diagonal.<br />

This is <strong>in</strong>deed the case as demonstrated <strong>in</strong> the right panel of fig. 2.11 for A = 5.5 GeV. Note also<br />

that <strong>in</strong> this case, where U rv 1, the range of the potential is essentially given by the <strong>in</strong>verse of the<br />

light meson mass. One can also construct the momentum and coord<strong>in</strong>ate representations of the<br />

deuteron wave function. For a momenturn space picture, we refer to ref. [123].<br />

<strong>The</strong> unitarily transformed potential shows an oscillat<strong>in</strong>g behavior <strong>in</strong> coord<strong>in</strong>ate space. This is<br />

because it is def<strong>in</strong>ed only <strong>in</strong> a certa<strong>in</strong> range of momenta. Due to the cut-off we unavoidably<br />

<strong>in</strong>troduce discont<strong>in</strong>uities <strong>in</strong> higher derivatives of the potential over momenta. For <strong>in</strong>stance, the<br />

second derivative of the smooth regulat<strong>in</strong>g function f(k) given <strong>in</strong> eq. (2.98) has discont<strong>in</strong>uity<br />

po<strong>in</strong>ts at k = A - a, k<br />

= A - a + b, k = A + a - b and k = A + a. This problem somewhat<br />

rest riets the applicability of the described projection method <strong>in</strong> moment um space. In particular,<br />

after perform<strong>in</strong>g the unitary transformation one could not calculate such quantity for the deuteron<br />

like the quadrupole momentum, which requires the knowledge of second derivatives of the wave<br />

function. However, one can always choose the regulat<strong>in</strong>g function f (k) such that the first n<br />

derivatives are cont<strong>in</strong>uous.


2.3. Go<strong>in</strong>g to high er energies: a toy<br />

V(x, x'); [fm-4] V(x, x') [fm-4]<br />

0<br />

-0.05<br />

- 0 .1<br />

-0.15 -1<br />

-0.2<br />

model 47<br />

X ' [fm] [fm]<br />

Figure 2.12: Coord<strong>in</strong>ate space representation of the effective S-wave potential Vo(x, x') . Left<br />

panel: A = 400 MeV and 0 ::; x,x' ::; 4fm. Right panel: A = 5.5GeV and 1.2 ::; x,x' ::; 2fm.


Chapter 3<br />

<strong>The</strong> derivation of nuclear forces from<br />

chiral Lagrangians<br />

3.1 <strong>Chiral</strong> symmetry<br />

Let us start with the QCD Lagrangian for Nf quarks q<br />

LQCD<br />

1<br />

qif/Jq - 4 G�vGQ' JlV - qMq (3.1)<br />

L�CD + L�CD '<br />

where L�CD is the Lagrangian for massless quarks given by the first two terms <strong>in</strong> the equation<br />

(3.1) and L�CD denotes the quark mass term. To simplify the notation we do not show explicitly<br />

the color <strong>in</strong>dices of quark fields. Note that the Nf x Nf fiavor matrix M can be brought <strong>in</strong>to a<br />

diagonal form by an appropriate unitary transformation on quark fields <strong>in</strong> the fiavor space. <strong>The</strong><br />

covariant derivative of the quark field DJlq is def<strong>in</strong>ed via<br />

D Jlq = (OJl + igA� >'<br />

2 Q) q (3.2)<br />

where >' Q are 3 x 3 matrices <strong>in</strong> the color space. <strong>The</strong>y satisfy the SU(3) Lie algebra<br />

Furt her , 9 is the strong coupl<strong>in</strong>g constant and AJl is the gluon field. Whereas quarks belong to<br />

the fundamental representation of the SU(3)col group (color triplet), gluon fields form the adjo<strong>in</strong>t<br />

representation of that gauge group (color octet). <strong>The</strong> field strength tensor G JlV is def<strong>in</strong>ed as<br />

GQ _ !Cl AQ !Cl AQ jQ ß 'YA ß A'Y<br />

JlV - UJl v - Uv Jl - 9 Jl v '<br />

where jQ ß 'Y are the SU(3) structure constants <strong>in</strong>troduced <strong>in</strong> eq. (3.3).<br />

<strong>The</strong> QCD Lagrangian for massless quarks L�CD can be rewritten <strong>in</strong> terms of left- and righthanded<br />

quark fields qL == PLq, qR == PL q, where PR,L are the correspond<strong>in</strong>g projectors<br />

as follows:<br />

48<br />

(3.3)<br />

(3.4)<br />

(3.5)<br />

(3.6)


3.1. <strong>Chiral</strong> symmetry 49<br />

<strong>The</strong> left- and right-handed fields are the eigenstates of the chirality operator 1'5 to the eigenvalues<br />

-1 and 1. From eq. (3.6) one immediately realizes that the Lagrangian .L:QCD has the global<br />

symmetry<br />

<strong>The</strong> axial U(1)A symmetry turns out to be broken at the quantum level due to the Abelian anomaly<br />

[153], i. e. the correspond<strong>in</strong>g Noether current is not conserved but receives a contribution aris<strong>in</strong>g<br />

from quantum corrections. Thus, U(1)A is not a symmetry of QCD. <strong>The</strong> vector U(1)v symmetry<br />

is connected with the baryon number conservation. Its conserved charge is the total number of<br />

quarks m<strong>in</strong>us antiquarks. <strong>The</strong> symmetry group SU(Nf)L x SU(Nf)R is called the chiral group.<br />

<strong>The</strong> chiral group transformations of the quark fields can be expressed by<br />

where the Nf x<br />

Nf<br />

(3.7)<br />

(3.8)<br />

matrix generators t i are fundamental representations of SU(Nf) and (Bdi,<br />

(eR)i are the correspond<strong>in</strong>g angles. Here, the <strong>in</strong>dex i varies from 1 to NJ -1. Note that one can<br />

skip the <strong>in</strong>dices L and R on the quark fields <strong>in</strong> eq. (3.8) without chang<strong>in</strong>g the result because of<br />

the PR , L <strong>in</strong> the exponentials. Alternatively, one can parametrize the chiral symmetry group <strong>in</strong><br />

terms of SU(Nf)V x SU(Nf)A as follows:<br />

q ---- -+ q' = exp (iOv . t)q, (3.9)<br />

Let us now calculate Noether currents correspond<strong>in</strong>g to an arbitrary symmetry of the Lagrangian<br />

density. For that consider an <strong>in</strong>f<strong>in</strong>itesimal group transformation<br />

where<br />

(3.10)<br />

(3.11)<br />

Here the constants cabe are the structure constants of the group and ra are the abstract group<br />

generators. 1 S<strong>in</strong>ce we consider a global transformation, fa does not depend on space-time coord<strong>in</strong>ates.<br />

<strong>The</strong> field


50 3. <strong>The</strong> derivation of nuc1ear forces from chiral Lagrangians<br />

<strong>The</strong> derivative of the Noether current (3.13) can be expressed as<br />

öJlJ� = -i ((öJl ö(�;(Pi)) fia(cP) + Ö(�;cPi) öJlfi(cP))<br />

-i (��ft(cP) + Ö(�;cPi) öJlfi(cP))<br />

where we have used the Euler-Lagrange equation<br />

(3.15)<br />

(3.16)<br />

Compar<strong>in</strong>g equations (3.14) and (3.15) we conclude that the Noether current is conserved if the<br />

Lagrangian density is <strong>in</strong>variant under symmetry transformations, s<strong>in</strong>ce then:<br />

(3.17)<br />

One can now calculate the Noether currents correspond<strong>in</strong>g to the transformations (3.8) and (3.9).<br />

<strong>The</strong> functions fia( q) are<br />

SU(Nf)v :<br />

SU(Nf)A :<br />

SU(Nf)L:<br />

SU(Nf)R:<br />

fi(q) = tijqj ,<br />

fia(q) = 'Y5tijqj ,<br />

fia(q) = tijPL qj ,<br />

fia(q) = tijPRqj .<br />

(3.18)<br />

(3.19)<br />

In all these cases the quark fields form the basis of the fundamental representations of the correspond<strong>in</strong>g<br />

symmetry groups.2 For the symmetry transformations (3.8) and (3.9) we f<strong>in</strong>d, us<strong>in</strong>g<br />

eq. (3.13)<br />

and<br />

respectively.<br />

JaJl A - = q'Y5'Y Jlta q ,<br />

<strong>The</strong> charges associated to the Noether currents can be found via<br />

Note that the charge is a constant of motion<br />

s<strong>in</strong>ce<br />

dQ<br />

dt =0,<br />

1 d3 X öJl J Jl - 1 d3 X V . J<br />

-I dS ·J<br />

O.<br />

(3.20)<br />

(3.21)<br />

(3.22)<br />

(3.23)<br />

(3.24)<br />

2 A representation of the algebra is simply its l<strong>in</strong>ear realization, i. e. the functions li (rp) are l<strong>in</strong>ear <strong>in</strong> the fields<br />

rp.


3.1. <strong>Chiral</strong> symmetry 51<br />

Here we made use of the fact that the surface term at <strong>in</strong>f<strong>in</strong>ity is negligibly small and that the<br />

current is conserved. Us<strong>in</strong>g the def<strong>in</strong>ition (3.13) of the Noether current one can express the<br />

conserved charge <strong>in</strong> the form<br />

(3.25)<br />

where 7ri(X) is the canonical conjugate to cpi (X). Let us now consider a l<strong>in</strong>ear realization (representation)<br />

of the Lie algebra (3.11):<br />

where the matrices ta satisfy<br />

= [ta, tb ] iCabctc .<br />

One can use the equal-time commutation relations of CPi (X, t), 7ri (X, t)<br />

[7ri(X, t), CPj(Y, t)] -io(x - y)Oij ,<br />

[cpi(X, t), CPj(Y, t)] 0,<br />

[7ri (X, t), 7rj(Y, t)] 0,<br />

= [Qa, Qb] iCabcQc .<br />

and the Lie algebra (3.27) to obta<strong>in</strong> the commutation rules for the charges:<br />

(3.26)<br />

(3.27)<br />

(3.28)<br />

(3.29)<br />

(3.30)<br />

Thus, the charges satisfy the same algebra as the correspond<strong>in</strong>g group generators. Another useful<br />

commutation relation is<br />

(3.31)<br />

We will now show that the Noether charges are the generators of an <strong>in</strong>f<strong>in</strong>itesimal transformation<br />

(3.12) (with fia(cp) given <strong>in</strong> eq. (3.26)). If one parametrizes an arbitrary group element 9 <strong>in</strong> the<br />

{


52<br />

and<br />

for the SU(Nf h x SU(Nf)R<br />

[Q�, Qtl<br />

[Q�, Q�l<br />

[Q�, Q�l<br />

for the SU(Nf)V x SU(Nf)A<br />

like the ones <strong>in</strong> eq. (3.3) for SU(3).<br />

3. <strong>The</strong> derivation of nuc1ear forces from chiral Lagrangians<br />

iijkQt<br />

iijkQ�<br />

iijkQt ,<br />

(3.36)<br />

symmetry group. <strong>The</strong> fijk are the structure constants of SU(Nf)<br />

A classieal symmetry can be realized <strong>in</strong> quantum field theory <strong>in</strong> two different ways depend<strong>in</strong>g on<br />

vacuum transformation properties with respect to the symmetry group under consideration. <strong>The</strong><br />

Wigner-Weyl mode is characterized by a symmetrie vacuum:<br />

U-110) =<br />

10) . (3.37)<br />

This condition can be equivalently expressed <strong>in</strong> terms of conserved charges Qa as<br />

(3.38)<br />

In such a case one should observe <strong>in</strong> the physieal spectrum degenerate multiplets correspond<strong>in</strong>g<br />

to irreducible representations of the symmetry transformation group. To see this degeneracy one<br />

can consider an arbitrary field operator


3.1. Chira,l symmetry<br />

, ,<br />

:: - =:\<br />

I \<br />

... ... ... �--- ---"', ...<br />

/.. ,;<br />

.. ,<br />

,<br />

Figure 3.1: Spontaneous break<strong>in</strong>g of the symmetry.<br />

Here, we do not sum over the values of a. Perform<strong>in</strong>g a space-time translation and us<strong>in</strong>g the fact<br />

that the vacuum state is translational <strong>in</strong>variant we can rewrite eq. (3.43) as follows:<br />

This matrix element has to be different from zero and hence is <strong>in</strong>f<strong>in</strong>ite.<br />

53<br />

(3.44)<br />

Spontaneous breakdown of a cont<strong>in</strong>uous symmetry implies, accord<strong>in</strong>g to the Goldstone theorem<br />

[61], [62], the existence of massless sp<strong>in</strong>less particles called Goldstone bosons. <strong>The</strong> number of<br />

Goldstone bosons equals the number of the broken generators. <strong>The</strong> (abstract) generator ra of<br />

a symmetry group is broken if the correspond<strong>in</strong>g symmetry charge Qa does not annihilate the<br />

vacuum as shown <strong>in</strong> eq. (3.42). We will now sketch the proof of the Goldstone theorem given by<br />

Guralnik et al. [155] and show the presence of the massless particles <strong>in</strong> the physical spectrum. A<br />

very important po<strong>in</strong>t is that there exists some field operator 'l/Ji such that its vacuum expectation<br />

value does not vanish:<br />

(3.45)<br />

We can illustrate the existence of such an operator with a simple classical example shown <strong>in</strong><br />

fig. 3.1. <strong>The</strong>re, the potential V is given as a function offields () and 7r. <strong>The</strong> potential is rotationally<br />

<strong>in</strong>variant. <strong>The</strong> po<strong>in</strong>t (() = 0, 7r = 0) does not correspond to a m<strong>in</strong>imum of the potential. In fact,<br />

there is an <strong>in</strong>f<strong>in</strong>ite number of po<strong>in</strong>ts ( (), 7r) for which the potential takes the m<strong>in</strong>imal value. All<br />

those po<strong>in</strong>ts underlie the requirement<br />

(3.46)<br />

where A i- 0 is some constant. <strong>The</strong> physical vacuum <strong>in</strong> that classical picture corresponds to one


54 3. <strong>The</strong> derivation of nuclear forces from chiral Lagrangians<br />

of those po<strong>in</strong>ts, say, to (0" = A, 7r = 0). 5 Thus, the vacuum is characterized by some non-zero<br />

value of the field 0".<br />

Let us now co me back to the Goldstone theorem and consider the vacuum expectation value of the<br />

operator 'l/Ji (x) . U s<strong>in</strong>g the translational properties of field operators and assum<strong>in</strong>g translational<br />

<strong>in</strong>variance of the vacuum, we obta<strong>in</strong><br />

(3.47)<br />

where TJi is some (non-zero) constant. Assum<strong>in</strong>g furt her that -tfjTJj = K,f i- 0 if some of the 7]'S<br />

do not vanish, we obta<strong>in</strong> us<strong>in</strong>g eq. (3.31)<br />

K,f (OI[Qa, 'l/Ji(O)]IO) (3.48)<br />

I d3 x (OI[Jö(x,<br />

t), 'l/Ji(O)]IO)<br />

I: I d3 x {(OIJö(O)e-iP,xln)(nl'l/Ji(O)IO) - (OI'l/Ji(O)ln)(nleiP.X Jö(O)IO)}<br />

n<br />

I:(27r)38(Pn) {(OIJö(O)ln)(nl'l/Ji(O)IO)e-iEnt - (OI'l/Ji(O)ln)(nIJö(O)IO)eiEnt}<br />

n<br />

i- 0,<br />

where we have <strong>in</strong>serted a complete set of <strong>in</strong>termediate energy eigenstates Ln In)(nl and used the<br />

translational <strong>in</strong>variance of the vacuum. Here Pn and En denote the momentum and energy of the<br />

state In). Note that Qa should correspond to a broken generator because otherwise the right-hand<br />

side of eq. (3.48) vanishes. S<strong>in</strong>ce K,f does not depend on time, differentiat<strong>in</strong>g the equation (3.48)<br />

with respect to time leads to<br />

I:(27r)38(Pn)En {(OIJö(O)ln)(nl'l/Ji(O)IO)e-iEnt + (0 I 'l/Ji (0) In) (nIJö(O)IO)eiEnt} = 0 . (3.49)<br />

n<br />

<strong>The</strong> positive and negative frequency parts can not mutually cancel. <strong>The</strong>refore each of both terms<br />

<strong>in</strong> the square bracket <strong>in</strong> eq. (3.49) must vanish for all states In) except those where En = 0<br />

for Pn ---t O. Furthermore, the latter ones must exist s<strong>in</strong>ce otherwise the equation (3.48) will<br />

not be satisfied. Thus, the physical spectrum should conta<strong>in</strong> massless states In) of sp<strong>in</strong> zero<br />

and the same parity and <strong>in</strong>ternal quantum numbers as Jö, whieh are called Goldstone bosons.<br />

For a more rigorous and mathematically correct proof of the Goldstone theorem the reader is<br />

referred to the orig<strong>in</strong>al publications [61], [62] as well as to the references [155], [156] and [157] .<br />

<strong>The</strong> plausible physical <strong>in</strong>terpretation of the Goldstone theorem can be obta<strong>in</strong>ed from the simple<br />

classieal example considered above and illustrated <strong>in</strong> fig. 3.1. <strong>The</strong>re, the vacuum state corresponds<br />

to the po<strong>in</strong>t (0- = A, 7r = 0), whieh is clearly not <strong>in</strong>variant under rotations <strong>in</strong> the 0"-7r surface. <strong>The</strong><br />

potential V (0", 7r) takes its m<strong>in</strong>imum value for the po<strong>in</strong>ts ly<strong>in</strong>g on the r<strong>in</strong>g (j2 + 7r2 = A 2• Thus, no<br />

additional energy is needed to move from one such po<strong>in</strong>t to another. <strong>The</strong> modes correspond<strong>in</strong>g<br />

to such transformations can be identified with the Goldstone bosons.6<br />

Let us now co me back to the QCD Lagrangian. To decide whether the physieal vacuum is chiral<br />

symmetrie or not we first note that the charges of SU(Nf)A carry negative parity. This is because<br />

the ')'5 matrix enters the expression (3.21) for the axial-vector current Jc;t. Thus, if the chiral<br />

symmetry would be realized <strong>in</strong> the Wigner mode, i. e. if the vacuum would be symmetrie, one<br />

5In pr<strong>in</strong>ciple, the vacuum could also be given by a l<strong>in</strong>ear comb<strong>in</strong>ation of those po<strong>in</strong>ts. This possibility can,<br />

however, be excluded for quantum fields <strong>in</strong> a space of <strong>in</strong>f<strong>in</strong>ite volume [133].<br />

GIn this particular example such a mode can be def<strong>in</strong>ed us<strong>in</strong>g the polar angle <strong>in</strong> the surface CJ-7r.


3.2. <strong>Effective</strong> Lagrangians 55<br />

would observe parity doublets Ih) and Q'Alh) <strong>in</strong> the hadron speetrum. No sueh parity doubl<strong>in</strong>g<br />

is observed <strong>in</strong> the real world. Another argument <strong>in</strong> favor of spontaneously break<strong>in</strong>g of the chiral<br />

symmetry is the presenee ofvery light pseudoscalar mesons (pions <strong>in</strong> the case of Nf = 2), which ean<br />

be associated with the Goldstone bosons. In fact, spontaneous break<strong>in</strong>g of the chiral symmetry is<br />

also evident for other reasons like, for <strong>in</strong>stance, large differenees <strong>in</strong> vector and axial-vector spectral<br />

functions, results of lattice ealculations and so on [158]. Clearly, only SU(Nf)A is spontaneously<br />

broken.7 Otherwise one would also observe scalar Goldstone bosons. A more evident reason is the<br />

presenee of SU(Nf)V multiplets <strong>in</strong> the hadron spectrum. For <strong>in</strong>stanee, SU(Nf = 2)v corresponds<br />

to an ord<strong>in</strong>ary isosp<strong>in</strong> transformation group. <strong>The</strong> high quality of the isosp<strong>in</strong> symmetry of the<br />

strong <strong>in</strong>teraction may be demonstrated by compar<strong>in</strong>g the proton and neutron masses mp = 938.27<br />

MeV and mn = 939.57 MeV, which are <strong>in</strong>deed very elose to eaeh other.<br />

In faet, the ehiral symmetry is broken not only spontaneously but also explicitly due to the presenee<br />

of the quark mass term .c�CD <strong>in</strong> the QCD Lagrangian (3.1). Let us now be more eonerete and<br />

regard Nf = 2.<br />

Furthermore, we will assume that the matrix M is already <strong>in</strong> diagonal form:<br />

M ( � u �d )<br />

�(mu + md) (� �) + �(mu -md) ( � �1 )<br />

1 1<br />

2(mu + md)I + 2(mu -md)T3 , (3.50)<br />

where I is the unit matrix <strong>in</strong> 2 dimensions and T3 a Pauli matrix. Whereas the term proportional to<br />

the quark mass difference breaks both SU(2)v and SU(2)A symmetries (or, equivalently, SU(2)L<br />

and SU(2)R), the one proportional to mu + md rema<strong>in</strong>s SU(2)v <strong>in</strong>variant. It turns out that the<br />

quark masses mu rv 3 --;-7 MeV and md rv 7 --;- 15 MeV are mueh smaller than the typieal hadronie<br />

mass seale of the order of rv<br />

as a small perturbation.<br />

3.2 <strong>Effective</strong> Lagrangians<br />

1<br />

Ge V. Thus, the quark mass term .c�CD <strong>in</strong>deed ean be considered<br />

In the last seetion we have discussed the general symmetry aspeets of QCD. Now we would like to<br />

eoneentrate on the two fiavor case. Let us furt her switeh from quark and gluon to hadron degrees<br />

of freedom. At present, one is not able to direetly determ<strong>in</strong>e the strueture and dynamics ofhadrons<br />

from QCD. <strong>The</strong>refore, it is useful to apply the powerful method of effective field theory (EFT)<br />

technique to analyze the <strong>in</strong>teractions between the hadrons at low energies. Some examples of<br />

such a teehnique were already given <strong>in</strong> the previous ehapter. Clearly, one would like to extraet all<br />

possible <strong>in</strong>formation from QCD <strong>in</strong> order to m<strong>in</strong>imize the number of free parameters <strong>in</strong> the effective<br />

Lagrangian. One expects that the ehiral symmetry of the QCD Lagrangian is very important for<br />

EFT eonsiderations, s<strong>in</strong>ee the lightest hadronic degrees of freedom, the pions, are elosely related<br />

to its spontaneous break<strong>in</strong>g. We will see below that the spontaneously broken ehiral symmetry<br />

<strong>in</strong>deed provides strong eonstra<strong>in</strong>ts on the strueture of pion-pion and pion-baryon <strong>in</strong>teraetions.<br />

<strong>The</strong> start<strong>in</strong>g po<strong>in</strong>t <strong>in</strong> the EFT program is the construction of the effective Lagrangian. Apart<br />

from the usual requirements like loeality, <strong>in</strong>varianee und er Lorentz transformations, parity, timereversal<br />

<strong>in</strong>varianee and hermeticity the effective Lagrangian should also be chirally symmetrie.<br />

7 In fact, Vafa and Witten have proven that the global SU(Nf)v symmetry of QCD can not be spontaneously<br />

broken [159). This holds more generally for any vector-like (gauge) theory.


56 3. <strong>The</strong> derivation of nuc1ear forces from chiral Lagrangians<br />

<strong>The</strong> procedure of implement<strong>in</strong>g the broken symmetry transformation on Goldstone fields was first<br />

discussed by We<strong>in</strong>berg [160] <strong>in</strong> 1968 <strong>in</strong> the context of the chiral SU(2)v x SU(2)A group broken to<br />

SU(2)v and generalized one year later by Coleman, Callan, Wess und Zum<strong>in</strong>o (CCWZ realization)<br />

[67] to the case of a general compact group G broken to an arbitrary subgroup H. Here we will<br />

basically follow this last work.<br />

An arbitrary element 9 of the group G can be parametrized ass<br />

where {A} and {V} are the sets of generators of the group G satisfy<strong>in</strong>g the Lie algebra<br />

[Vi, Vj]<br />

[Aa, Ab]<br />

[Vi, Aa]<br />

CijkVk,<br />

CabcAc + Cabk Vk ,<br />

CiabAb·<br />

(3.51)<br />

(3.52)<br />

Here, the C's are the antisymmetric structure constants of the group G. Clearly, the chiral Lie<br />

algebra (3.36) is a particular case of eqs. (3.52). Note that the generators Vi form a closed Lie<br />

algebra. <strong>The</strong>refore, the transformation h = eS 'v corresponds to the subgroup H of G, which is<br />

required to be unbroken. <strong>The</strong> CCWZ realization is def<strong>in</strong>ed by the mapp<strong>in</strong>gs<br />

where ( and s ' have to satisfy<br />

� � ( = ( (�, go) ,<br />


3.2. <strong>Effective</strong> Lagrangians 57<br />

<strong>The</strong> authors of the reference [67] argued that the parametrization (3.51) of an arbitrary group<br />

element 9 E G is unique <strong>in</strong> some neighborhood of the orig<strong>in</strong>. Consequently, we conclude from<br />

eqs. (3.56), (3.57) and (3.58) that<br />

I '<br />

( = t , s = s ,<br />

(3.59)<br />

and thus he�·A = e {Ah. Equation (3.58) def<strong>in</strong>es a l<strong>in</strong>ear transformation of the e's:<br />

(3.60)<br />

where '])( b ) (h) is some representation of h E H. <strong>The</strong> precise form of this representation depends<br />

on the structure of the group G. For <strong>in</strong>stance, if G is the group SU(N)v x<br />

SU(N)v, i.e.:<br />

with the<br />

SU(N)A<br />

Lie algebra (3.36) and H is the subgroup SU(N)v, then 1)(b)(h) is the adjo<strong>in</strong>t representation of<br />

(3.61)<br />

where the (2N - 1) x (2N - 1) matrix T�b equals the SU(N) structure constant hab' This can<br />

be shown us<strong>in</strong>g the chiral Lie algebra, eq. (3.33) and the normalization condition for the SU(N)<br />

generators.10 Note furt her that for the


58 3. <strong>The</strong> derivation of nuclear forces from chiral Lagrangians<br />

Thus, the most general chiral <strong>in</strong>variant effective Lagrangian for �, cjJ can be constructed solely<br />

from the cjJ's. This simplifies the procedure enormously. Indeed, accord<strong>in</strong>g to eq. (3.54), the cjJ's<br />

transform "covariantly" under G: the only difference between the G- and H- transformations is<br />

that <strong>in</strong> the first case the parameters s are complicated nonl<strong>in</strong>ear functions of the ts and of the<br />

group element. <strong>The</strong>refore, any H-scalar built up from the cjJ's is also G-<strong>in</strong>variant.<br />

S<strong>in</strong>ce we would like to describe the <strong>in</strong>teraction between those fields � and cjJ with<strong>in</strong> the EFT approach,<br />

we have also to <strong>in</strong>clude derivatives of �, cjJ <strong>in</strong>to the Lagrangian. Although these derivatives<br />

transform l<strong>in</strong>early under the subgroup H, as it follows from (3.60) and (3.63), it is clear that the<br />

field derivatives, <strong>in</strong> general, do not belong to the CCWZ realization (3.53)-(3.55). <strong>The</strong> number of<br />

the ts is equal to the number of the A's and, therefore, the field derivatives cannot belong to the<br />

set of the ts. In addition, they do not belong to the set of the cjJ's. For example, the derivative<br />

0/lcjJ transforms as<br />

(3.66)<br />

<strong>The</strong> first term <strong>in</strong> this equation does not vanish <strong>in</strong> general, s<strong>in</strong>ce the parameters s ' depend on<br />

�. <strong>The</strong>refore, eq. (3.66) violates eq. (3.54). In particular, eq. (3.64) is not valid any more for<br />

derivatives. Although <strong>in</strong> that case s' = 0,<br />

the derivative of s ' is different from zero. Consequently,<br />

we can not proceed <strong>in</strong> the above way to construct the effective Lagrangian <strong>in</strong>clud<strong>in</strong>g the field<br />

derivatives. To generalize the formalism <strong>in</strong>troduced above to <strong>in</strong>clude the field derivatives, let us<br />

first consider the follow<strong>in</strong>g problem. In addition to the set of the ts we <strong>in</strong>troduce fields \)I such<br />

that the group G is realized (nonl<strong>in</strong>early) on (�, \)I) <strong>in</strong> the follow<strong>in</strong>g manner: the �'s form the<br />

CCWZ realization of G and transform via eq. (3.53) and the \)I's transform l<strong>in</strong>early under H and<br />

<strong>in</strong> some arbitrary way under the whole group G:<br />

go (�, \)I) = (t, \)I'), (3.67)<br />

where e are given by eq. (3.55) and \)I' are (nonl<strong>in</strong>ear) functions of go, � and \)I. How to construct<br />

the CCWZ realization for both � and \)I? We first note that for the specific group transformation<br />

go = e-f A eq. (3.67) takes the form<br />

(3.68)<br />

where the �'s are the particular choice of \)I' correspond<strong>in</strong>g to the transformation go = e-�·A .<br />

Follow<strong>in</strong>g ref. [67], we def<strong>in</strong>e a pair (�, �)* by<br />

- _ _ -<br />

(�, \)I) * = (� ,\)I) - e �·A (0, \)I) . (3.69)<br />

We will now show that (�, �)* belongs to the CCWZ realization. For an arbitrary group element<br />

go E G we have:<br />

(3.70)<br />

Now we have to apply the transformation eS'.v on both quantities <strong>in</strong> the bracket <strong>in</strong> the last<br />

equality of eq. (3.70). We first note that the po<strong>in</strong>t � = 0 is <strong>in</strong>variant und er H-transformations.<br />

This follows from eq. (3.55) and from the uniqueness of the parametrization (3.51). Further, the<br />

�'s transform l<strong>in</strong>early under H <strong>in</strong> the same way as the \)I's, for which a l<strong>in</strong>ear transformation<br />

property under H has been required. Thus, we obta<strong>in</strong> for eq. (3.70):<br />

(3.71)


3.2. <strong>Effective</strong> Lagrangians 59<br />

where e and s' are given by eq. (3.55). <strong>The</strong>refore, the new set (�, �)* <strong>in</strong>deed def<strong>in</strong>es the CCWZ<br />

realization.<br />

It is now clear how to construct the effective Lagrangian from the es,


60 3. <strong>The</strong> derivation of nuc1ear forces from chiral Lagrangians<br />

Let us now make a few comments about eq. (3.74). This is, <strong>in</strong> fact, a crucial result for EFT,<br />

s<strong>in</strong>ce it says, that the <strong>in</strong>teraction between the Goldstone bosons vanishes at low energies. Indeed,<br />

it is seen <strong>in</strong> eq. (3.74) that one can always rewrite the Lagrangian <strong>in</strong> such a form, that only<br />

derivative <strong>in</strong>teractions between the Goldstone bosons are present. We will show below us<strong>in</strong>g the<br />

power count<strong>in</strong>g arguments that, as a consequence, the scatter<strong>in</strong>g amplitude for any process with<br />

an arbitrary number of Goldstone particles is proportional to some positive power of external<br />

momenta. We po<strong>in</strong>t out aga<strong>in</strong> that this statement concern<strong>in</strong>g the scatter<strong>in</strong>g amplitude is <strong>in</strong>dependent<br />

of any particular choice of the realization of the group G. In pr<strong>in</strong>ciple, we could equally<br />

well use an arbitrary nonl<strong>in</strong>ear realization (�, cjJ) to construct the Lagrangian, where cjJ denotes a<br />

set of matter fields, their derivatives as well as derivatives of Goldstone fields. However, <strong>in</strong>sist<strong>in</strong>g<br />

on the chiral <strong>in</strong>variance of the Lagrangian density would be a non-trivial problem because of the<br />

complicated nonl<strong>in</strong>ear transformation rules of the fields and their derivatives. Us<strong>in</strong>g the CCWZ<br />

realization to construct the efIective Lagrangian via eq. (3.74) has the advantage that all build<strong>in</strong>g<br />

blocks transform covariantly under G, Le. <strong>in</strong> the way shown <strong>in</strong> eq. (3.54), guarantee<strong>in</strong>g that any<br />

H-scalar is also G-<strong>in</strong>variant.<br />

To complete the discussion about the construction of a chiral <strong>in</strong>variant Lagrangian let us apply<br />

now the chiral SU(Nf)v x SU(Nf)A group as a particular example of the general Lie algebra<br />

(3.52). In that case all <strong>in</strong>dices <strong>in</strong> eq. (3.52) vary from 1 to Ni - 1 and the structure constants G's<br />

are represented <strong>in</strong> terms of the structure constants f's of the SU(Nf) group as follows:12<br />

Gabe = 0, (3.75)<br />

For example, for the SU(2)v x SU(2)A group we have fijk fijk, where fijk is the ord<strong>in</strong>ary<br />

three-dimensional totally antisymmetric tensor with f123 = 1. Note that one can represent the<br />

chiral SU(Nf)V x SU(Nf)A group by SU(Nf)L x SU(Nf)R def<strong>in</strong><strong>in</strong>g the correspond<strong>in</strong>g generators<br />

TL and TR as<br />

(3.76)<br />

where Vi and Ai are the generators of the SU(Nf)V and SU(Nf )A, respectively. <strong>The</strong>n SU(Nf)L<br />

and SU(Nf)R build two <strong>in</strong>dependent subgroups of the whole chiral group with the Lie algebra<br />

[(TL ) i , (TL)j]<br />

[(TR) i , (TR)j]<br />

[(TL ) i , (TR)j]<br />

Let us now be more specific and concentrate on the chiral SU(2)v x<br />

the follow<strong>in</strong>g representation of the generators Vi and Ai fijk (TL h ,<br />

fijk (TRh ,<br />

o.<br />

A - _ _ ilT i<br />

l - 2 '<br />

SU(2)A<br />

(3.77)<br />

group. We choose<br />

where T i is a Pauli matrix and 1 is some flavor scalar matrix quantity with the properties:<br />

12 = 1 , I t = I .<br />

(3.78)<br />

(3.79)<br />

For example, 1 can be equal to the ')'5 matrix. <strong>The</strong>n, one has the same representation for the<br />

SU(2)A generators as <strong>in</strong> the case of the QCD Lagrangian (3.1), as can be seen from eq. (3.9).<br />

1 2 Here we use a def<strong>in</strong>ition of the chiral Lie algebra, which differs by the factor i from the one given <strong>in</strong> the last<br />

section , eq. (3.36). This factar can be absorbed by the correspond<strong>in</strong>g redef<strong>in</strong>ition of the generators.


3.2. <strong>Effective</strong> Lagrangians 61<br />

<strong>The</strong> representation (3.78) of the 8U(2)v group generators Vi is preferable because we will apply<br />

the formalism to the nucleon fields, which form an isosp<strong>in</strong> doublet, but this is not necessary <strong>in</strong><br />

general.13 Note that a particular choice of I <strong>in</strong> eq. (3.78) is not relevant, s<strong>in</strong>ce this quantity will<br />

not enter the explicit expressions for the effective Lagrangian, as will be shown below. It is easy<br />

to verify that the Lie algebra (3.52), (3.75) is satisfied with fijk = Eijk if one def<strong>in</strong>es V and A via<br />

eq. (3.78). Us<strong>in</strong>g eq. (3.78), one can express the quantity e2�.A <strong>in</strong> the form:<br />

cos � - ilnm s<strong>in</strong> � , (3.80)<br />

e2�.A =<br />

where � == lei and ni = �d�. <strong>The</strong> chiral 8U(2) x 8U(2) group is isomorph to 80(4). It can be<br />

shown, see e.g. ref. [161], that the coord<strong>in</strong>ates ( 0', *) def<strong>in</strong>ed via<br />

0'<br />

- == - cos (�),<br />

(3.81)<br />

fn<br />

where fn is some constant, transform as the cartesian components of a 80(4) vector.14 Clearly,<br />

the 80(4) group describes rotations on the four dimensional sphere<br />

(3.82)<br />

<strong>The</strong>refore and as it is also obvious from eq. (3.81), the coord<strong>in</strong>ates 0' and * are not <strong>in</strong>dependent<br />

from each other. Note furt her that the �i and, therefore, the 7ri are pseudoscalar quantities:<br />

(3.83)<br />

This is because the Noether charges of the 8U(2)A are pseudoscalars, as can be seen from eq. (3.21)<br />

<strong>in</strong> the case of the QCD Lagrangian (3.1). Furt her , the parameters € <strong>in</strong> eq. (3.32) should have the<br />

same properties under parity transformation Pas the Noether charges Q, s<strong>in</strong>ce otherwise the fields<br />

cjJ' <strong>in</strong> eq. (3.34) would transform under P differently than the cjJ's. <strong>The</strong>refore, the transformation<br />

parameters � related to 8U(2)A must be pseudoscalar quantities.<br />

<strong>The</strong> so-called stereographical coord<strong>in</strong>ates (0', 'Fr ) proposed by We<strong>in</strong>berg [160] are def<strong>in</strong>ed as<br />

2* (3.84)<br />

Für that particular parametrization one f<strong>in</strong>ds the covariant derivative D p, of the pion field (up to<br />

some irrelevant numerical factor) [160], [75], see also [161]:<br />

D _ -<br />

_ � ßp,'Fr P, fn D<br />

'<br />

(3.85)<br />

with<br />

D == 1 + (�)2 2fn .<br />

(3.86)<br />

For the nucleon field \[I, which is an isosp<strong>in</strong> or, equivalently, 8U(2)v doublet, one obta<strong>in</strong>s the<br />

covariant derivative <strong>in</strong> the form<br />

(3.87)<br />

13 In particular, one has to choose another representation far the V's if one considers matter fields, that form a<br />

different isosp<strong>in</strong> multiplet.<br />

14 S<strong>in</strong>ce we consider the group SU(2)v x SU(2)A <strong>in</strong> some neighborhood of the unity, the mapp<strong>in</strong>g � .;==} ir is<br />

unique.


62 3. <strong>The</strong> derivation of nuc1ear forces from chiral Lagrangians<br />

where the quantity EJ.t is def<strong>in</strong>ed as<br />

(3.88)<br />

A more detailed discussion concern<strong>in</strong>g the stereographical parametrization can be found <strong>in</strong> [161].<br />

<strong>The</strong> use of the stereographical coord<strong>in</strong>ates requires sometimes rat her tedious calculations. We will<br />

now briefly discuss another more elegant way, which is commonly used <strong>in</strong> the analysis of processes<br />

with one nucleon. Let us first <strong>in</strong>troduce the standard notation and def<strong>in</strong>e the matrix u as<br />

(3.89)<br />

For the generators V and A we will aga<strong>in</strong> use the representation (3.78) with l = 1'5 , To establish<br />

the transformation properties of the u we will apply eq. (3.55), which def<strong>in</strong>es how the Cs transform<br />

under go E SU(2)v X SU(2)A. An arbitrary group element go needs not necessarily to be<br />

parametrized <strong>in</strong> terms of s and � via eq. (3.51). Equally weIl we can write<br />

(3.90)<br />

Here, eV,A are transformation parameters of the SU(2)V,A groups. We can now rewrite eq. (3.55)<br />

us<strong>in</strong>g the parametrization (3.90) as<br />

(3.91)<br />

where s' is, as usual, a function of � and eV,A. Us<strong>in</strong>g the projectors PR and PL onto the states<br />

with a def<strong>in</strong>ite chirality def<strong>in</strong>ed <strong>in</strong> eq. (3.5) we can express (ev . V + eA . A) as<br />

<strong>The</strong> parameters e R,L are def<strong>in</strong>ed by<br />

(3.92)<br />

(3.93)<br />

and VR,L == VPR,L are the generators of SU(2)R,L. Project<strong>in</strong>g eq. (3.91) onto states with adef<strong>in</strong>ite<br />

chirality we obta<strong>in</strong> the follow<strong>in</strong>g equations:<br />

PRi'R" V e�' v<br />

PLih' V e-�' v<br />

Here we have used the properties of the projectors PR,L:<br />

and the follow<strong>in</strong>g equalities:<br />

P e·v Re e s'·V ,<br />

P -e·v<br />

Le e s'·V .<br />

(3.94)<br />

(3.95)<br />

(3.96)<br />

(3.97)<br />

S<strong>in</strong>ce PR,L commute with the V, one can completely drop these projectors <strong>in</strong> eqs. (3.94), (3.95).<br />

We can now easily read off the transformation properties of the u from eqs. (3.94), (3.95):<br />

90 , h h- 1 h h- 1<br />

U -=---7 U = RU = U L . (3.98)


3.2. Eifective Lagrangians 63<br />

Here hR,L == iJR,L'V denote the SU(2)v-like15 transformations16 given by the matrices e(}R,L'V<br />

and the so-called compensator field h is def<strong>in</strong>ed via<br />

(3.99)<br />

Let us repeat once more the logic to make this presentation more dear. An arbitrary group<br />

element go E SU(2)v X SU(2)A can be parametrized via eq. (3.51) <strong>in</strong> terms of s and � or by a pair<br />

eA, ev as <strong>in</strong> eq. (3.90) (or, equivalently, by eR and eL given <strong>in</strong> eq. (3.93)). <strong>The</strong> quantities s' and,<br />

therefore, also the matrix h can be determ<strong>in</strong>ed from eq. (3.55). To obta<strong>in</strong> the transformed fs (or<br />

u' def<strong>in</strong>ed <strong>in</strong> eq. (3.89)), one can aga<strong>in</strong> make use of eq. (3.55) or, equivalently, apply eq. (3.98).<br />

<strong>The</strong> second way is more preferable for our furt her consideration. Note that the matrix h depends,<br />

<strong>in</strong> general, on space-time due to its explicit dependence on the fs whereas the hR,L <strong>in</strong> eq. (3.98)<br />

do not.<br />

Let us <strong>in</strong>troduce another useful matrix U as<br />

From eq. (3.98) we see that it transforms as<br />

(3.100)<br />

(3.101)<br />

Consider now the quantity<br />

uJ1, == iut (8J1,U) ut = i (ut 8J1,u - u8J1,ut) = -i ((8J1,ut)u + u8ttut) = -iu (8J1,Ut) u = u1 . (3.102)<br />

Note that because of the def<strong>in</strong>ition (3.78) for the SU(2)v generators one has ut = u-1. In the<br />

second and third equalities we have used the relation<br />

(3.103)<br />

One verifies that utt corresponds to the matrix representation of the covariant derivative of �. For<br />

that one recalls that covariant derivatives are characterized by their transformation properties<br />

under the chiral group. Speak<strong>in</strong>g more precisely, the covariant derivative Dtt� should transform <strong>in</strong><br />

the same way as � under the subgroup H, which is <strong>in</strong> our case SU(2)v. <strong>The</strong> transformation of Dtt�<br />

under the whole group SU(2)v x SU(2)A should have the form of the SU(2) v-transformation.<br />

<strong>The</strong> only difference is that now the transformation parameters (the s" s enter<strong>in</strong>g h) are functions<br />

of the group element and of the fs, given by eq. (3.55). S<strong>in</strong>ce we use the matrix form u def<strong>in</strong>ed <strong>in</strong><br />

eq. (3.89) for the fs, we have to consider the transformation properties of the u and not of the fs<br />

under SU(2)v. As we already know from eq. (3.59), for a SU(2)v-transformation h = e(}v'<br />

v<br />

EH<br />

one has h = h. Furthermore, as follows from eq. (3.93), eR = eL = ev s<strong>in</strong>ce eA = O. <strong>The</strong>refore,<br />

hL = hR = h. Consequently, the matrix u transforms under h E H = SU(2)v as<br />

u ---+ u' = huh-1 • (3.104)<br />

One can easily check us<strong>in</strong>g eqs. (3.104) and (3.33) that the �'s are the basis of the adjo<strong>in</strong>t representat<br />

ion of SU(2)v as they should be, see eq. (3.60). For the covariant derivative of � <strong>in</strong> the matrix<br />

15It should be kept <strong>in</strong> m<strong>in</strong>d that the (h,L are, <strong>in</strong> general, not scalars with respect to parity operation as the<br />

transformation parameters of an ord<strong>in</strong>ary SU(2)v rotation.<br />

lßWe refra<strong>in</strong> here from <strong>in</strong>troduc<strong>in</strong>g the commonly used notation, <strong>in</strong> which the matrices hR,L are denoted by 9R,L.<br />

In our op<strong>in</strong>ion, this leads to confusion, s<strong>in</strong>ce hR,L do not belong to the correspond<strong>in</strong>g representation of the groups<br />

SU(2)R,L.


64 3. <strong>The</strong> derivation of nuclear forces from chiral Lagrangians<br />

form we should require the same transformation property (3.104) under go E SU(2)v X SU(2)A'<br />

Us<strong>in</strong>g eqs. (3.98), (3.100) and (3.101) one verifies that uJ.L <strong>in</strong>deed satisfies this condition, i.e. that<br />

and thus corresponds to the matrix representation of the covariant derivative of �.<br />

(3.105)<br />

<strong>The</strong> pion fields can be def<strong>in</strong>ed by a particular parametrization of U. Choos<strong>in</strong>g aga<strong>in</strong> the 2 x 2<br />

matrix representation (3.78) of the group generators Ai, Vi we can parametrize U, for example,<br />

as follows:<br />

Z'Fr • T<br />

U=exP ( h ) , (3.106)<br />

where 7ri are pseudoscalar fields (pions) and f1f is some constantP This also uniquely def<strong>in</strong>es the<br />

quantity uJ.L <strong>in</strong> terms of the pion fields. It is easy to construct chiral <strong>in</strong>variant terms consist<strong>in</strong>g of<br />

u/s. One simply has to build traces ( ... ) <strong>in</strong> flavor space of any product of the uJ.L's. For <strong>in</strong>stance,<br />

the term (uJ.Lu J.L ) is clearly chiral <strong>in</strong>variant:<br />

(3.107)<br />

Let us now <strong>in</strong>troduce the nucleon field \]J. We will require that the nucleon field belongs to the<br />

CCWZ realization and transforms under go E G via eq. (3.54):<br />

(3.108)<br />

S<strong>in</strong>ce we have chosen the representation (3.78) of the group generators, h(go, 'Fr) is a 2 x 2 matrix<br />

<strong>in</strong> the flavor space. Note that h(go, 'Fr) becomes <strong>in</strong>dependent on 'Fr for all go E SU(2)v and forms<br />

the fundamental representation of SU(2)v. To def<strong>in</strong>e the covariant derivatives of the nucleon field<br />

it is convenient to <strong>in</strong>troduce the so-called connection r J.L:<br />

It follows from eq. (3.98) that r J.L transforms as:<br />

Here we made use of the similar trick as <strong>in</strong> eq. (3.103):<br />

<strong>The</strong>refore, the covariant derivative of the nucleon def<strong>in</strong>ed as<br />

transforms <strong>in</strong> the same way as the field \]J (covariantly):<br />

(3.109)<br />

(3.110)<br />

(3.111)<br />

(3.112)<br />

(3.113)<br />

Thus, any flavor scalar built up from isosp<strong>in</strong>ors \]J, D J.L \]J with <strong>in</strong>sertions of uJ.L is chiral <strong>in</strong>variant.<br />

17 It can be shown that <strong>in</strong> the chiral limit f" is the pion decay constant.


3.2. <strong>Effective</strong> Lagrangians 65<br />

As an illustration, let us now construct the lead<strong>in</strong>g Lagrangian for pions, i. e. the Lagrangian with<br />

the m<strong>in</strong>imum number of derivatives. We will first work out all chiral symmetrie terms and skip,<br />

for simplicity, the external sources. It is clear from the above discussion that the most general<br />

chiral <strong>in</strong>variant Lagrangian can be built up from the covariant derivatives of the pion fields. In the<br />

matrix notation used above, such a covariant derivative of the first order is given by eq. (3.102).<br />

One can easily obta<strong>in</strong> analogous expressions for higher derivatives. For <strong>in</strong>stance, the quantity<br />

8JLuv clearly does not transform <strong>in</strong> a covariant way as the ufl <strong>in</strong> eq. (3.105):<br />

(3.114)<br />

To form a covariant object we need aga<strong>in</strong> the chiral connection r fl def<strong>in</strong>ed <strong>in</strong> eq. (3.109): (3.115)<br />

Let us now establish the properties of the build<strong>in</strong>g blocks (ufl' UJLV, . . . ) und er Lorentz and parity<br />

transformations. To simplify the notation, we will work with the dimensionsless field c/J <strong>in</strong>stead of<br />

7r, which is def<strong>in</strong>ed as18<br />

(3.116)<br />

where T is the Pauli matrix. Clearly, observables do not depend on a partieular parametrization<br />

of the quantity u. This follows from Haag's theorem [162], [67]. Us<strong>in</strong>g the explicit parametrization<br />

eq. (3.116) of u, we can express u8JLu t and U t 8flu <strong>in</strong> terms of the pion field c/J:<br />

(3.117)<br />

where


66 3. <strong>The</strong> derivation o{ nuclear {orces {rom chiral Lagrangians<br />

<strong>The</strong>refore,<br />

U ---7<br />

(3.122)<br />

We are now <strong>in</strong> the position to construct the lowest order Lagrangian for pions. <strong>The</strong> build<strong>in</strong>g blocks<br />

are (uft, UftY, . . . ). Any SU(2)v (isosp<strong>in</strong>) <strong>in</strong>variant quantity is automatically chirally <strong>in</strong>variant.<br />

To provide the isosp<strong>in</strong> <strong>in</strong>variance one has to take traces <strong>in</strong> flavor space of any product of uft'<br />

UftY, . . .. Clearly, no terms with a s<strong>in</strong>gle derivative can enter the Lagrangian, which is required to<br />

be a Lorentz scalar. One can write down three SU(2)v and Lorentz scalars with two derivatives:<br />

(3.123)<br />

where g fty is the metric tensor. <strong>The</strong> last term is not <strong>in</strong>variant under the parity transformation.<br />

Furthermore, the second and the third terms do vanish anyway, s<strong>in</strong>ce uft and therefore also ufty<br />

are traceless, as can be read off from eq. (3.118). <strong>The</strong> <strong>in</strong>variance of the first term under the charge<br />

conjugation is obvious. Thus, the lead<strong>in</strong>g order chiral <strong>in</strong>variant Lagrangian for pions is given by<br />

a s<strong>in</strong>gle term<br />

(3.124)<br />

where the coefficient /;/4 is chosen to reproduce the usual free Lagrangian for the pion field 7r.<br />

In the real world, chiral symmetry turns out to be broken not only spontaneously but also explicitly,<br />

due to non-vanish<strong>in</strong>g quark masses. To systematically <strong>in</strong>corporate the symmetry break<strong>in</strong>g<br />

terms with<strong>in</strong> the effective field theory one can use the method of external fields [63]. Those fields<br />

do not correspond to dynamical objects but can be used to generate Green functions of currents.<br />

For our purpose of construct<strong>in</strong>g the symmetry break<strong>in</strong>g terms due to the quark masses we only<br />

need to consider a scalar source 8.19 We can formally require QCD to be a theory of massless<br />

quarks <strong>in</strong>teract<strong>in</strong>g with a scalar field 8 with the correspond<strong>in</strong>g Lagrangian given by<br />

LQCD = L�CD -<br />

ij S q . (3.125)<br />

Clearly, we recover the orig<strong>in</strong>al QCD Lagrangian (3.1) by freez<strong>in</strong>g the field s and by sett<strong>in</strong>g20<br />

s=M. (3.126)<br />

To systematically <strong>in</strong>corporate the symmetry break<strong>in</strong>g <strong>in</strong> the effective Lagrangian caused by nonvanish<strong>in</strong>g<br />

quark masses one has to build up all non-<strong>in</strong>variant terms hav<strong>in</strong>g the same transformation<br />

properties with respect to the chiral group as the quark mass term <strong>in</strong> eq. (3.1). This can be achieved<br />

requir<strong>in</strong>g the Lagrangian (3.125) to be chiral <strong>in</strong>variant, which leads to def<strong>in</strong>ite transformation<br />

properties of s, and tak<strong>in</strong>g <strong>in</strong>to account the scalar source s by construction of the most general<br />

chiral <strong>in</strong>variant effective Lagrangian. At the end, one has to set 8 = M <strong>in</strong> order to recover the<br />

physically observed situation. <strong>The</strong> scalar source s <strong>in</strong> the QCD Lagrangian (3.125) has the follow<strong>in</strong>g<br />

19 0ne should not eonfuse the matrix field s with the transformation parameters of the group H def<strong>in</strong>ed <strong>in</strong><br />

eq. (3.51).<br />

20 Note that <strong>in</strong> general s = M + . .. , where the dots denote other seal ar sources that may enter the QCD Lagrangian.


3.2. <strong>Effective</strong> Lagrangians 67<br />

properties under the chiral transformation 90 E G, which are required by the chiral <strong>in</strong>variance of<br />

the Lagrangian eq. (3.125):<br />

90 I h h-1 h h-1 S -"-+ S = L S R = RS L , ( 3.12 7)<br />

Note that the external field S is required to be hermitian, st = s, to provide the hermiticity of<br />

eq. (3.125). <strong>The</strong> quark masses are treated as a small perturbation. <strong>The</strong>refore, the lead<strong>in</strong>g symmetry<br />

break<strong>in</strong>g terms <strong>in</strong> the effective Lagrangian should conta<strong>in</strong> a m<strong>in</strong>imal number of derivatives and<br />

just one <strong>in</strong>sertion of s, which will be put to M at the end <strong>in</strong> accord with eq. (3.126). To work out<br />

the symmetry break<strong>in</strong>g terms, it is convenient to use the quantity U def<strong>in</strong>ed <strong>in</strong> eq. (3.100) and its<br />

derivatives, that transform precisely <strong>in</strong> the same way as the external field s. Furt her , demand<strong>in</strong>g<br />

charge conjugation <strong>in</strong>variance for the QCD Lagrangian (3.125) leads to<br />

S<strong>in</strong>ce the pions are pseudoscalars, we obta<strong>in</strong> for the parity transformation:<br />

(3.128)<br />

U ----+ U P = ut . (3.129)<br />

<strong>The</strong>refore, a s<strong>in</strong>gle term with no derivatives and with one <strong>in</strong>sertion of U that satisfies all desired<br />

symmetry properties is<br />

LSB = c(s(U + ut)) , (3.130)<br />

where the real constant cis usually parametrized as c = {;B /2. Note that the term with two traces<br />

like (s)((U + ut)) is, <strong>in</strong> general, not chiral <strong>in</strong>variant. However, for the chiral SU(2)v x SU(2)A<br />

group this term is closely related to the one <strong>in</strong> eq. (3.130). Tak<strong>in</strong>g <strong>in</strong>to account that the U's are<br />

SU(2) matrices, we note that they can be parametrized <strong>in</strong> terms of two complex numbers a and<br />

b, a 2 + b 2 = 1, as<br />

(3.131)<br />

<strong>The</strong>n, it is easy to verify that U + ut = (U)I, where I is the unity matrix. This enables us to<br />

rewrite the symmetry break<strong>in</strong>g Lagrangian as<br />

j2B<br />

LSB = _7r_ (s)(U) .<br />

2 s=M<br />

I<br />

(3.132)<br />

In order to obta<strong>in</strong> a physical <strong>in</strong>terpretation of the symmetry break<strong>in</strong>g term one can express<br />

eq. (3.130) <strong>in</strong> terms of pion fields us<strong>in</strong>g eq. (3.106). We obta<strong>in</strong><br />

(3.133)<br />

<strong>The</strong> first term is constant and does not contribute to the S-matrix. It is, however, still important<br />

s<strong>in</strong>ce it parametrizes the non-trivial structure of the vacuum [63], [64]. <strong>The</strong> second one can be<br />

identified with the pion mass term -(1/2)M;7r2 , where M; = (mu + md)B. Note that to lead<strong>in</strong>g<br />

order <strong>in</strong> mu, md one has equal masses for all pions 7f +, 7f - and 7f0. <strong>The</strong> SU (2) v symmetry is not<br />

broken.<br />

It can be demonstrated, see for <strong>in</strong>stance refs. [63], [133], that the constant B is related to the<br />

value of the quark condensate as<br />

(OluuIO) = (OlddIO) = -f;B(l + O(M)) . (3.134)


68 3. <strong>The</strong> derivation of nuc1ear forces from chiral Lagrangians<br />

<strong>The</strong> corrections O(M) <strong>in</strong> eq. (3.134) correspond to higher order symmetry break<strong>in</strong>g terms that<br />

<strong>in</strong>clude two and more <strong>in</strong>sert ions of the quark mass matrix M. Eq. (3.134) allows one to express<br />

the pion mass <strong>in</strong> terms of the quark condensate as follows<br />

This expression is known as the Gell-Mann-Oakes-Renner relation [163].<br />

(3.135)<br />

Let us f<strong>in</strong>ally make aremark concern<strong>in</strong>g the constant <strong>in</strong>: . For that we can calculate the axial-vector<br />

current correspond<strong>in</strong>g to the Lagrangian (3.124), that can be equivalently rewritten as<br />

(3.136)<br />

To calculate the symmetry current we use eq. (3.13). Note that <strong>in</strong> the case of a SU(2)A transformation<br />

one has (Jv = 0, (JR = (JA and (JL = -(JA, see eqs. (3.92), (3.93). Consequently, an<br />

<strong>in</strong>f<strong>in</strong>itesimal axial-vector transformation 90 E SU(2)A of the matrices U, ut is given by<br />

<strong>The</strong> related axial-vector current iS21<br />

U � U' = hRUhR = U - �(J� (TiU + UTi) ,<br />

ut' - h-1Uth-1 R R - ut + �(Ji A (TiUt + UtTi) ,<br />

2<br />

(3.137)<br />

(3.138)<br />

where the ellipses stay for terms with more pion fields. Clearly, the axial current connects the<br />

vacuum state with the one-pion state:22<br />

(3.139)<br />

Here, n hys 23 denotes the experimentally observed value of the pion decay constant, which can be<br />

calculated from the rate for pion decay. <strong>The</strong> dots correspond to corrections, which are proportional<br />

to powers of p2 / i; . 24 Consequently, these corrections are proportional to the pion mass squared<br />

M; , which is zero <strong>in</strong> chiral limit. Thus, <strong>in</strong> the chiral limit <strong>in</strong>: is not renormalized and <strong>in</strong>: = n hys.<br />

To perform later the expansion <strong>in</strong> powers of small momenta Q we need an order<strong>in</strong>g scheme for<br />

various <strong>in</strong>teractions <strong>in</strong> the effective Lagrangian, which can be viewed as the derivative expansion<br />

and the expansion <strong>in</strong> powers of quark masses correspond<strong>in</strong>g to the symmetry break<strong>in</strong>g terms.<br />

One commonly counts the squared pion mass M; rv (140MeV)2 or, equivalently, the quark mass<br />

<strong>in</strong>sertion as two powers of small external momenta (two derivatives). <strong>The</strong>refore, the complete<br />

Lagrangian to lead<strong>in</strong>g order is given by<br />

(3.140)<br />

21<br />

Note that BA corresponds to _ca <strong>in</strong> the notation of eq. (3.12).<br />

22This is a general consequence of Goldstone theorem.<br />

23<br />

0ne commonly uses a different notation, <strong>in</strong> which OUf Irr (I!:hys) is denoted by F or I (Irr).<br />

24This can be demonstrated from Lorentz <strong>in</strong>variance and the power count<strong>in</strong>g scheme, that will be <strong>in</strong>troduced <strong>in</strong><br />

the follow<strong>in</strong>g section.


3.3. <strong>Chiral</strong> perturbation theory with pions 69<br />

where the superscript (2) stands for the number of derivatives and the quark mass matrix <strong>in</strong>sertions<br />

as expla<strong>in</strong>ed above. Proceed<strong>in</strong>g <strong>in</strong> the same way as we did for [)2) one can construct the nextto-Iead<strong>in</strong>g<br />

order Lagrangian C(4) , which conta<strong>in</strong>s 8 <strong>in</strong>dependent terms25 [63], [64]:<br />

c(4) LI (OJ1ut oJ1U)2 + L 2 (0J1UOvut) (oJ1Uo v ut) + L 3(0J1U0J1ut OvUo v ut)<br />

+ L4(0J1U0J1ut) (M(U + ut)) + L5 (OJ1UoJ1ut (MU + UtM)) (3.141)<br />

+ L6(M(U + Ut))2 + L7((Ut - U)M)2 + L8((U M)2 + (ut M)2) ,<br />

where LI,. " ,L8 are the so-called low energy constants (LEC's), that have to be fixed from<br />

experiment.26<br />

3.3 <strong>Chiral</strong> perturbation theory with pions<br />

In this section we will outl<strong>in</strong>e the basic ideas of chiral perturbation theory on an example, which is<br />

the elastic pion-pion scatter<strong>in</strong>g. <strong>The</strong> start<strong>in</strong>g po<strong>in</strong>t is the most general Lagrangian constructed as<br />

described <strong>in</strong> the last section. Apart from the chiral symmetrie part that can be classified <strong>in</strong> powers<br />

of derivatives act<strong>in</strong>g on the pion fields, various symmetry break<strong>in</strong>g terms with <strong>in</strong>sertions of the<br />

quark mass matrix and conta<strong>in</strong><strong>in</strong>g any number of field derivatives enter the efIective Lagrangian.<br />

Based on that Lagrangian, one can calculate the tree diagrams for arbitrary processes with any<br />

number of pions. Furthermore, the lead<strong>in</strong>g approximation to the scatter<strong>in</strong>g amplitude can be<br />

obta<strong>in</strong>ed us<strong>in</strong>g the <strong>in</strong>teractions from c(2), s<strong>in</strong>ce <strong>in</strong>sert ions of vertices from higher order Lagrangians<br />

lead to a suppression <strong>in</strong> powers of momenta or quark masses. Such an expansion clearly makes<br />

sense only if the momenta of the pions are small.<br />

<strong>The</strong> efIective field theory technique allows to go beyond the tree approximation and to systematically<br />

calculate the quantum corrections represented by loop graphs. All ultraviolet divergences<br />

can be absorbed <strong>in</strong> a redef<strong>in</strong>ition of the coupl<strong>in</strong>g constants accompany<strong>in</strong>g the <strong>in</strong>teractions <strong>in</strong> the<br />

Lagrangian order by order <strong>in</strong> powers of low external momenta and quark masses. To see how this<br />

works <strong>in</strong> practice, we need to establish the power count<strong>in</strong>g rules [60] for an arbitrary scatter<strong>in</strong>g<br />

process. <strong>The</strong> on-shell S-matrix element for a reaction with N external pions can be expressed<br />

as27<br />

(3.142)<br />

where PI , P2 , ... , PN are momenta of external pions and TI is a product of phase space factors correspond<strong>in</strong>g<br />

to the <strong>in</strong>com<strong>in</strong>g and outgo<strong>in</strong>g particles. <strong>The</strong> transition amplitude M can be rewritten<br />

<strong>in</strong> the form<br />

(3.143)<br />

M == M(Q,g,fL) = QV f( Q ,g) .<br />

Here, Q denotes a generic external momentum, g corresponds to a comb<strong>in</strong>ation of the pert<strong>in</strong>ent<br />

coupl<strong>in</strong>g constants and fL is the renormalization scale. To calculate 1/ we have to count all derivatives,<br />

pion propagators, moment um <strong>in</strong>tegrations and 6-functions for a specific diagram, s<strong>in</strong>ce these<br />

are the only dimensionsfull elements apart from the coupl<strong>in</strong>g constants. For a process with I <strong>in</strong>ner<br />

pion l<strong>in</strong>es we have:<br />

1/ = L Vi di - 21 + 4L , (3.144)<br />

25This is the most general Lagrangian for SU(3). For the two-fiavor case, not all of these terms are <strong>in</strong>dependent<br />

from each other.<br />

26 In order to be able to perform renormalization <strong>in</strong> the presence of external sources one also needs to <strong>in</strong>clude <strong>in</strong><br />

eq. (3.141) furt her terms, which do not conta<strong>in</strong> the pion fields. For more details see e.g. refs. [63], [64].<br />

27Here we will only consider connected diagrams.<br />

fL


70 3. <strong>The</strong> derivation of nuclear forces from chiral Lagrangians<br />

derivatives of<br />

the pion field or pion mass <strong>in</strong>sertions. We count the <strong>in</strong>ner l<strong>in</strong>es twice because the pion propagator<br />

scales as 1/ q2 . <strong>The</strong> total number of <strong>in</strong>dependent <strong>in</strong>tegrations (loops) equals the number of <strong>in</strong>ner<br />

l<strong>in</strong>es reduced by the number of delta functions correspond<strong>in</strong>g to each vertex:<br />

where L is the number of loops and Vi the number of vertices of the type i with di<br />

L = 1 - (2: Vi - 1) , (3.145)<br />

where we took <strong>in</strong>to account the overall delta function <strong>in</strong> eq. (3.142). <strong>The</strong>refore we obta<strong>in</strong> the<br />

follow<strong>in</strong>g result for the total scal<strong>in</strong>g dimension LI of the transition amplitude M:<br />

(3.146)<br />

We<strong>in</strong>berg made <strong>in</strong> 1979 a crucial observation [60] that this number LI is bounded from below.<br />

Indeed, due to the spontaneously broken chiral symmetry and the Lorentz <strong>in</strong>variance of the Lagrangian,<br />

no <strong>in</strong>teractions with di � 2 are allowed.28 Furthermore, <strong>in</strong>clud<strong>in</strong>g loops leads to a<br />

suppression by at least two powers of external momenta aga<strong>in</strong>st the tree graph with the same<br />

vertices. Accord<strong>in</strong>g to eq. (3.146), the dom<strong>in</strong>ant diagrams with LI = 2 are the tree ones with all<br />

vertices from [J2). <strong>The</strong> first corrections with LI = 4 are given by tree diagrams with one vertex<br />

from .c(4) and l-loop graphs with the lead<strong>in</strong>g order vertices.<br />

1['b (Pb) 1['c (Pc)<br />

1['a (Pa)<br />

/<br />

,<br />

1[' d' (Pd)<br />

+<br />

+<br />

,<br />

,<br />

• • •<br />

/<br />

'e / ,<br />

,<br />

•<br />

/<br />

/<br />

/<br />

\ /<br />

\ I<br />

I<br />

, I<br />

\ I<br />

I \<br />

I \<br />

I \<br />

/ \<br />

+ • •<br />

Figure 3.2: Low-energy expansion for pion-pion scatter<strong>in</strong>g. <strong>The</strong> small filled circles<br />

denote the lead<strong>in</strong>g order vertex from [P) and the filled square corresponds to vertices<br />

from .c(4).<br />

Let us illustrate the above ideas on an example with pion-pion scatter<strong>in</strong>g follow<strong>in</strong>g the orig<strong>in</strong>al<br />

work of We<strong>in</strong>berg [60]. One first <strong>in</strong>tro duces the Mandelstarn variables s, t and u:<br />

S = (Pa + Pb) 2 = (Pe + Pd) 2 ,<br />

28This argumentation is valid not only <strong>in</strong> the chiral limit, but also for chiral symmetry break<strong>in</strong>g terms, s<strong>in</strong>ce we<br />

count Mrr � Q.<br />

, - -


3.3. <strong>Chiral</strong> perturbation theory with pions<br />

t<br />

u<br />

(Pa - Pe) 2 = (Pd - Pb) 2 ,<br />

(Pa - Pd) 2 = (Pe - Pb) 2 .<br />

71<br />

(3.147)<br />

For simplicity, we will consider the chiral limit with Mn = O. <strong>The</strong> Mandelstarn variables then<br />

satisfy 82 + t2 + u2 = O. <strong>The</strong> S-matrix element can be expressed <strong>in</strong> the form<br />

<strong>The</strong> transition amplitude M for the pion-pion scatter<strong>in</strong>g can be parametrized as<br />

(3.148)<br />

(3.149)<br />

<strong>in</strong> terms of a s<strong>in</strong>gle function A. To lead<strong>in</strong>g order (v = 2) this function is completely determ<strong>in</strong>ed<br />

by the <strong>in</strong>ter action term<br />

_ 1 _(1r . 8 1r)(1r . 8J11r)<br />

21; J1 , (3.150)<br />

correspond<strong>in</strong>g to the lead<strong>in</strong>g order Lagrangian (3.136), see eq. (3.106). Note that the chiral<br />

symmetry fixes the coefficient 1/(2{;) for this term. For the function A one obta<strong>in</strong>s<br />

A (2) (8,t,U) _- � J; . (3.151)<br />

As shown <strong>in</strong> fig. 3.2, at next-to-Iead<strong>in</strong>g order one has to evaluate the one-Ioop diagram with both<br />

vertices (3.150) as weH as the tree graph with the <strong>in</strong>teractions<br />

(3.152)<br />

Here we use the notation of reference [133] . Clearly, the coupl<strong>in</strong>gs q, c� are some l<strong>in</strong>ear comb<strong>in</strong>ations<br />

of the LECs def<strong>in</strong>ed <strong>in</strong> eq. (3.141). For the function A one f<strong>in</strong>ds at next-to-Iead<strong>in</strong>g<br />

order<br />

where A is the ultraviolet cut-off. Introduc<strong>in</strong>g the renormalized coupl<strong>in</strong>gs<br />

allows to express the amplitude <strong>in</strong> the form<br />

1 ( 1 2 ( 8 ) 1 2 2 2 ( t )<br />

-- - - 8 In - - -- (U - 8 + 3t ) In -<br />

(21 n)4 27r2 /12 127r2 /12<br />

R R' 1 2 2 2 ( U ) C4 C4 2 2 2 )<br />

- -- (t - 8 + 3u ) In - - -8 - - (t + U ) .<br />

127r2 /12 2 4<br />

(3.153)<br />

(3.154)<br />

(3.155)


72 3. <strong>The</strong> derivation o{ nuclear {orces {rom chiral Lagrangians<br />

Thus, the function A(4) is suppressed by two powers of external momenta Q as compared to<br />

the lead<strong>in</strong>g order result A (2). Apart from a polynomial part with undeterm<strong>in</strong>ed constants, the<br />

amplitude conta<strong>in</strong>s also logarithmic terms, that have the coefficients given by eq. (3.155) as def<strong>in</strong>ite<br />

functions of frr. In fact, the structure ofthe non-polynomial part of A(4) can be obta<strong>in</strong>ed us<strong>in</strong>g the<br />

renormalization group technique even without perform<strong>in</strong>g any explicit one-Ioop calculations [60].<br />

Requir<strong>in</strong>g that the amplitude A at each order does not depend on f-l allows to uniquely predict<br />

the non-polynomial terms. To f<strong>in</strong>d the numerical coefficients of the logarithms one needs to<br />

perform complete loop calculations.29 Note further, that an additional overall numerical coefficient<br />

'" 1j(47r)2 appears <strong>in</strong> A(4), that arises from the loop <strong>in</strong>tegrals. <strong>The</strong>refore, the pert<strong>in</strong>ent expansion<br />

parameter is Qj(47rfn.), that is remarkably smaller then the naive expected one Qjfn. Manohar<br />

and Georgi have shown [166] that the scale which enters the values of the renormalized coupl<strong>in</strong>g<br />

constants is Ax ::; 47r f 7r '" 1200 MeV. <strong>The</strong>ir argumentation is based on the observation, that<br />

the change <strong>in</strong> the renormalization scale of order one would change the effective coupl<strong>in</strong>gs by<br />

o(ljA�) '" 1j(47rf7r)2. <strong>The</strong>refore, if the scale Ax would be very large for one particular value<br />

f-lo of the renormalization scale, 1jA� « 1j(47rf7r)2 , it would be no more the case for another<br />

choice of f-l. A consistent power count<strong>in</strong>g requires the assumption Ax '" 47r f 7r. In that case the<br />

quantum corrections are of the same order of magnitude as the contributions from the renormalized<br />

<strong>in</strong>teraction terms.<br />

One can straightforwardly extend all these results to account for the explicit chiral symmetry<br />

break<strong>in</strong>g. <strong>The</strong> amplitude A becomes also a function of the pion mass and does not vanish at<br />

the threshold s = 4M;. Already <strong>in</strong> 1966 We<strong>in</strong>berg calculated the 7r7r scatter<strong>in</strong>g lengths from the<br />

lead<strong>in</strong>g order amplitude A(2) [167] us<strong>in</strong>g the current algebra techniques. Corrections of higher<br />

order <strong>in</strong> m7rj(47rf7r) seem to improve the agreement with the experimental values [168].<br />

To end this section we would like to make a remark concern<strong>in</strong>g the so-called chiral anomaly. It<br />

turns out that the effective Lagrangian [)2) + .c(4) implies a stronger symmetry than QCD does.<br />

<strong>The</strong> absence of the terms with an <strong>in</strong>sertion of the total antisymmetric tensor EIl-Vpu together with<br />

the parity conservation requires that all terms <strong>in</strong> the effective Lagrangian are even <strong>in</strong> the pion<br />

fields. This rules out such experimentally observed processes like, for <strong>in</strong>stance, 7r0 ----7 rr. This<br />

problem for the SU(3) case has been solved <strong>in</strong> 1971 by Wess and Zum<strong>in</strong>o [169]. <strong>The</strong>y have found<br />

a term <strong>in</strong> the action of the effective field theory, the so-called Wess-Zum<strong>in</strong>o-Witten term, that<br />

preserves the chiral symmetry of the action but cannot be expressed as the <strong>in</strong>tegral of the chiral<br />

<strong>in</strong>variant density over spacetime. Its explicit form (<strong>in</strong> the absence of external sources) is given by<br />

(3.156)<br />

where the <strong>in</strong>tegration goes over the five-dimensional sphere whose surface is spacetime, Eijklm<br />

is the totally antisymmetric tensor <strong>in</strong> 5 dimensions and Ne = 3 is the number of colors. <strong>The</strong><br />

geometrical <strong>in</strong>terpretation of this anomalous term was given by Witten [170], who had also shown<br />

that the coefficient of this term is not a freely adjustable parameter. A further discussion of the<br />

chiral anomaly goes beyond the scope of this manuscript. <strong>The</strong> <strong>in</strong>terested reader is referred to the<br />

orig<strong>in</strong>al publications [169], [170], [171].<br />

29 <strong>The</strong>se coefficients have been derived <strong>in</strong> 1972 us<strong>in</strong>g unitarity <strong>in</strong>stead of the phenomenological Lagrangian [164],<br />

[165].


3.4. Includ<strong>in</strong>g nucleons 73<br />

3.4 Includ<strong>in</strong>g nucleons<br />

In the previous section we have considered chiral perturbation theory for 1r7r scatter<strong>in</strong>g. Based on<br />

the most general chiral <strong>in</strong>variant Lagrangian, one obta<strong>in</strong>s the amplitude <strong>in</strong> form of an expansion<br />

<strong>in</strong> powers of small external momenta. <strong>The</strong> spontaneously broken chiral symmetry guarantees<br />

the weakness of the <strong>in</strong>teractions between the Goldstone modes (pions). This allows to perform<br />

perturbation theory for the S-matrix. At each order <strong>in</strong> the low momenta one has a f<strong>in</strong>ite number<br />

of diagrams to be considered. More complicated graphs with more loops contribute, <strong>in</strong> general,<br />

to higher orders <strong>in</strong> this expansion. This scheme can be naturally extended to <strong>in</strong>clude processes<br />

with nucleons. <strong>The</strong> start<strong>in</strong>g po<strong>in</strong>t is aga<strong>in</strong> the most general chiral <strong>in</strong>variant effective Lagrangian<br />

for Goldstone bosons <strong>in</strong>teract<strong>in</strong>g with the matter fields, that can be constructed along the l<strong>in</strong>es<br />

<strong>in</strong>troduced <strong>in</strong> the section 3.2.<br />

<strong>The</strong> first systematic calculation of pion-nucleon scatter<strong>in</strong>g <strong>in</strong> the framework of chiral perturbation<br />

theory have been performed by Gasser et al. <strong>in</strong> 1988 [68]. <strong>The</strong> nucleons have been treated <strong>in</strong><br />

this approach fully relativistically. In such a formulation one loses the one-to-one correspondence<br />

between the number of loops and the power of small extern al momenta (pion four-momenta or<br />

mass or nucleon three-momenta).30 <strong>The</strong> orig<strong>in</strong> of this unwanted feature is that the <strong>in</strong>clusion of<br />

nucleons unavoidably <strong>in</strong>troduces a new mass scale <strong>in</strong> the problem, the nucleon mass. This scale is<br />

not a soft one (like the pion mass). It cannot be regarded small and does not vanish <strong>in</strong> the chiral<br />

limit.<br />

An elegant solution of this problem has been proposed by Jenk<strong>in</strong>s and Manohar <strong>in</strong> 1991 [69],<br />

see also Bernard et al. <strong>in</strong> 1992 [70]. <strong>The</strong> idea is to use a simultaneous expansion <strong>in</strong> powers of<br />

Q / Ax rv q / ( 41r f 1r) and Q / m, w he re m is the nucleon mass. Let us now briefly expla<strong>in</strong> how such<br />

an expansion may be performed. <strong>The</strong> four-momentum of the nucleon has the form<br />

(3.157)<br />

where vJl is the four velo city satisfy<strong>in</strong>g v 2 = 1. For a heavy nucleon it is convenient to parametrize<br />

PJl as<br />

(3.158)<br />

where lJl is a small residual momentum v·l «m. <strong>The</strong> advantage of such a parametrization is that<br />

the trivial k<strong>in</strong>ematic dependence of PJl on the large term mVJl is now explicit. In the rest-frame<br />

with vJl = (1,0,0,0) the three-momentum is entirely given by f and PJl = cj m2 + [2, T). Note<br />

that <strong>in</strong> the limit m ---+ 00 the nucleon four-velocity becomes a conserved quantum number s<strong>in</strong>ce<br />

its change by a f<strong>in</strong>ite amount would lead to an <strong>in</strong>f<strong>in</strong>ite moment um transfer between the <strong>in</strong>com<strong>in</strong>g<br />

and outgo<strong>in</strong>g nucleons [172]. To get rid of the nucleon mass term <strong>in</strong> the Lagrangian for the free<br />

Dirac field<br />

(3.159)<br />

one can <strong>in</strong>troduce the eigenstates H and h of the velo city operator p via<br />

H =<br />

p+ eimv.x'l!<br />

v ,<br />

(3.160)<br />

where E� is the projector operator onto the eigenstates of the four-velocity operator v correspond<strong>in</strong>g<br />

to the eigenvalues ±1:<br />

30 This is true for the conventional regularization schemes like, for example, dimensional regularization.<br />

(3.161)


74 3. <strong>The</strong> derivation o{ nuc1ear {orces {rom chiral Lagrangians<br />

<strong>The</strong> exponential faetor <strong>in</strong> (3.160) elim<strong>in</strong>ates the trivial k<strong>in</strong>ematic dependenee of the nucleon field<br />

on the moment um mvw <strong>The</strong> quantities H and h are usually ealled the large and small eomponents,<br />

respeetively. <strong>The</strong> free field Lagrangian (3.159) ean be expressed <strong>in</strong> terms of H, h as<br />

.c = fI(iv . ö)H - h(iv . ö + 2m)h + fIi�h + hi�H<br />

This leads to the follow<strong>in</strong>g equations of motions for H and h:<br />

(v · ö)H<br />

(v . ö)h<br />

From the second equation one sees that<br />

-Pv+�h ,<br />

2imh + Pv - �H .<br />

<strong>The</strong>refore, the large eomponent field H obeys the free equation of motion<br />

(v · ö)H = 0 ,<br />

(3.162)<br />

(3.163)<br />

(3.164)<br />

(3.165)<br />

up to l/m eorreetions. <strong>The</strong> nucleon mass does not enter this equation of motion to lead<strong>in</strong>g order.<br />

Note that <strong>in</strong> the nucleon rest-frame with vJ.l = (1,0, 0,0), H and h ean be identified with the usual<br />

upper and lower eomponents of a Dirae sp<strong>in</strong>or modulo the faetor eimt. <strong>The</strong> small eomponent field<br />

h ean now be eompletely elim<strong>in</strong>ated from the Lagrangian (3.162) us<strong>in</strong>g the equations of motion<br />

(3.163). A more elegant path <strong>in</strong>tegral formulation of this nonrelativistie reduetion ean be found<br />

<strong>in</strong> the referenee [173].<br />

For the ease of nucleons <strong>in</strong>teraet<strong>in</strong>g with pions one ean proeeed <strong>in</strong> a similar way as for free<br />

nucleons to elim<strong>in</strong>ate h. <strong>The</strong> equations of motion (3.163) are then modified by terms <strong>in</strong>clud<strong>in</strong>g<br />

pion and nucleon fields. S<strong>in</strong>ee the ehiral symmetry only allows for derivative pion-nucleon and<br />

pion-pion eoupl<strong>in</strong>gs, these additional terms ean be regarded as small eorrections of order 1/ Ax to<br />

the lead<strong>in</strong>g order equations ofmotions (3.163).31 <strong>The</strong>re is one important problem <strong>in</strong> this approach:<br />

time derivatives of the nucleon fields eontribute large factors of order m. In fact, it ean be proven<br />

[68], [174], [175] that the lead<strong>in</strong>g order Lagrangian .cS 1 Jv for nucleons 'l1 <strong>in</strong>teract<strong>in</strong>g with pions 7r,<br />

Le. the Lagrangian of the m<strong>in</strong>imal low-energy dimension, is given by<br />

r(l) _ ,1" ( ' J.l D<br />

9A J.I ) 'T'<br />

'-'7rN - 'i' n J.I - m + TI' I' 5 UJ.l 'i'. (3.166)<br />

Here, the low-energy dimension of an operator has to be understood <strong>in</strong> the follow<strong>in</strong>g sense: let Q be<br />

a generic four-momentum of (external) pions or a generie three-momentum of (external) nucleons.<br />

<strong>The</strong>n, U, 'l1, DJ.I'l1, m count as order one, whereas, for example, uJ.l ' öJ.lU, M7r , (i--y J.l DJ.I - m)'l1 as<br />

order Q. Consequently, one ean apply the equation of motion<br />

(i�- m)'l1 = ... , (3.167)<br />

31 Clearly, one should not understand this statement ab out the smallness of the higher derivative terms too literal:<br />

the operators with more field derivatives are, of course, by no means "smaller" than those with less derivatives.<br />

Rather, one should understand this jargon <strong>in</strong> the way it was expla<strong>in</strong>ed <strong>in</strong> the section 3.3. For a purely pionic<br />

effective theory, the <strong>in</strong>teractions <strong>in</strong> the Lagrangian with more field derivatives lead to low-energy observables (8matrix<br />

elements) that are suppressed by additional powers of small external momenta. This can be seen from the<br />

power count<strong>in</strong>g (3.146). In this sense, the operators with larger <strong>in</strong>dex d - 2 that was def<strong>in</strong>ed <strong>in</strong> eq. (3.146) are of<br />

higher order and called small corrections.


3.4. Inc1ud<strong>in</strong>g nuc1eons 75<br />

to elim<strong>in</strong>ate derivatives of the nucleon field <strong>in</strong> higher order Lagrangians. In eq. (3.167) the dots<br />

correspond to terms of order Q and higher. Us<strong>in</strong>g this equation we can rewrite derivatives act<strong>in</strong>g<br />

on the nucleon field <strong>in</strong> <strong>in</strong>teractions like � ... 82n fJk'J! <strong>in</strong> terms of other operators of the same<br />

and higher orders. Such terms are anyway present <strong>in</strong> the effective Lagrangian, which conta<strong>in</strong>s all<br />

possible chiral <strong>in</strong>variant <strong>in</strong>teractions. Thus, elim<strong>in</strong>at<strong>in</strong>g the nucleon time derivatives only modifies<br />

the values of coupl<strong>in</strong>gs accompany<strong>in</strong>g the <strong>in</strong>teractions <strong>in</strong> L. With other words, one can simply<br />

drop time derivatives act<strong>in</strong>g on the nucleon field <strong>in</strong> all <strong>in</strong>teraction terms, leav<strong>in</strong>g a s<strong>in</strong>gle time<br />

derivative <strong>in</strong> the free Dirac Lagrangian. Another more elegant way to elim<strong>in</strong>ate the derivatives of<br />

the nucleon field is to use (nonl<strong>in</strong>ear ) field transformations [133]. For a recent discussion on that<br />

approach as well as for concrete examples see the reference [71]. For various problems related to<br />

the <strong>in</strong>clusion of higher derivative operators <strong>in</strong> the Lagrangian see refs. [176], [177], [178], [179].<br />

As soon as one has solved the problem with the time derivatives act<strong>in</strong>g on the nucleon fields, the<br />

nonrelativistic reduction can be performed <strong>in</strong> a similar way as for free nucleons. <strong>The</strong> only difference<br />

is that the equations of motion for the large and small component fields conta<strong>in</strong> corrections from<br />

higher order terms. Elim<strong>in</strong>at<strong>in</strong>g h from the Lagrangian yields then coefficients of 1/ m corrections.<br />

Equivalently, the effective Lagrangian can from the beg<strong>in</strong>n<strong>in</strong>g be derived <strong>in</strong> terms of nonrelativistic<br />

nucleon fields. In such a case not all of the coupl<strong>in</strong>g constants are arbitrary: so me of them have<br />

def<strong>in</strong>ite coefficients proportional to <strong>in</strong>verse powers of the nucleon mass. Those coefficients are<br />

fixed by the Lorentz <strong>in</strong>variance of the orig<strong>in</strong>al relativistic Lagrangian. <strong>The</strong> simplest example of<br />

such terms is the nonrelativistic k<strong>in</strong>etic energy Nt\!2/ (2m)N. Technically, one can obta<strong>in</strong> those<br />

fixed coefficients <strong>in</strong> the easiest manner requir<strong>in</strong>g the so-called reparametrization <strong>in</strong>variance of the<br />

Lagrangian [182]. Consider the heavy baryon effective field theory discussed at the beg<strong>in</strong>n<strong>in</strong>g of<br />

this section. Instead of the usual fields for nucleons it is convenient to <strong>in</strong>troduce the large and<br />

small component fields accord<strong>in</strong>g to eq. (3.160). If the nucleon mass is very large, the four velo city<br />

becomes a conserved quantum number. As can be seen from eq. (3.160), the fields H and h are<br />

velocity dependent and should be, <strong>in</strong> pr<strong>in</strong>ciple, denoted by the <strong>in</strong>dex v.32 <strong>The</strong> effective Lagrangian<br />

is then given by<br />

Leff = L Lv (Hv, vf.t, ... ) , (3.168)<br />

v<br />

where dots correspond to other <strong>in</strong>gredients like, for <strong>in</strong>stance, covariant derivatives of the nucleon<br />

and pion fields. Reparametrization <strong>in</strong>variance says that we could equally well chose another<br />

parametrization of the four moment um to describe the same physics:<br />

(3.169)<br />

where qf.t has to satisfy (vf.t + qf.t/m)2 = 1. Luke and Manohar [182] proposed to construct the<br />

effective Lagrangian <strong>in</strong> terms of Hv def<strong>in</strong>ed as33<br />

where<br />

- 1 + #<br />

Hv = Hv ,<br />

J2(1 +w·v)<br />

(3.170)<br />

(3.171)<br />

32We did not do that <strong>in</strong> the above discussion s<strong>in</strong>ce the velo city is anyway conserved.<br />

33In a more general case when one has to <strong>in</strong>corporate external fields and/or pions the derivative of the nucleon<br />

field <strong>in</strong> eqs. (3.170), (3.171) should be replaced by a covariant one.


76 3. <strong>The</strong> derivation of nuclear forces from chiral Lagrangians<br />

<strong>The</strong> advantage of this formulation is that the new object Hv transforms <strong>in</strong> a covariant way under<br />

the reparametrization (3.169):<br />

H- w - eiq'xHv<br />

· (3.172)<br />

<strong>The</strong> requirements on the l/m-coefficients follow<strong>in</strong>g from the reparametrization <strong>in</strong>variance of Leff<br />

can now easily be worked out. A more detailed discussion on the construction of the effective<br />

Lagrangian for pions and nucleons can be found <strong>in</strong> references [73], [75], [78], [161]. It goes without<br />

say<strong>in</strong>g that as soon as one has Leff, the correspond<strong>in</strong>g Hamiltonian can be obta<strong>in</strong>ed apply<strong>in</strong>g the<br />

usual rules of the canonical formalism [75].34 We will not discuss the construction of the effective<br />

Lagrangian (Hamiltonian) for pions and nucleons any furt her and simply adopt the correspond<strong>in</strong>g<br />

expressions from refs. [75], [77], [78]. Below, we will show explicitly all terms <strong>in</strong> the Hamiltonian<br />

we need to calculate the N N potential to a required order and consider some of these structures<br />

<strong>in</strong> more detail.<br />

Let us now repeat the arguments of We<strong>in</strong>berg [73] and derive the power count<strong>in</strong>g rules for a<br />

general process with N nucleons and an arbitrary number of extern al pions. Accord<strong>in</strong>g to the<br />

nonrelativistic treatment and to the fact that the low component nucleon fields are <strong>in</strong>tegrated<br />

out, no nucleon-ant<strong>in</strong>ucleon pairs can be created or destroyed. In his orig<strong>in</strong>al work [73], We<strong>in</strong>berg<br />

used the covariant perturbation theory (Feynman diagram technique) to estimate the power v<br />

of small external momenta Q for an arbitrary N-nucleon scatter<strong>in</strong>g process. We will now use<br />

time-ordered35 perturbation theory to calculate v, s<strong>in</strong>ce it makes more transparent the problems<br />

associated with the perturbative treatment of the few-nucleon problem. We will proceed similarly<br />

to the case of pion-pion scatter<strong>in</strong>g considered <strong>in</strong> the last section. Instead of covariant propagators<br />

one has <strong>in</strong> old-fashioned perturbation theory energy denom<strong>in</strong>ators and phase-space factors. One<br />

also has to remember that all <strong>in</strong>tegrations are now three dimensional and the particles are always<br />

on their mass shell but can be off the energy shell <strong>in</strong> the <strong>in</strong>termediate states. <strong>The</strong> power of<br />

momenta v can be found via<br />

L L ( Pi) Ep<br />

v = 31 - 3 11,. - D + v: d· - - + - . z . z Z<br />

+ 3<br />

(3.173)<br />

Z Z<br />

2 2<br />

where Dis the number of energy denom<strong>in</strong>ators (or, equivalently, the number of <strong>in</strong>termediate states<br />

between time-ordered vertices), 1 is the number of <strong>in</strong>ternal l<strong>in</strong>es and Ep denotes the number of<br />

external pion l<strong>in</strong>es. Each of the Vi vertices of type i conta<strong>in</strong>s di derivatives or pion mass <strong>in</strong>sertions<br />

and Pi pions. For the moment, we assurne that all energy denom<strong>in</strong>ators scale as l/Q. <strong>The</strong> first<br />

term <strong>in</strong> eq. (3.173) gives the number of moment um <strong>in</strong>tegrations. Not all of these momentum<br />

<strong>in</strong>tegrations are <strong>in</strong>dependent of each other because of the 6-functions accompany<strong>in</strong>g vertices. We<br />

take <strong>in</strong>to account the reduction of the v due to such 6-functions subtract<strong>in</strong>g the second term <strong>in</strong><br />

eq. (3.173). Further , we do not count the phase-space factors of external pions and, therefore,<br />

add Ep/2 to the right-hand side of eq. (3.173). F<strong>in</strong>ally, we also do not count the overall fourdimensional<br />

6-function <strong>in</strong> the S-matrix elements. However, we should add the factor 3 and not 4<br />

to the right-hand side of eq. (3.173), s<strong>in</strong>ce this expression for the power v of momenta corresponds<br />

to aT-matrix element, which does not <strong>in</strong>clude the overall energy conserv<strong>in</strong>g 6-function present <strong>in</strong><br />

the S-matrix. <strong>The</strong> mean<strong>in</strong>g of the last term <strong>in</strong> eq. (3.173) is now clarified. To make the formula<br />

(3.173) suitable for practical calculations we need few topological identities. First, note that the<br />

number of <strong>in</strong>termediate states D can be expressed as<br />

D=L Vi-l. (3.174)<br />

34 It was shown by Ostrogradski [180] how to derive a Hamiltonian from a Lagrangian that <strong>in</strong>cludes higher<br />

derivatives. See also [178], [181].<br />

35 Sometimes it is also called "old-fashioned" perturbation theory.<br />

'


3.4. Includ<strong>in</strong>g nucleons 77<br />

Next, we write the number of loops <strong>in</strong> the form<br />

L=I- :L Vi+C. (3.175)<br />

Here, we modified the earlier expression (3.145) to be valid also for C disconnected diagrams.<br />

F<strong>in</strong>ally, the numbers of <strong>in</strong>ternal and external particle l<strong>in</strong>es l and E = En + Ep , where En = 2N,<br />

can be collected via the follow<strong>in</strong>g identity:<br />

(3.176)<br />

where ni is the number of nucleon fields at the vertex of type i. Us<strong>in</strong>g eqs. (3.174)-(3.176) and<br />

eq. (3.173) we end up with the result<br />

where<br />

v = 4 - N + 2(L - C) + :L Vi�i , (3.177)<br />

(3.178)<br />

As already discussed above, the correspond<strong>in</strong>g <strong>in</strong>dices �i are not negative for the purely pionic<br />

Lagrangian.36 Analogously, �i are not negative for pion-nucleon as weIl as for nucleon-nucleon<br />

<strong>in</strong>teractions. In particular, the m<strong>in</strong>imal possible value �i = 0 is achieved for the vertices with two<br />

nucleons and one derivative (and any number of pion fields) or for the four nucleon <strong>in</strong>teractions<br />

without derivatives and pion mass <strong>in</strong>sert ions (and, therefore, also without pion fields). Thus, v<br />

<strong>in</strong> eq. (3.177) is aga<strong>in</strong> bounded from below and, therefore, it seems that the scatter<strong>in</strong>g amplitude<br />

für the process N N ----7 N N can be calculated perturbatively <strong>in</strong> powers of low external threemomenta<br />

of nucleons <strong>in</strong> a similar way as <strong>in</strong> the case of pion-pion scatter<strong>in</strong>g discussed <strong>in</strong> the last<br />

section. This already sounds suspicious, s<strong>in</strong>ce the presence of the low-energy bound state <strong>in</strong> the<br />

np 3S 1 _3 D 1 channel clearly signals the failure of perturbation theory .<br />

.. J .. .. J 11 J ..<br />

p ! I p' P I l I p'<br />

't<br />

I!<br />

I !<br />

I<br />

.. .. .. .. i ..<br />

-p _p' -p -f -I<br />

-p<br />

a) b)<br />

Figure 3.3: Irreducible and reducible time-ordered diagrams. <strong>The</strong> vertical dotdashed<br />

l<strong>in</strong>es are the energy cuts. <strong>The</strong> solid (dashed) l<strong>in</strong>es correspond to nucleons<br />

(pions).<br />

To solve this paradox let us take a closer look at old-fashioned perturbation theory. In the above<br />

derivation of the power count<strong>in</strong>g rule (3.177) we made an assumption that all energy denom<strong>in</strong>ators<br />

36 More precisely, it is zero for the Lagrangian for free pions and positive für <strong>in</strong>teractions (<strong>in</strong> the absence of external<br />

sources).


78 3. <strong>The</strong> derivation o{ nuclear {orces {rom chiral Lagrangians<br />

scale as l/Q. Let us now consider the two different cases shown <strong>in</strong> fig. 3.3. In the two-nucleon<br />

center-of-mass system the energy denom<strong>in</strong>ator <strong>in</strong> the graph a) <strong>in</strong> fig. 3.3 is given by<br />

1 1<br />

Ei - E p2 Im -pl2 Im -vi q2 + M; (3.179)<br />

where Ei is the <strong>in</strong>itial energy of two nucleons and q = p' -p and p = 1P1, p' = Ip'l, q = 1iJ1. This<br />

estimation is valid modulo 11m corrections. Consider now the second diagram. For the energy<br />

denom<strong>in</strong>ator correspond<strong>in</strong>g to the energy cut <strong>in</strong> fig. 3.3 b) we have:<br />

1 1 m m .<br />

Ei - E p2 Im -[2 Im + iE [2 (3.180)<br />

p2 _<br />

+ iE' rv Q2<br />

Thus, the energy denom<strong>in</strong>ator <strong>in</strong> the second case is mlQ times larger than for the first diagram.<br />

In the limit m ---+ (X) it becomes even <strong>in</strong>f<strong>in</strong>itely large. <strong>The</strong>refore, the power count<strong>in</strong>g (3.177) is<br />

not valid any more. To solve the problem with the large energy denom<strong>in</strong>ators aris<strong>in</strong>g from the<br />

<strong>in</strong>termediate states with only two nucleons, We<strong>in</strong>berg proposed to apply the technique of CHPT<br />

not directly to the scatter<strong>in</strong>g amplitude but to the effective potential. <strong>The</strong> latter is def<strong>in</strong>ed as a sum<br />

of all irreducible diagrams, i. e. those diagrams without pure nucleonic <strong>in</strong>termediate states. <strong>The</strong><br />

S-matrix elements are obta<strong>in</strong>ed by putt<strong>in</strong>g this potential <strong>in</strong>to a Lippmann-Schw<strong>in</strong>ger equation.<br />

In fact, many equivalent schemes for deriv<strong>in</strong>g the effective potentials <strong>in</strong> nuclear and many-body<br />

physics are known like that due to Bloch and Horowitz [183] or the Ta<strong>in</strong>m-Dancoff approximation<br />

[184]. <strong>The</strong> effective potential, derived us<strong>in</strong>g old-fashioned time-ordered perturbation theory,<br />

possesses one unpleasant property: it is, <strong>in</strong> general, explicitly dependent on the energy of the<br />

<strong>in</strong>com<strong>in</strong>g nucleons and, as a consequence of this, not hermitian. Furthermore, the nucleonic wave<br />

functions are not orthonormal <strong>in</strong> this approach [185].<br />

One can avoid these problems by us<strong>in</strong>g the method of unitary transformation. It was already<br />

applied successfully <strong>in</strong> cases where one has an expansion <strong>in</strong> a coupl<strong>in</strong>g constant, such as the<br />

pion-nucleon coupl<strong>in</strong>g, see e.g. refs. [186]. In the follow<strong>in</strong>g sections we will show how to apply<br />

this method to the case of chiral perturbation theory for pions and nucleons, <strong>in</strong> which the small<br />

momenta of extern al particles play the role of the expansion parameter. In fact, our considerations<br />

are more general s<strong>in</strong>ce they can be applied to any effective field theory of Goldstone bosons coupled<br />

to some massive matter fields.<br />

3.5 Bloch-Horowitz scheme and the method of unitary transfor­<br />

mation<br />

<strong>The</strong> method of unitary transformation (projection formalism) was already applied <strong>in</strong> the chapter 2<br />

to decouple the spaces of small and large momenta <strong>in</strong> the quantum mechanical two-body system.<br />

Here we would like to repeat the ma<strong>in</strong> po<strong>in</strong>ts, mostly to establish our notation and keep the<br />

section self-conta<strong>in</strong>ed. We will also compare it with the Bloch-Horowitz scheme of deriv<strong>in</strong>g the<br />

effective <strong>in</strong>teractions.<br />

A system of an arbitrary number of <strong>in</strong>teract<strong>in</strong>g pions and nucleons can be completely described<br />

by a Schröd<strong>in</strong>ger equation<br />

(3.181)<br />

with Ho (Hf) denot<strong>in</strong>g the free (<strong>in</strong>teraction) part of the Hamiltonian. In order to solve this<br />

equation for nucleon-nucleon scatter<strong>in</strong>g, it is advantageous to project it onto a subspace<br />

{IN), INN), INNN),<br />

I


3.5. Bloch-Horowitz scheme and the method of unitary transformation 79<br />

apply the standard methods of few-body physics to obta<strong>in</strong> the S-matrix. We will denote the<br />

rema<strong>in</strong><strong>in</strong>g part of the Fock space by 1'ljJ): I\J!) = 11» + 1'ljJ). Let 'rJ and A be projection operators on<br />

the states 11» and 1'ljJ) which satisfy 'rJ 2 = 'rJ, A 2 = ,\, 'rJA = A'rJ = 0 and A + 'rJ = 1. Eq. (3.181) can<br />

now be written <strong>in</strong> the form<br />

( 'rJH'rJ 'rJHA ) ( 11» ) = E ( 11» )<br />

AH'rJ AHA 1'ljJ) 1'ljJ)<br />

One can express the state 1'ljJ) from the second l<strong>in</strong>e of this matrix equation as<br />

1<br />

1'ljJ) = E _ AHA AH'rJI \J!) .<br />

(3.182)<br />

(3.183)<br />

Putt<strong>in</strong>g this <strong>in</strong>to the first l<strong>in</strong>e of eq. (3.182) leads immediately to a s<strong>in</strong>gle equation of Schröd<strong>in</strong>ger<br />

type for the state 11»<br />

with an effective potential Veff(E) given by<br />

(Ho + Veff(E)) 11» = EI1» (3.184)<br />

(3.185)<br />

This decoupl<strong>in</strong>g scheme has been first proposed by Bloch and Horowitz [183]. Expand<strong>in</strong>g the<br />

denom<strong>in</strong>ator <strong>in</strong> eq. (3.185) <strong>in</strong> powers of H[ leads to<br />

(3.186)<br />

In this form it is obviously identical with the result obta<strong>in</strong>ed from old-fashioned perturbation<br />

theory [187, 11]. Note that the states 11» are not orthonormal:<br />

(3.187)<br />

Let us now take a look <strong>in</strong>to the method of unitary transformation. We first <strong>in</strong>troduce new states<br />

Ix ) and Icp) , which are related to 11» and 1'ljJ) by a unitary transformation<br />

( ) ( )<br />

Ix )<br />

= ut 11» (3.188)<br />

Icp) 1'ljJ)<br />

<strong>The</strong>n one can rewrite eq. (3.182) <strong>in</strong> an equivalent form<br />

ut HU ( Ix ) ) = E ( I x ) )<br />

Icp) Icp)<br />

(3.189)<br />

<strong>The</strong> two subspaces for I X) and I cp) can be decoupled by choos<strong>in</strong>g U such that the operator ut HU<br />

is diagonal with respect to the two subspaces. We aga<strong>in</strong> adopt the ansatz of Okubo [51], as <strong>in</strong><br />

chapter 2, <strong>in</strong> which the unitary operator U is parametrized <strong>in</strong> terms of a s<strong>in</strong>gle operator A as<br />

follows<br />

(3.190)


80 3. <strong>The</strong> derivation of nuclear forces from chiral Lagrangians<br />

<strong>The</strong> operator A has only mixed non-vanish<strong>in</strong>g matrix elements:<br />

A = >'A1] . (3.191)<br />

<strong>The</strong> requirement for ut HU no longer to couple the two subspaces leads to the follow<strong>in</strong>g nonl<strong>in</strong>ear<br />

equation for A:<br />

>. (H - [A, H] - AHA) 1] = 0 , (3.192)<br />

which is sometimes referred to as decoupl<strong>in</strong>g equation. Once the two spaces are decoupled one<br />

can choose the Icp) component to be zero and the nucleonic states are orthonormal:<br />

(3.193)<br />

In the last step we have used the fact that Icp) = o.<br />

In the case when the <strong>in</strong>teraction Hamiltonian Hf can be treated as a small perturbation, it is<br />

possible to solve Eq. (3.192) perturbatively to any given order. For <strong>in</strong>stance, for the Hamiltonian<br />

H represented by<br />

00<br />

H=Ho + LHn n==l<br />

(3.194)<br />

with the <strong>in</strong>dex n denot<strong>in</strong>g the power of the coupl<strong>in</strong>g constant, one assurnes the operator A to be<br />

of the form<br />

00<br />

(3.195)<br />

<strong>The</strong> solution of eq. (3.192) to order n is then given by<br />

(3.196)<br />

Here, we denote the free-particle energy of the state 11]) by [. One can see from eq. (3.196) that<br />

it is possible to f<strong>in</strong>d An for every n recursively, start<strong>in</strong>g from Al.<br />

As soon as the operator A is known, one can obta<strong>in</strong> the effective Hamiltonian, which operates<br />

solely <strong>in</strong> the subspace Ix), via<br />

(3.197)<br />

as it follows from eqs. (3.189), (3.190). Expand<strong>in</strong>g (1 + AtA)-1/2 and us<strong>in</strong>g eqs. (3.194), (3.195),<br />

(3.196) one can obta<strong>in</strong> the effective Hamiltonian to any order <strong>in</strong> the coupl<strong>in</strong>g constant.<br />

Several modifications are necessary by apply<strong>in</strong>g the formalism described above to effective Lagrangians<br />

(Hamiltonians) and <strong>in</strong> particular to chiral <strong>in</strong>variant Lagrangians. First, the expansion<br />

<strong>in</strong> powers of a coupl<strong>in</strong>g constant must be replaced by the expansion <strong>in</strong> powers of small momenta.<br />

For do<strong>in</strong>g that, power count<strong>in</strong>g rules are necessary. Furthermore, one expects the operator >'A1]<br />

to consist of an <strong>in</strong>f<strong>in</strong>ite number of terms to any order of Q caused by <strong>in</strong>f<strong>in</strong>ite number of vertices<br />

<strong>in</strong> the Hamiltonian. We now show how these problems can be solved.


3. 6. Application to chiral <strong>in</strong>variant Hamiltonians<br />

3.6 Application to chiral <strong>in</strong>variant Hamiltonians<br />

We first want to recall the structure of the most general chiral <strong>in</strong>variant Hamilton density for<br />

pions and nucleons,<br />

(3.198)<br />

As already noted before, the nucleons are treated nonrelativistically, as it has also been done <strong>in</strong><br />

[73], [76]. Consequently, the purely nucleonic part of 1-l0 is noth<strong>in</strong>g but the k<strong>in</strong>etic energy<br />

V2<br />

1-lNO = -Nt -N<br />

(3.199)<br />

2m<br />

At higher orders <strong>in</strong> small momenta, which we will not treat here, relativistic corrections to the<br />

k<strong>in</strong>etic energy (3.199) must be taken <strong>in</strong>to account.<br />

<strong>The</strong> free Hamilton density for the pion fields (<strong>in</strong> the <strong>in</strong>teraction picture) is given by<br />

1-l = !ir2 + ! (V1t' )2 + !m2 1t'2<br />

11"0 2 2 2 (3.200)<br />

11"<br />

where the ,., denotes the time derivative and m1l" the pion mass. We split the <strong>in</strong>teraction Hamilton<br />

density <strong>in</strong>to three parts:<br />

(3.201)<br />

<strong>The</strong> first piece describes self-<strong>in</strong>teractions of pions and conta<strong>in</strong>s an even number of derivatives and<br />

pion field operators and any number of M;-factors. <strong>The</strong> terms with two derivatives (or one M;)<br />

have at least four pion fields. <strong>The</strong> second piece <strong>in</strong> eq. (3.201) conta<strong>in</strong>s terms with four or more<br />

nucleon fields and any number of derivatives. <strong>The</strong> terms denoted by 1-l1l"N have any number of<br />

pion fields and at least two nucleon fields and one derivative or factor M1I" ' <strong>The</strong> structure of the<br />

effective Hamiltonian is now clarified. Later we will explicitly give the lead<strong>in</strong>g terms <strong>in</strong> the effective<br />

Hamiltonian, that we will need to calculate the potential. We now show how to elim<strong>in</strong>ate pions<br />

and to obta<strong>in</strong> the effective potential for nucleons for the most general chiral <strong>in</strong>variant Hamiltonian<br />

(3.201) .<br />

Let us first note that because of the baryon number conservation and the absence of anti-nucleons,<br />

the subspaces of the Fock space with different number of nucleons are automatically decoupled.<br />

That is why we def<strong>in</strong>e the state I


82 3. <strong>The</strong> derivation of nuclear forces from chiral Lagrangians<br />

Because of the property eq. (3.191) of the operator A each s<strong>in</strong>gle equation <strong>in</strong> eqs. (3.205) can be<br />

expressed as<br />

00 00<br />

). iHrfJ + L ). iHj). j AT] + ). iHo). iAT] - ). iAT]HjT] - ). iAT]HoT] - L ). iAT]Hj). j AT] = 0<br />

j=l j=l<br />

(3.206)<br />

<strong>The</strong> system of eqs. (3.205) is, clearly, too complicated to be solved exactly. In what follows, we will<br />

apply the usual philosophy of effective theories. We are <strong>in</strong>terested only <strong>in</strong> low-energy processes.<br />

<strong>The</strong>refore, we will expand the matrix elements of an effective potential <strong>in</strong> powers of the small<br />

moment um scale Q, as it was proposed by We<strong>in</strong>berg [73]. To calculate the operator A from the<br />

system of coupled equations (3.205), we will aga<strong>in</strong> make use of the expansion <strong>in</strong> powers of Q. In<br />

particular, the matrix elements of A will be classified by powers of Q by use of simple dimensional<br />

analysis:<br />

(3.207)<br />

Here Q is aga<strong>in</strong> the mass scale correspond<strong>in</strong>g to three-momenta of nucleons and four-momenta<br />

of pions. <strong>The</strong> effective Hamiltonian act<strong>in</strong>g on the purely nucleonic Fock space is def<strong>in</strong>ed <strong>in</strong><br />

eq. (3.197) and can be found from the orig<strong>in</strong>al one if the operator A is known. It will be clear<br />

from the power count<strong>in</strong>g arguments that the matrix elements (3.207) with larger 1I A lead to an<br />

effective potential suppressed by additional powers of Q. At first sight, this appears to be a<br />

miracle, s<strong>in</strong>ce (�I and 1


3.6. Application to chiral <strong>in</strong>variant Hamiltonians 83<br />

where Pi (ni) is the number ofpion (nucleon) fields at a vertex oftype i. Now we use the topological<br />

identity (3.175) with I = In + Ip to cast eq. (3.208) <strong>in</strong>to the form<br />

vA = 3 -3N - Ep + L l'i /'\,i (3.210)<br />

where<br />

(3.211)<br />

Aga<strong>in</strong> we po<strong>in</strong>t out that this result takes its form due to the ansatz that the projected operators<br />

)..i A17 consist of an equal number of vertices and energy denom<strong>in</strong>ators. Also, it should be mentioned<br />

that we use the number of external pion l<strong>in</strong>es to express the count<strong>in</strong>g <strong>in</strong>dex VA <strong>in</strong>stead of the<br />

number of loops and of separately connected pieces as it has been done <strong>in</strong> [73], [74], [76], [78].<br />

This is more natural <strong>in</strong> the projection formalism employed here. Let us take a doser look at vertex<br />

dimension /'\,i, which is related to the canonical field dimension. It is weIl known, see e.g. ref. [132],<br />

that all <strong>in</strong>teractions can be classified with respect to /'\,i. Those with /'\,i < 0 are called relevant<br />

(superrenormalizable), with /'\,i = 0 marg<strong>in</strong>al (renormalizable) and with /'\,i > 0 irrelevant (non­<br />

renormalizable). <strong>The</strong> last ones are "harmless" and can be wen treated with<strong>in</strong> low-energy effective<br />

field theories. In contrast to these, the relevant and marg<strong>in</strong>al <strong>in</strong>teractions lead to complications<br />

with the power count<strong>in</strong>g. This becomes immediately clear if one takes a look at eq. (3.210):<br />

an <strong>in</strong>f<strong>in</strong>ite number of diagrams contributes to a given process at a given order. Furthermore, for<br />

relevant <strong>in</strong>teractions the number VA is even not bounded from below. That is why the perturbative<br />

treatment <strong>in</strong> powers of the moment um scale Q is not possible <strong>in</strong> this case. For more details about<br />

the role of such <strong>in</strong>teractions <strong>in</strong> effective field theories see ref. [192]. <strong>Chiral</strong> symmetry does not allow<br />

any relevant or marg<strong>in</strong>al <strong>in</strong>teractions <strong>in</strong> the <strong>in</strong>teraction Hamiltonian Hf. <strong>The</strong> m<strong>in</strong>imal possible<br />

value of /'\,i for vertices <strong>in</strong> Hf is one. Such a vertex with /'\,i = 1 conta<strong>in</strong>s two nucleons, one pion<br />

and one derivative. In general, for vertices with two nucleons and Pi pions one has /'\,i 2 Pi. <strong>The</strong><br />

<strong>in</strong>teractions with pions only have the vertex dimension /'\,i 2 2, where /'\,i = 2 corresponds to the<br />

<strong>in</strong>teraction with four pion fields and two derivatives. <strong>The</strong> purely pionic <strong>in</strong>teractions have an even<br />

number Pi of pions and /'\,i 2 max(2, -2 + Pi).<br />

Now we would like to determ<strong>in</strong>e the m<strong>in</strong>imal value of VA for )..a A17. For that it is convenient to<br />

express vA <strong>in</strong> terms of L, C and ßi def<strong>in</strong>ed <strong>in</strong> eq. (3.178). Mak<strong>in</strong>g use of the relations (3.208),<br />

(3.209), (3.175) we obta<strong>in</strong><br />

(3.212)<br />

where En is aga<strong>in</strong> the number of external nudeon l<strong>in</strong>es. <strong>The</strong> value of VA is one less than the one<br />

of v for an irreducible time-ordered graph <strong>in</strong> We<strong>in</strong>berg's formula eq. (3.177). This difference is<br />

because the number of energy denom<strong>in</strong>ators equals now the number of <strong>in</strong>termediate states plus<br />

one, as follows from our ansatz about the structure of )..a A17. It is now easy to f<strong>in</strong>d the m<strong>in</strong>imal<br />

value of VA. Different to the case of few-nudeon scatter<strong>in</strong>g considered <strong>in</strong> the section 3.4, VA is<br />

not bounded from below for a fixed number En of external nudeon l<strong>in</strong>es. This is because each<br />

additional disconnected purely pionic tree subdiagram with all vertices with two derivatives yields<br />

the factor -2, as can be seen from eq. (3.212). <strong>The</strong>refore, the m<strong>in</strong>imal value of VA requires<br />

m<strong>in</strong>(VA) = 3 -3N -2k (3.213)<br />

the maximal possible number of such disconnected pieces. Correspond<strong>in</strong>gly, one f<strong>in</strong>ds for matrix<br />

elements of the operator )..4k+i AT] with k a positive <strong>in</strong>teger or zero and i = 0,1,2,3:


84<br />

.... .<br />

- - .... \ .<br />

•<br />

A<br />

.... .<br />

. - - - - .... \<br />

•<br />

A<br />

.. _ - - - - - ,<br />

•<br />

a)<br />

3. <strong>The</strong> derivation of nuclear forces from chiral Lagrangians<br />

- - - _. - .... .<br />

.... .<br />

.... .<br />

\<br />

. .... \ \<br />

• • •<br />

b)<br />

\<br />

- -- - -, ...<br />

'"'<br />

.... .<br />

- - - - \<br />

•<br />

Figure 3.4: Some lead<strong>in</strong>g order contributions to matrix elements of the operators<br />

.x a A'T} with a = 9 <strong>in</strong> the left pannel and a = 3 <strong>in</strong> the right pannel. All vertices have<br />

ßi = o.<br />

Here, the parametrization 4k + i of the number of pions <strong>in</strong> the state .x is convenient, s<strong>in</strong>ce the pion<br />

self<strong>in</strong>teractions with ßi = 0 have at least four pion field operators. For example, one particular<br />

topological structure of the matrix element .x 9 A'T} with the m<strong>in</strong>imal possible value VA = -4 is<br />

shown <strong>in</strong> fig. 3.4, a). Here, the two disconnected purely pionic subdiagrams lead to the negative<br />

value of VA. Another example correspond<strong>in</strong>g to the lead<strong>in</strong>g order matrix element .x3 A'T} is shown<br />

<strong>in</strong> fig. 3.4, b). Note that no <strong>in</strong>ner pion l<strong>in</strong>es appear <strong>in</strong> the lead<strong>in</strong>g order diagrams apart from those<br />

correspond<strong>in</strong>g to .x 4k +i A'T} with i = 3. In that case one <strong>in</strong>termediate state with one pion may aiso<br />

occur.<br />

Let us count the power of Q for the operator .x4k +iA'T} start<strong>in</strong>g from its m<strong>in</strong>imal value. For that<br />

we def<strong>in</strong>e the order l (l = 0, 1,2,3, ... ) of the operator .xa A'T} to be<br />

(3.214)<br />

and <strong>in</strong>troduce the follow<strong>in</strong>g notation: .x4k + i A/'T}. We will now f<strong>in</strong>d the power v of Q for every term<br />

<strong>in</strong> eq. (3.206). By HK, we denote a vertex from the <strong>in</strong>teraction Hamiltonian HJ, with the <strong>in</strong>dex K,<br />

given by eq. (3.211). Details are relegated to appendix A. It can be seen from eqs. (A.7), (A.10),<br />

(A.12), (A.15) and (A.16) that the m<strong>in</strong>imal possible value of v for the various terms <strong>in</strong> eq. (3.206)<br />

is given by<br />

m<strong>in</strong>(v) = 4 - 3N - 2k (3.215)<br />

In these cases the number of energy denom<strong>in</strong>ators is one less than the number of vertices. This<br />

expla<strong>in</strong>s the difference between eqs. (3.213) and (3.215).<br />

We now show how to solve the system of eqs. (3.205) perturbatively. For that, we def<strong>in</strong>e the order<br />

of r :::: : 0 of eq. (3.206) via<br />

r = v - m<strong>in</strong>(v) . (3.216)


3.6. Application to chiral <strong>in</strong>variant Hamiltonians<br />

number<br />

of pions<br />

12 /<br />

,<br />

\<br />

I<br />

,<br />

11 \<br />

\<br />

,<br />

,<br />

\<br />

\<br />

10 /<br />

I<br />

,<br />

9 /<br />

I<br />

,<br />

8 \<br />

\ /<br />

�<br />

7<br />

6 /<br />

,<br />

,<br />

5 /<br />

I<br />

,<br />

4 \<br />

3<br />

2<br />

1<br />

�<br />

0<br />

,<br />

,\<br />

•<br />

•<br />

/<br />

-- - '<br />

,<br />

\<br />

'.<br />

/<br />

I<br />

,<br />

\ .,<br />

\ /<br />

�<br />

, , /<br />

\ e-<br />

, --<br />

/<br />

,<br />

\<br />

'.<br />

/<br />

I<br />

,<br />

\ .,<br />

\ /<br />

�<br />

, , /<br />

\ e-<br />

,<br />

/.<br />

/<br />

,<br />

.... .<br />

,<br />

\<br />

\<br />

• •<br />

• •<br />

• •<br />

I • •<br />

/<br />

I<br />

.,<br />

•<br />

,<br />

e-<br />

-' \ ,<br />

, •<br />

\<br />

,<br />

\<br />

/<br />

--<br />

,<br />

\<br />

'.<br />

/<br />

,<br />

'.<br />

/<br />

I<br />

,<br />

\ .,<br />

\ /<br />

I<br />

,<br />

\ .,<br />

\ /<br />

�<br />

, ,<br />

e-<br />

/<br />

\<br />

�<br />

\ e-<br />

/ . - ,<br />

, , /<br />

, ,<br />

--<br />

/<br />

/ --<br />

,<br />

, \<br />

' '::: .<br />

\ ,<br />

, \<br />

.... �.<br />

2 3<br />

,<br />

\<br />

\<br />

• • •<br />

• • •<br />

• • •<br />

• • •<br />

• • •<br />

• • •<br />

• • •<br />

• • •<br />

.,<br />

/<br />

• •<br />

I<br />

, /<br />

\ e-- ,<br />

,<br />

• •<br />

\<br />

,<br />

/ --<br />

\ ,<br />

, \<br />

'�.<br />

/ --<br />

\ ,<br />

, \<br />

....<br />

�.<br />

•<br />

,<br />

-->-- ..<br />

4 5 6<br />

order r<br />

Figure 3.5: Recursive prescription for calculat<strong>in</strong>g the operator ,\4k+i Ar]. <strong>The</strong> dashed<br />

l<strong>in</strong>e shows a sequence of recursive steps. <strong>The</strong> large circles correspond to states with<br />

4k pions (i = 0).<br />

Thus, we aga<strong>in</strong> count the power of Q for the terms enter<strong>in</strong>g eq. (3.206) start<strong>in</strong>g from its m<strong>in</strong>imal<br />

value. In appendix B we check what k<strong>in</strong>d of operators ,\4k+i AIr] contribute to eq. (3.206) at each<br />

fixed order r. That equation can be expressed as<br />

85<br />

(3.217)<br />

Here, E('\ 4k+i) denotes the free energy of particles <strong>in</strong> the state ,\ 4k+i. In the curly brackets we<br />

have written <strong>in</strong> symbolic form all rema<strong>in</strong><strong>in</strong>g terms of eq. (3.206). For i = 1,2 they conta<strong>in</strong> only<br />

operators of the type ,\4k +i AIr] with<br />

4k + i < 4k + i for l = r , or l < r (3.218)<br />

As an example, we regard ,\4k+iH,\4 k +iAlr] with i = 1, 2. For 4k + i < 4k<br />

+ i it follows from


86 3. <strong>The</strong> derivation of nuclear forces from chiral Lagrangians<br />

eqs. (B.2), (B.3) that l ::; r. For 4k + i = 4k + i, eq. (B.4) leads to l ::; r - 2. F<strong>in</strong>ally, for<br />

4k + i > 4k + i eqs. (B.5)-(B.8) require l ::; r - 2.<br />

Eq. (3.218) is also valid for i = 3 apart from the s<strong>in</strong>gle term _,\4k +3 Hl,\4( k+l) Al=r'l]. This is due<br />

to eq. (B.7). In the ease i = 0, only the operators ,\4 k + i Al'l], restrieted by the eonditions<br />

i = 0, k < k for l = r , or l < r (3.219)<br />

ean enter the right hand side of eq. (3.217). Furthermore, the value of k is bounded from above<br />

<strong>in</strong> all eases by the <strong>in</strong>equality<br />

- 1<br />

k ::; k + 6 (r - l + 8) ,<br />

(3.220)<br />

as ean be deferred from the seeond <strong>in</strong>equality <strong>in</strong> (B.8) and the equality <strong>in</strong> (B.16).<br />

Now it is clear how to deal with the system of equations (3.205). <strong>The</strong> equations have to be solved<br />

order by order, start<strong>in</strong>g from r = O. At eaeh fixed order r one solves the equations with <strong>in</strong>ereas<strong>in</strong>g<br />

number 4k + i start<strong>in</strong>g from 4k + i = 1 to obta<strong>in</strong> all operators ,\4k + iAl=r'l]. This requires the<br />

knowledge of operators ,\ 4k + i Al'l], 4k + i < 4k + i, of the same order l = r and a f<strong>in</strong>ite number<br />

of operators ,\(4k + i ) Al 'I] at lower orders l < r. <strong>The</strong> only exeeptions of this proeedure are the<br />

equations with arbitrary k's and i = 3, that require the knowledge of the operators ,\ 4( k +l) Al=r'l].<br />

Such equations have, therefore, to be solved after those ones with 4( k + 1) external pions. <strong>The</strong><br />

number of equations to be solved at each order can be estimated by use of eq. (3.220) and the<br />

<strong>in</strong>equalities of appendix B. After solv<strong>in</strong>g the required number of equations at order r one ean go<br />

to the next order r + 1. <strong>The</strong>se rules for the reeursive solution of eqs. (3.205) are summarized onee<br />

more graphically <strong>in</strong> fig. 3.5.<br />

To justify our ansatz about the strueture of the operator A, eonsider the start<strong>in</strong>g equations at<br />

order r = 0, given by<br />

E(,\4),\4Ao'l] = ,\4H 2 '1]<br />

E(,\l),\l Ao'l] = ,\ 1 Hl'l]<br />

(3.221)<br />

(3.222)<br />

From eq. (3.217) one can see that the unknown operator ,\4k + i Al=r'l] has the structure which we<br />

assumed at the beg<strong>in</strong>n<strong>in</strong>g of this seetion, if and only if the already known operators '\A'I] enter<strong>in</strong>g<br />

the right hand side of this equation have precisely this form. <strong>The</strong>refore, to proof our ansatz<br />

recursively for all operators '\A'I] it is sufficient to see that it holds for the eorrespond<strong>in</strong>g start<strong>in</strong>g<br />

operators <strong>in</strong> eqs. (3.221) and (3.222), whieh is obviously the ease.<br />

Hav<strong>in</strong>g ealculated the operators ,\ 4k + i A'I] it is straight forward to obta<strong>in</strong> the expansion <strong>in</strong> powers<br />

of Q for the transformed Hamiltonian eq. (3.197). To do that we have to estimate the order of all<br />

terms on its right hand side. Introduc<strong>in</strong>g the operators<br />

and their ehiral power (the power of Q)<br />

with<br />

L = 'I1At \ 4kt '11<br />

t - ., lt /\ +it A l't "<br />

Vt = 3 - 3N + Vt<br />

Vt = 4kt + 2it + lt + l' t<br />

(3.223)<br />

(3.224)<br />

(3.225)


3. 7. Nuc1ear forces us<strong>in</strong>g the method of unitary transformation<br />

evaluated via eqs. (3.210) and (A.l) one gets contributions of the follow<strong>in</strong>g types:<br />

1. [II Lt]<br />

t<br />

v = 3 -3N + LVt<br />

t<br />

2. [II Lt]r,H" 77 [II Ls]<br />

t s<br />

v = 4 -3N + K, +<br />

L Vt + L v s<br />

t s<br />

3. [II Lt] 77AL,\ 4krr.+irr. H,,77 [II Ls]<br />

t s<br />

and [II Lt]r,H",\4krr.+imAlm77[II Ls]<br />

t s<br />

V = 4 - 3N + K, + 2km + im + Zm + L Vt + L Vs (3.228)<br />

t s<br />

4. [II Lt]r,AL,\4km+irr. H",\4kn+<strong>in</strong> A1n77[II Ls]<br />

87<br />

(3.226)<br />

(3.227)<br />

t<br />

V = 4 -3N + K, + Zm + Zn + 2km + 2kn + im + <strong>in</strong> + L Vt + L vs · (3.229)<br />

t<br />

Bere, v denotes the correspond<strong>in</strong>g power of Q. In case of the unity operator <strong>in</strong> eq. (3.197) one<br />

has to drop the v's. <strong>The</strong> effective potential can be easily read off from the effective Bamiltonian<br />

Via<br />

(3.230)<br />

In the follow<strong>in</strong>g seetion we will give concrete examples and calculate the lead<strong>in</strong>g orders of the two<br />

nuc1eon potential.<br />

3.7 N uclear forces us<strong>in</strong>g the method of unitary transformation<br />

We will now apply the formalism described <strong>in</strong> the last seetion and derive an effective Hamiltonian<br />

act<strong>in</strong>g on the purely nuc1eonic subspace of the full Fock space at lead<strong>in</strong>g and next-to-lead<strong>in</strong>g<br />

orders. As a start<strong>in</strong>g po<strong>in</strong>t we use the effective chiral <strong>in</strong>variant Hamiltonian for nuc1eons and<br />

pions [127] . It is based on the effective Lagrangian given <strong>in</strong> ref. [78].38 It reads:<br />

9A t �<br />

(3.231)<br />

-N TCf· ·'\17rN<br />

2j'lr<br />

1<br />

- 2j;<br />

(7r ' 8/17r)(7r ' 8/17r)<br />

+ _1_NtT . (7r x ir)N<br />

4j;<br />

'<br />

+ �CT (NtCfN) . (NtCfN) + �Cs (NtN) (NtN) ,<br />

j \ Nt (2c 1 M;7r2 - C3( 8 /1 7r . 8/17r) + C4 Cijk Eabc aiTa ('\1 j'lrb) ('\1 k'TrC)) N ,<br />

'Ir<br />

D1 (NtN) (NtTCf' :�7rN) + D2 [(NtTCfN) x<br />

4h<br />

8h<br />

2<br />

x (NtTCfN)]<br />

. '�7r<br />

38 For the contact <strong>in</strong>teractions with four nucleon legs we have used the set of terms given <strong>in</strong> appendix F.<br />

(3.232)<br />

(3.233)<br />

(3.234)<br />

(3.235)<br />

(3.236)


88 3. <strong>The</strong> derivation of nuclear forces from chiral Lagrangians<br />

+ �(\ [(NtVN)2 + (VNtN)2] + ((\ + 02 )(NtVN) . (VNtN)<br />

+ �02 (NtN) [NtV2N + V2NtN]<br />

+i�63{ [(NtVN) . (VNt x iJN) + (VNtN) . (NtiJ x VN)]<br />

+ (NtN)(VNt . iJ x VN) + (NtiJN) . (VNt x VN)} (3.237)<br />

1 ( 1 - -<br />

+ 2 2 C 4 (6ik6jl + 6il6kj) + C56ij6kl<br />

x [(OiOjNt17kN) + (Nt17kOiOjN)] (Nt171N)<br />

+ (�06 (6ik6jl + 6il6kj) + (05 - 67)6ij6k1) (Nt17kOiN)(ojNt171N)<br />

1 ( 1 - -<br />

-<br />

+ 2 2 (C4 - C6) (6ik6jl + 6i/6kj) + C76ij6kl<br />

x [(OiNt17kOjN) + (ojNt17kOiN)] (Nt171N) ,<br />

1i5 �El (NtN) (NtrN) . (NtrN) + �E 2 (NtN) (NtriJN) . . (NtriJN)<br />

+ �E3 [(NtriJN) x x (NtriJN)] .. (NtriJN) .<br />

)<br />

)<br />

(3.238)<br />

Here we have shown explicitly only the operators 1i". lead<strong>in</strong>g to non-vanish<strong>in</strong>g TjH".Tj, ),1 H".),l,<br />

),1 H".Tj, ),2 H".Tj, ),2 H".),l, ),4H".Tj and h. c., which we will need <strong>in</strong> our furt her calculations. <strong>The</strong><br />

correspond<strong>in</strong>g <strong>in</strong>dex /'l, is def<strong>in</strong>ed <strong>in</strong> eq. (3.211). <strong>The</strong> operators with nucleon fields and three or<br />

. . more pion fields are irrelevant. <strong>The</strong> symbols ' ' ' , x x<br />

' me an that the appropriate products <strong>in</strong><br />

co-ord<strong>in</strong>ate and isosp<strong>in</strong> space have to be taken. Note that one has, <strong>in</strong> pr<strong>in</strong>ciple, four possible<br />

contact terms (two more <strong>in</strong>volv<strong>in</strong>g r) <strong>in</strong> eq. (3.234). However, they can be reduced to two after<br />

perform<strong>in</strong>g anti-symmetrization of the potential. This will be expla<strong>in</strong>ed below. Furt her , the<br />

Hamiltonian used <strong>in</strong> this paper is always taken <strong>in</strong> normal order<strong>in</strong>g. F<strong>in</strong>ally, we have used the<br />

standard (<strong>in</strong> the one-nucleon sector) notation for the Cl , C3 and C4 terms, which is different from<br />

the correspond<strong>in</strong>g one given <strong>in</strong> the reference [78] 39 and also our El, 2 ,3 coupl<strong>in</strong>gs differ from those<br />

def<strong>in</strong>ed <strong>in</strong> [77]. In particular, EI = EU4, E2 = E!J./4 and E3 = Ej/8, where we denote by E* the<br />

correspond<strong>in</strong>g parameters from reference [77].<br />

<strong>The</strong> Hamiltonian given <strong>in</strong> [78] conta<strong>in</strong>s apart from the terms enumerated above the two additional<br />

<strong>in</strong>teractions<br />

(3.239)<br />

which lead to significant contributions to the two-nucleon potential at next-to-lead<strong>in</strong>g order.<br />

However, as argued <strong>in</strong> [127], no correspond<strong>in</strong>g terms appear <strong>in</strong> the relativistic Lagrangian after an<br />

appropriate nucleon field redef<strong>in</strong>ition is performed. <strong>The</strong>refore, terms of such type <strong>in</strong> the nonrelativistic<br />

Lagrangian may only represent l/m-corrections, that are irrelevant for our calculations<br />

because of the count<strong>in</strong>g eq. (A.14).<br />

39 In ref. [78] these are the EI-E3 terms.


3.7. Nuc1ear forces us<strong>in</strong>g the method of unitary transformation 89<br />

To obta<strong>in</strong> the effective potential via eq. (3.230), we need to know the operators >..a AZ77 that can<br />

be evaluated along the l<strong>in</strong>es described <strong>in</strong> the last section. Let us start with >..1 A077. <strong>The</strong> lead<strong>in</strong>g<br />

contributions to eq (3.206) with i = 1 appear at order r = 0, as follows from eq. (3.216). We can<br />

at lead<strong>in</strong>g order. Concrete, we obta<strong>in</strong> for this equation at r = 0:<br />

(3.240)<br />

now make use of formulae of appendix B to determ<strong>in</strong>e all terms that contribute to the decoupl<strong>in</strong>g<br />

equation (3.206) with i = 1<br />

Bere and <strong>in</strong> what follows, we denote the contribution from the free Bamiltonian Ho by the pert<strong>in</strong>ent<br />

nucleonic and pionic free energies, E and w, respectively. For >..1 A077 we obta<strong>in</strong>:<br />

(3.241)<br />

Proceed<strong>in</strong>g analogously and perform<strong>in</strong>g the recursion <strong>in</strong> the direction <strong>in</strong>dicated <strong>in</strong> fig. 3.5, we f<strong>in</strong>d:<br />

>..4 Ao77<br />

>..1 Al77<br />

>.. 2 Al77<br />

>..4Al77<br />

>..1 A277<br />

o ,<br />

0,<br />

---H277<br />

>..2<br />

-<br />

>..2<br />

w1 + w2 w1 + W2<br />

H1>..1 A077 ,<br />

---- >..4 -- -H277 ,<br />

w1 +W2 +W3 +W4 >..2<br />

---H377 ,<br />

w1 +W2<br />

>..1 >..1 >..1<br />

--H1>.. 2 w<br />

A077 - -H2>..1<br />

w<br />

A077 + -A077H1>..1<br />

w<br />

Ao77<br />

+ -A077H277<br />

>..1 >..1 >..1<br />

- 6' w -A077 w + -Ao77E w ,<br />

>..1 >..1 >..1<br />

--H177 - -H1>.. 2 w w<br />

Al77 - -H3>..1<br />

w<br />

Ao77 .<br />

Bere we have used the fact that the follow<strong>in</strong>g operators vanish:<br />

(3.242)<br />

(3.243)<br />

(3.244)<br />

(3.245)<br />

(3.246)<br />

(3.247)<br />

(3.248)<br />

(3.249)<br />

Note that only those operators >..a AZ77 are shown explicitly <strong>in</strong> eqs. (3.241)-(3.248) that we will<br />

need <strong>in</strong> furt her calculations. In particular, we do not show >.. 3 Ao77 and >..2 A277 that do not vanish.<br />

<strong>The</strong> effective potential def<strong>in</strong>ed <strong>in</strong> eq. (3.230) can be found us<strong>in</strong>g eq. (3.197) and the dimensional<br />

analysis rules (3.223)-(3.229). <strong>The</strong> m<strong>in</strong>imal possible value of 1/ turns out to be 1/ = 6 - 3N.<br />

Correspond<strong>in</strong>gly, the lead<strong>in</strong>g order N-body potential can be written <strong>in</strong> the form:<br />

(6-3N) ( At 1 1A At d A )<br />

Veff = 77 H2 + 0>" H1 + H1>" 0 + 0/\ W 0 77 · (3.250)<br />

Note that <strong>in</strong> the last term only the pionic free energy w contributes at lowest order. No contribution<br />

to the potential appears at order 7 - 3N because of parity <strong>in</strong>variance. This is also clear from the


90 3. <strong>The</strong> derivation of nuc1ear forces from chiral Lagrangians<br />

fact that there is no non-vanish<strong>in</strong>g operator Al H2'f}. At next-to-lead<strong>in</strong>g order, 8-3N, one obta<strong>in</strong>s<br />

a more complicated expression for the potential:<br />

Ve�-3N) = 'f}(H4+AbA4H2 + H2A4Ao +A�AlHl +HlAlA2<br />

t l l 1 tl 1 + AOA H2A Ao - "2 AOA AO'f}H2 - "2 H2'f}AoA tl Ao<br />

+ AbA\€Ao - 1AbAl AoE - 1EAbAlAo + A�AlwAo + AbAlwA2<br />

+ AbAl HlA2 Ao + AbA2 HlAl Ao (3.251)<br />

Itl tl Itl 1<br />

1 - "2 AOA AO'f}AoA Hl - "2 AOA AO'f}HlA Ao - "2 AOA t l Hl'f}AoA t l Ao<br />

1 - 1 t l 1 t l t l I<br />

"2 HlA AO'f}AoA Ao - "2 AOA AO'f}AoA wAo - "2 AOA t l wAO'f}AoA tl Ao<br />

+ AbA2 H2 + H2A2 Ao + AbA2(Wl + w2)Ao)'f} .<br />

Here the E's denote the nucleonic free energies related to the accompany<strong>in</strong>g projection operators<br />

(A or 'f}). At next-to-next-to-lead<strong>in</strong>g order (NNLO), v = 9 - 3N, one f<strong>in</strong>ds:<br />

��-3N) = 'f} ( H5 + AbA2 H3 + H3A2 Ao + At A2 H2 + H2A2 Al<br />

+ A�Al Hl + HlAl A3 + AbAl HlA2 Al + At A2 HlAl Ao<br />

(3.252)<br />

+ AbAlwA3 + A�AlwAo + AbAl H3Al Ao + AbAlH4 + H4Al AO)<br />

Solv<strong>in</strong>g eqs. (3.241)-(3.248) recursively one f<strong>in</strong>ds the express ions for the operators Aa AI'f} <strong>in</strong> terms<br />

of the HK,'s. Insert<strong>in</strong>g these <strong>in</strong>to eqs. (3.250), (3.251) and (3.252) and perform<strong>in</strong>g straightforward<br />

algebraic manipulations, we obta<strong>in</strong> the potential as<br />

V(6-3N) eff<br />

V (8-3N)<br />

(3.253)<br />

eff<br />

V (9-3N)<br />

eff<br />

(3.254)<br />

(3.255)


3.8. Two-nucleon potential 91<br />

3.8 Two-nucleon potential<br />

3.8.1 Expressions and discussion<br />

In the last section we have applied the method of unitary transformation to the most general chiral<br />

<strong>in</strong>variant Hamiltonian for nucleons and pions and obta<strong>in</strong>ed the formal expressions (3.253)-(3.255)<br />

for the effective potential. We will now explicitly evaluate all these contributions <strong>in</strong>sert<strong>in</strong>g the<br />

vertices from eqs. (3.231)-(3.238) and reshufR<strong>in</strong>g the operators <strong>in</strong>to normal order. For that, we<br />

will switch to the <strong>in</strong>teraction picture. <strong>The</strong> free Hamiltonian is chosen accord<strong>in</strong>g to eqs.<br />

(3.200).<br />

(3.199),<br />

<strong>The</strong> pion and nucleon field operators <strong>in</strong> the <strong>in</strong>teraction picture satisfy the free-field<br />

equations of motion:<br />

(0 + m;) 7r 0,<br />

(WO + :�) N o.<br />

Correspond<strong>in</strong>gly, one can decompose the pion field operators 7r via<br />

7r +(t, x)<br />

7r-(t, x)<br />

7r0 (t, x)<br />

! d3k 1 1 [e-ik'Xa (k) + eikoxat (k)]<br />

(27r)3/2 v'2W<br />

! d3k 1 _1_ [e-ikoXa_(k)<br />

(27r )3/2 v'2W<br />

+ +<br />

+ eikoXa�(k)]<br />

! d3k (27 r�3/2 vk- [e-ikoXao(k) + eikoXab(k)] ,<br />

where w = ko =<br />

and neutral pions. <strong>The</strong> cartesian components of the pion field are given by<br />

(3.256)<br />

(3.257)<br />

(3.258)<br />

Vk2 + m; and ato (a±,o) are the creation (destruction) operators of charged<br />

7r2<br />

= --=<br />

/n-<br />

<strong>The</strong> equal-time commutation relations of the pion fields and their conjugate require<br />

[a(k), a(k')] = [at(k), at(k')] = 0 ,<br />

v2i<br />

[a(k), at(k')] = o3(k - k') .<br />

For the nucleon field N one has the decomposition:<br />

(3.259)<br />

(3.260)<br />

(3.261)<br />

(3.262)<br />

Here, v is a Pauli sp<strong>in</strong>or, Eis an isosp<strong>in</strong>or and Po = p2j(2m) = E. Further, bt(p, s) (bt(p, s))<br />

is the destruction (creation) operator of a nucleon with the sp<strong>in</strong> and isosp<strong>in</strong> quantum numbers s<br />

and t and moment um p. v and E are normalized via<br />

vt(s)v(s)<br />

Et(t)E(t)<br />

1 ,<br />

1.<br />

(3.263)<br />

<strong>The</strong> creation and destruction operators b1 (p, s) and bt(p, s) satisfy the anti-commutation relations:<br />

(3.264)


92 3. <strong>The</strong> derivation of nuc1ear forces from chiral Lagrangians<br />

2<br />

,<br />

, I<br />

I<br />

,<br />

3<br />

,<br />

I<br />

,<br />

',.<br />

I<br />

,<br />

4<br />

I<br />

, , ... , I , ,<br />

I<br />

I , ,<br />

I , ,<br />

I , ,<br />

I I I<br />

, I I<br />

I<br />

, ,<br />

, , I , ,<br />

.... '.' ..<br />

Figure 3.6: Some of the one- and zero-partide processes that will not be considered.<br />

Solid and dashed l<strong>in</strong>es are nudeons and pions, respectively. <strong>The</strong> heavy dots denote<br />

vertices from eqs. (3.231)-(3.238) with ßi = O.<br />

5<br />

I<br />

(3.265)<br />

Us<strong>in</strong>g the decompositions (3.258), (3.262) of the field operators one can express the <strong>in</strong>teraction<br />

Hamiltonian that corresponds to the density (3.231)-(3.238) <strong>in</strong> terms of creation and destruction<br />

operators. <strong>The</strong> calculation of the effective potential (3.253)-(3.255) is performed at a fixed time<br />

t = 0, at which the Heisenberg, Dirac (or <strong>in</strong>teraction) and Schröd<strong>in</strong>ger pictures co<strong>in</strong>cide. To<br />

obta<strong>in</strong> the f<strong>in</strong>al result one has to proceed <strong>in</strong> a way similar to time-ordered perturbation theory,<br />

see, for example, [187]. <strong>The</strong> only difference is <strong>in</strong> the energy denom<strong>in</strong>ators and <strong>in</strong> the coefficients of<br />

the operators enter<strong>in</strong>g eqs. (3.253)-(3.255). A detailed calculation of the effective potential with<strong>in</strong><br />

a time-ordered perturbation theory as wen as the relevant matrix elements of the Hamiltonian<br />

(3.231)-(3.238) can be found <strong>in</strong> the reference [161].<br />

Figure 3.7: Lead<strong>in</strong>g order (LO) contributions to the NN potential: one-pion exchange<br />

and contact diagrams. Graphs which result from the <strong>in</strong>terchange of the two<br />

nudeon l<strong>in</strong>es are not shown. For notations see fig. 3.6.<br />

Let us take a dos er look at various terms enter<strong>in</strong>g the expressions (3.253)-(3.255), before we<br />

will give the explicit result for the effective potential. For that, we will use the diagrammatic<br />

technique. It should be kept <strong>in</strong> mi nd that the graphs we will show below only represent the<br />

2


3.8. Two-nucleon potential 93<br />

topological aspects of the processes. Different to time-ordered perturbation theory, one cannot<br />

directly read off the correspond<strong>in</strong>g matrix element from the diagram. To do that, one has to <strong>in</strong>sert<br />

the appropriate energy denom<strong>in</strong>ators from eqs. (3.253)-(3.255).<br />

Figure 3.8: First corrections to the NN potential. Contact diagram at next-tolead<strong>in</strong>g<br />

order (NLO). <strong>The</strong> filled diamond denotes the vertices with L::.i = 2 (with two<br />

derivatives). For rema<strong>in</strong><strong>in</strong>g notations see fig. 3.6.<br />

We first po<strong>in</strong>t out that we will not furt her discuss the zero- arid one-particle diagrams, that<br />

describe vacuum fiuctuations and self-energy contributions. Few examples of such diagrams are<br />

shown <strong>in</strong> fig. 3.6. Consider now the lead<strong>in</strong>g order potential, eq. (3.253). It consists of two<br />

terms, the one-pion exchange rv H1 ().. 1 /w)H1 and the contact <strong>in</strong>teractions with four nucleon legs<br />

subsumed <strong>in</strong> H2 . <strong>The</strong> correspond<strong>in</strong>g graphs are shown <strong>in</strong> fig. 3.7. This potential obviously agrees<br />

with the one obta<strong>in</strong>ed <strong>in</strong> time-dependent perturbation theory.40<br />

More <strong>in</strong>terest<strong>in</strong>g is the first correction given <strong>in</strong> eq. (3.254) represent<strong>in</strong>g the next-to-lead<strong>in</strong>g order<br />

(NLO) result. <strong>The</strong> diagrams correspond<strong>in</strong>g to the various terms are shown <strong>in</strong> figs. 3.8-3.11 and<br />

3.13. <strong>The</strong> first term refers to the graph of fig. 3.8, the rema<strong>in</strong><strong>in</strong>g terms <strong>in</strong> the first l<strong>in</strong>e lead to<br />

diagrams 1, 2, 3 <strong>in</strong> fig. 3.9 and 1, 2 <strong>in</strong> fig. 3.13 and <strong>in</strong> the second l<strong>in</strong>e to graph 4 of fig. 3.9.<br />

We should mention that all graphs conta<strong>in</strong><strong>in</strong>g vertex corrections with exactly one 7r7r N N -vertex,<br />

which are also conta<strong>in</strong>ed <strong>in</strong> the first l<strong>in</strong>e, give no contributions, because only odd functions of<br />

the loop moment um enter the correspond<strong>in</strong>g <strong>in</strong>tegrals. <strong>The</strong> first term <strong>in</strong> the third l<strong>in</strong>e subsumes<br />

graphs 5 to 8 offig. 3.9 plus the irreducible self-energy diagrams depicted <strong>in</strong> fig. 3.10. <strong>The</strong> next two<br />

terms <strong>in</strong> the third l<strong>in</strong>e refer to graphs 9 and 10 <strong>in</strong> fig. 3.9 plus the "reducible" self-energy diagrams<br />

offig. 3.11. Such "reducible" diagrams are typical for the method ofunitary transformation and do<br />

not occur <strong>in</strong> old-fashioned time-ordered perturbation theory. <strong>The</strong>y should not be confused with<br />

truly reducible diagrams, one example be<strong>in</strong>g shown <strong>in</strong> fig. 3.12 (1). In that figure, the horizontal<br />

dot-dashed l<strong>in</strong>es represent the states whose free energy enters the pert<strong>in</strong>ent energy denom<strong>in</strong>ators.<br />

In time-ordered perturbation theory, such reducible diagrams are generated by iterations of the<br />

potential <strong>in</strong> a Lippmann-Schw<strong>in</strong>ger equation, with the potential be<strong>in</strong>g def<strong>in</strong>ed to consist only of<br />

truly irreducible diagrams. In contrast to the really reducible graphs like the one <strong>in</strong> fig. 3.12 (1),<br />

the ones result<strong>in</strong>g by apply<strong>in</strong>g the projection formalism do not conta<strong>in</strong> the energy denom<strong>in</strong>ators<br />

correspond<strong>in</strong>g to the propagation of nucleons only. In the same notation as used for fig. 3.12<br />

4° Speak<strong>in</strong>g more precisely, only the non-iterated potential is the same <strong>in</strong> both time-ordered perturbation theory<br />

and projection formalism. This is because the energy denom<strong>in</strong>ator enter<strong>in</strong>g the correspond<strong>in</strong>g expression for the<br />

potential <strong>in</strong> old-fashioned perturbation theory depends explicitly on an <strong>in</strong>itial energy of the two nucleons. Such<br />

an energy dependence vanishes if one considers nucleons as <strong>in</strong>f<strong>in</strong>itely heavy particles (static limit). <strong>The</strong>n the two<br />

potentials are <strong>in</strong>deed the same.


94<br />

,<br />

,<br />

,<br />

,<br />

,<br />

,<br />

,<br />

,<br />

,<br />

,<br />

,<br />

,<br />

,<br />

, ,<br />

, ,<br />

,<br />

,<br />

,<br />

,<br />

"<br />

,<br />

,<br />

, - -<br />

" "<br />

- , , ' ,<br />

- , ,<br />

, ,<br />

, ,<br />

,<br />

2<br />

6 7<br />

,<br />

,<br />

3. <strong>The</strong> derivation of nuclear forces from chiral Lagrangians<br />

\� ,<br />

,<br />

\ ,<br />

,<br />

\ ,<br />

\ ,<br />

3<br />

\<br />

\<br />

,<br />

,<br />

,<br />

,<br />

,<br />

,<br />

,<br />

,<br />

,<br />

,<br />

,<br />

,<br />

,<br />

,<br />

H<br />

,<br />

,<br />

,<br />

,<br />

I , ,<br />

-<br />

4<br />

9<br />

,<br />

,<br />

,<br />

,<br />

,<br />

'<<br />

,<br />

"<br />

,<br />

,<br />

,<br />

Figure 3.9: First corrections to the NN potential <strong>in</strong> the projection formalism: twopion<br />

exchange diagrams. For notations see fig. 3.6.<br />

(1), one can e.g. express diagram 9 of fig. 3.9 as a sum of two graphs as depicted <strong>in</strong> fig. 3.12<br />

(2),(3). All diagrams <strong>in</strong>volv<strong>in</strong>g contact <strong>in</strong>teractions, shown <strong>in</strong> fig. 3.13, follow from the fourth l<strong>in</strong>e<br />

and, as already noted above, from the second term <strong>in</strong> the first l<strong>in</strong>e of eq. (3.254). We remark<br />

that the three terms <strong>in</strong> the fifth l<strong>in</strong>e add up to zero. We have nevertheless made them explicit<br />

here s<strong>in</strong>ce <strong>in</strong> time-ordered perturbation theory, these terms are treated differently and lead to the<br />

recoil correction, i.e. the explicit energy-dependence, of the two-nucleon potential. <strong>The</strong> last term<br />

<strong>in</strong> eq. (3.254) corresponds to the vacuum fluctuation diagram shown <strong>in</strong> fig. 3.6 and will not be<br />

discussed below.<br />

Let us now consider the next-to-next-to-lead<strong>in</strong>g order corrections (NNLO) represented by the<br />

equation (3.255). <strong>The</strong> correspond<strong>in</strong>g diagrams have the same structure as the graphs 1-4 <strong>in</strong><br />

fig. (3.9) except that now one 7r7rNN vertex conta<strong>in</strong>s two derivatives (or two pion mass <strong>in</strong>sertions),<br />

i. e. one more than the diagrams <strong>in</strong> fig. (3.9). <strong>The</strong> two last terms <strong>in</strong> the first l<strong>in</strong>e of eq. (3.255)<br />

are referred to the graphs 4 and 5 <strong>in</strong> fig. 3.15. <strong>The</strong> diagrams 1-3 <strong>in</strong> this figure represent the<br />

terms <strong>in</strong> the second l<strong>in</strong>e of eq. (3.255). <strong>The</strong> correspond<strong>in</strong>g vertex correction diagrams are shown<br />

<strong>in</strong> fig. 3.14.<br />

We will now give explicit expressions for the N N potential. As already noted ab ove , its lead<strong>in</strong>g<br />

part is given by just one pion exchange with both vertices com<strong>in</strong>g from eq. (3.231) plus contact<br />

<strong>in</strong>teractions correspond<strong>in</strong>g to eq. (3.234). As po<strong>in</strong>ted out <strong>in</strong> ref. [78] <strong>in</strong> the context oftime-ordered<br />

perturbation theory, one has to take the static limit for the nucleons <strong>in</strong> the one-pion exchange<br />

term, s<strong>in</strong>ce the recoil and relativistic corrections lead to higher order contributions. <strong>The</strong> same<br />

holds true <strong>in</strong> the method of unitary transformation, see eq. (3.253). Thus, both methods give<br />

the same result for the lead<strong>in</strong>g order potential. In what follows, we will use the slightly different<br />

notation from refs. [78], [127]. In particular, the sp<strong>in</strong> and isosp<strong>in</strong> matrices a and T satisfy the<br />

5<br />

10


3.8. Two-nucleon potential<br />

,, '<br />

\<br />

1<br />

,<br />

, ,<br />

, ,<br />

,<br />

,<br />

,<br />

,<br />

,<br />

,<br />

\<br />

, I<br />

"<br />

,<br />

,<br />

2<br />

5 6<br />

\<br />

1<br />

1 ,<br />

\ 1<br />

1 1<br />

1<br />

\<br />

\<br />

\<br />

1<br />

Figure 3.10: First corrections to the NN potential: irreducible self-energy and vertex<br />

correction graphs. For notations see fig. 3.6.<br />

,<br />

,<br />

,<br />

, 1<br />

I<br />

, \<br />

'I<br />

1<br />

\<br />

I, '<br />

,<br />

,<br />

, , , \<br />

, ,<br />

1<br />

3<br />

7<br />

, ,<br />

, , ,<br />

\ \ , , ,<br />

1 1 , ,<br />

2 3 4<br />

Figure 3.11: First corrections to the NN potential: reducible self-energy graphs. For<br />

notations see fig. 3.6.<br />

follow<strong>in</strong>g equations:<br />

Oij + iEijkTk<br />

Oij + iEijkO"k<br />

4<br />

\<br />

\<br />

95<br />

(3.266)<br />

(3.267)<br />

<strong>The</strong> <strong>in</strong>itial (f<strong>in</strong>al) moment um of the nucleons <strong>in</strong> the c. m. system is denoted by p (p'). <strong>The</strong><br />

transferred and average momenta are given by<br />

� -I -+<br />

q = p -p, 2<br />

(3.268)<br />

�<br />

p+ p'<br />

k= --


96<br />

_ . . -.:;: " :,,,_ ._ . . _.<br />

3. <strong>The</strong> derivation of nuc1ear forces from chiral Lagrangians<br />

_. . _ .:: . .,. :",_. _. . _ .<br />

_ . . _._. __ ._ . . _.<br />

_ . . _._."._._ . . _.<br />

2<br />

- . . _._. __ ._ . . -.<br />

_ . . _._.04._._ . . _.<br />

_. __ . :: ,., 1""_ ._ . . _.<br />

Figure 3.12: Reducible graphs. In (1), a truly reducible diagram is shown. In the<br />

projection formalism, one has graphs like (2) and (3). <strong>The</strong>se correspond to diagram<br />

9 <strong>in</strong> fig. 3.9. <strong>The</strong> horizontal dot-dashed l<strong>in</strong>es count the free energies of the particles<br />

cut.<br />

respectively. <strong>The</strong> lead<strong>in</strong>g order potential can then be written as:<br />

2 3 4 5 6<br />

Figure 3.13: NLÜ one-loop corrections to the four-nucleon contact <strong>in</strong>teractions <strong>in</strong><br />

the projection formalism. For notations see fig. 3.6.<br />

3<br />

(3.269)<br />

<strong>The</strong> first corrections to this result appear at order two. We now enumerate all such corrections.<br />

S<strong>in</strong>ce we want to compare both schemes, we will first discuss the results obta<strong>in</strong>ed with<strong>in</strong> oldfashioned<br />

perturbation theory and then present the potential derived us<strong>in</strong>g the method of unitary<br />

transformation. We start with the tree-diagram contribution given by the graph of fig. 3.8 with<br />

various contact <strong>in</strong>teractions from eq. (3.237). This leads to the potential<br />

(2) VNN,tree C �2 C k2 (C �2 � �<br />

C k2 )(<br />

1 q + 2 + 3 q + 4 0"1 • 0"2 + Z 5 . x q)<br />

2<br />

+ C6 (if· o\) (if· i'h) + C7 (k . ih)(k . (2 ) , (3.270)<br />

) ' C 0\ + ih (k ;;'I


3.8. Two-nucleon potential<br />

where the Ci 's are given by<br />

Cl ,<br />

-4C 2 ,<br />

- 1 -<br />

-C7 - 2 C5 '<br />

4C7 - 2C5 , (3 .271)<br />

C5 -2C3 ,<br />

C6 -C 4 + C6 ,<br />

C7 -4C6 .<br />

Different to the reference [78], no one-pion exchange diagrams appear at this order, s<strong>in</strong>ce the<br />

I<br />

\<br />

Figure 3.14: Next-to-next-to-lead<strong>in</strong>g order (NNLO) diagrams that conta<strong>in</strong> vertex<br />

corrections. <strong>The</strong> filled squares denote the 7r7r N N vertex with ßi = 1. One should<br />

sum over all possible time order<strong>in</strong>gs. Graphs result<strong>in</strong>g from time revers al operation<br />

are not shown. For rema<strong>in</strong><strong>in</strong>g notations see fig. 3.6.<br />

7r N N vertices with three derivatives can be elim<strong>in</strong>ated from the Hamiltonian or contribute at<br />

higher orders, as po<strong>in</strong>ted out <strong>in</strong> the last section.<br />

, ,<br />

,<br />

,<br />

,<br />

,<br />

,<br />

,<br />

,<br />

1 ,<br />

1 ,<br />

1 ,<br />

1 '<br />

1 '<br />

'<br />

I,<br />

"<br />

2<br />

"<br />

"<br />

" ,<br />

, ,<br />

, ,<br />

, ,<br />

, '<br />

,<br />

3<br />

2<br />

I<br />

I<br />

I ,<br />

1<br />

"<br />

,<br />

1 1<br />

1<br />

"<br />

4<br />

,<br />

, I<br />

I<br />

I<br />

,<br />

,<br />

\<br />

\<br />

'<br />

"<br />

,<br />

,<br />

\<br />

,<br />

, \<br />

,<br />

5<br />

Figure 3.15: Next-to-next-to-lead<strong>in</strong>g order (NNLO) corrections to the NN potential.<br />

For rema<strong>in</strong><strong>in</strong>g notations see figs. 3.6, 3.14.<br />

97


98 3. <strong>The</strong> derivation o{ nuc1ear {orces {rom chiral Lagrangians<br />

Further corrections arise from irreducible one-loop diagrams 1-8 <strong>in</strong> fig. 3.9:<br />

where<br />

vY 211", ) 1-1oop, Irr. .<br />

(3.272)<br />

We have also calculated the contributions from various irreducible one-loop diagrams 1-8 <strong>in</strong><br />

fig. 3.10 and 1-2 <strong>in</strong> fig. 3.13, which <strong>in</strong>volve self-energy <strong>in</strong>sertions and vertex corrections. <strong>The</strong>se<br />

have not been considered <strong>in</strong> [74], [76]. <strong>The</strong> correspond<strong>in</strong>g contributions are given by<br />

where<br />

V(2) 111",1-1oop,Irr. .<br />

and by<br />

V(2) .<br />

NN,1-1oop,Irr.<br />

4 3 { � �<br />

g A / dl T1'T2 l .q( ( � l �) ( � �) ( � �) ( � l �))<br />

(2111")4 (27r )3 wlw� � 0'1' 0'2 . q + 0'1' q 0'2 '<br />

(� + �) [2 (0\ . q) (eh , q)} , (3.274)<br />

Wz wq<br />

p,ur.<br />

(3.275)<br />

(3.276)<br />

We remark an unpleasant feature of V1(2)1_100 . . With t = _q2 one can rewrite the term<br />

7r,<br />

proportional to l/w� as (M; -t)-3/2. This function has a cut start<strong>in</strong>g at t = M;. Physically,<br />

this does not make sense s<strong>in</strong>ce all cuts should be produced by multi-particle <strong>in</strong>termediate states.<br />

We co me back to this later on.<br />

F<strong>in</strong>ally, the corrections aris<strong>in</strong>g by explicitly keep<strong>in</strong>g the nucleon k<strong>in</strong>etic energy <strong>in</strong> one-pion exchange<br />

tree diagrams with both vertices from the lead<strong>in</strong>g order Lagrangian represents the energydependent<br />

part of the N N potential [76] given by<br />

V(2) _<br />

g<br />

E - (21<br />

2 E _ l (f 2 + l(2)<br />

11" q2 + M;<br />

A ( �<br />

)2 Tl . T2 0'1' q 0'2 ' q<br />

�) ( � �) m 4<br />

( )3/2 '<br />

(3.277)


3.8. Two-nucleon potential 99<br />

where E is an <strong>in</strong>itial energy ofthe two nucleons (full energy). One should stress that on-shell, this<br />

contribution vanishes. This on-shell center-of-mass k<strong>in</strong>ematics is often used as an approximation<br />

for calculations of N N scatter<strong>in</strong>g or few-nucleon forces. However, if one iterates this potential <strong>in</strong><br />

the Lippmann-Schw<strong>in</strong>ger equation, the energy E can no longer be simply related to the momenta<br />

k and ij. A similar comment applies to us<strong>in</strong>g this recoil correction <strong>in</strong> the calculation of few-nucleon<br />

forces (for N � 3).<br />

Let us now look at the corrections aris<strong>in</strong>g <strong>in</strong> the framework of the projection formalism. <strong>The</strong> ones<br />

from the tree diagrams with contact <strong>in</strong>teractions with two derivatives do not change and are aga<strong>in</strong><br />

given by eq. (3.270). Apart from the corrections from irreducible one-Ioop graphs 1-8 <strong>in</strong> fig. 3.9<br />

given by eq. (3.272) one obta<strong>in</strong>s contributions from reducible diagrams 9 and 10, which can be<br />

expressed by<br />

(3.278)<br />

V(2 )<br />

211",1-1oop,red.<br />

Summ<strong>in</strong>g up eqs. (3.272) and (3.278) we obta<strong>in</strong> the two-pion exchange contributions to the potential<br />

with<strong>in</strong> the projection formalism:<br />

(2 )<br />

V211", 1-1oop<br />

(3.279)<br />

As was first noted <strong>in</strong> ref. [108] us<strong>in</strong>g a different formalism, the isoscalar sp<strong>in</strong> <strong>in</strong>dependent central<br />

and the isovector sp<strong>in</strong> dependent parts of the two-nucleon potential correspond<strong>in</strong>g to the two-pion<br />

exchange adds up to zero. It is comfort<strong>in</strong>g that we f<strong>in</strong>d the same result. Note that this is different<br />

from the energy-dependent potential derived with<strong>in</strong> time-ordered perturbation theory.<br />

<strong>The</strong> contributions from one-Ioop "reducible" diagrams 1-4 <strong>in</strong> fig. 3.11 and 3-6 <strong>in</strong> fig. 3.13, which<br />

<strong>in</strong>volve the nucleon self-energy and loop corrections to the four-fermion <strong>in</strong>teractions, are given by<br />

(3.280)<br />

and by<br />

(3.281)<br />

V(2 )<br />

NN, 1-1oop,red.


100 3. <strong>The</strong> derivation o{ nuc1ear {orces {rom chiral Lagrangians<br />

respectively. Note that Vl�: 1-1oop,red. aga<strong>in</strong> conta<strong>in</strong>s a term rv l/wg. Comb<strong>in</strong><strong>in</strong>g eqs. (3.274) and<br />

(3.280), this unphysical contribution vanishes. Summ<strong>in</strong>g up the corrections eqs. (3.274), (3.276)<br />

correspond<strong>in</strong>g to irreducible graphs, which are aga<strong>in</strong> the same as <strong>in</strong> old-fashioned time-dependent<br />

perturbation theory and those (3.280), (3.281), correspond<strong>in</strong>g to "reducible" diagrams, one gets<br />

the complete result, represent<strong>in</strong>g the one-Ioop contributions, which <strong>in</strong>volve self-energy <strong>in</strong>sert ions<br />

and vertex corrections with<strong>in</strong> the projection formalism:<br />

Vb,1-1oop<br />

(2)<br />

VNN,1-1oop<br />

(2)<br />

<strong>The</strong> complete potential at NLO <strong>in</strong> the projection formalism is given by the express ions (3.270),<br />

(3.279), (3.282) and (3.283). <strong>The</strong> formal expressions for the NN potential shown above conta<strong>in</strong><br />

ultraviolet divergences. In the next section we will show how such ultraviolet divergences can be<br />

removed by redef<strong>in</strong>ition of the coupl<strong>in</strong>g constants.<br />

Let us briefly discuss the NNLO potential given <strong>in</strong> eq. (3.255). <strong>The</strong> related diagrams are shown<br />

<strong>in</strong> fig. 3.15. In that case no purely nucleonic <strong>in</strong>termediate states are possible. Correspond<strong>in</strong>gly,<br />

one obta<strong>in</strong>s the same contributions <strong>in</strong> time-ordered perturbation theory and <strong>in</strong> the projection<br />

formalism. This is also evident from the explicit form of the operators <strong>in</strong> eq. (3.255). <strong>The</strong> formal<br />

express ions of the NNLO potential were presented <strong>in</strong> [78]. In the next section we will show the<br />

renormalized contributions given by Kaiser et al. [108].<br />

F<strong>in</strong>ally, let us po<strong>in</strong>t out once more that the crucial difference between the two formalisms, timeordered<br />

perturbation theory and method of unitary transformation, results <strong>in</strong> the treatment of the<br />

energy-dependent term eq. (3.277). As already noted ab ove , it does not appear <strong>in</strong> the method of<br />

unitary transformation. We note that many of the results derived here have already been found <strong>in</strong><br />

[108], where one- and two-pion exchange graphs were calculated by me ans of Feynman diagrams<br />

and us<strong>in</strong>g dimensional regularization. <strong>The</strong> potential was applied to N N scatter<strong>in</strong>g <strong>in</strong> peripheral<br />

partial waves (with orbital angular momentum L 2: 2), where it does not need to be iterated.<br />

Our aim is to apply this potential to all partial waves and to the bound state problem. We will<br />

comment more on that <strong>in</strong> the next chapter.<br />

3.8.2 Renormalization of the N N potential at NLO<br />

<strong>The</strong> effective N N potential at NLO derived <strong>in</strong> the last section is not well-def<strong>in</strong>ed, s<strong>in</strong>ce it conta<strong>in</strong>s<br />

ultraviolet divergent <strong>in</strong>tegrals. Here, we would like to show how to renormalize this potential.<br />

S<strong>in</strong>ce we are deal<strong>in</strong>g with an effective field theory, we can use the standard order-by-order<br />

renormalization mach<strong>in</strong>ery for the Lagrangian, which was first developed <strong>in</strong> the context of chiral<br />

perturbation theory. All these divergent contributions (at NLO) can be renormalized <strong>in</strong> terms of<br />

three divergent (momentum space) loop functions,41<br />

/00 dl<br />

Jo = (3.284)<br />

J1 T'<br />

41 Clearly, all ultraviolet divergent <strong>in</strong>tegrals here and <strong>in</strong> what follows have to be understood as the limits A -+ 00<br />

of the correspond<strong>in</strong>g <strong>in</strong>tegrals over the f<strong>in</strong>ite range of momenta 0 < I < A.


3.8. Two-nuc1eon potential 101<br />

Clearly, J2 (J4) is quadratically (quartically) divergent while Jo diverges logarithmically for large<br />

momenta and p, is some quantity with the dimension of mass (renormalization scale). Note that<br />

we could <strong>in</strong>troduce other forms of divergent <strong>in</strong>tegrals, which depend on a s<strong>in</strong>gle dimensionsfull<br />

scale (denoted here by p,). Another choice of def<strong>in</strong><strong>in</strong>g these divergent loop <strong>in</strong>tegrals would give<br />

different f<strong>in</strong>ite subtractions but leads to the same non-polynomial terms <strong>in</strong> the potential. We will<br />

comment more on that later on.<br />

Consider first the one-Ioop corrections to the OPEP, eq. (3.282). <strong>The</strong> relevant divergent <strong>in</strong>tegral<br />

lS /<br />

d3Z ZiZj<br />

(2n)3 w( = a Oij , (3.285)<br />

where i, j = 1,2,3 and a is some (<strong>in</strong>f<strong>in</strong>ite) constant. No other two-dimensional symmetrical (<strong>in</strong> i<br />

and j) tensors apart from Oij can enter the right-hand side of this equation, s<strong>in</strong>ce the <strong>in</strong>tegrand<br />

depends only on Z and the <strong>in</strong>tegration is performed over the whole space. Multiply<strong>in</strong>g both sides<br />

of eq. (3.285) by Oij and perform<strong>in</strong>g the summation over i,j we obta<strong>in</strong><br />

1/ d3Z Z2<br />

a = - ---<br />

3 (2n)3 w(<br />

. (3.286)<br />

Us<strong>in</strong>g eqs. (3.285), (3.286) and (D.1) we can now rewrite the OPEP (3.282) as:<br />

4<br />

. 2<br />

V1�\-lOOP = 48�� 1: (Tl ' T2)(0'1 . if)(0'2 . if) �� {5M; + 3M; In :� + 4h -6M;Jo} , (3.287)<br />

<strong>in</strong> terms ofthe two divergent loop functions JO,2 def<strong>in</strong>ed <strong>in</strong> eq. (3.284). <strong>The</strong>refore, this contribution<br />

has exactly the same form as the OPEP (renormalized OPE),<br />

(3.288)<br />

provided we redef<strong>in</strong>e the coupl<strong>in</strong>g constant g� (the superscript "0" denotes the lead<strong>in</strong>g term <strong>in</strong><br />

the chiral expansion) <strong>in</strong> the follow<strong>in</strong>g way:42<br />

(gT)2 = (gO)2 _<br />

{5M2 + 3M 2 In M; + 4J _<br />

(g�)4<br />

A A 12n2 fir 11: 11: 4p,2<br />

2 11:<br />

6M2 J }<br />

0 (3.289)<br />

Clearly, gA and g� differ by terms of second order <strong>in</strong> the chiral dimension. Consequently, all NLO<br />

one-Ioop corrections to the OPEP can be taken care off by renormalization of g�.<br />

In addition, there are the one-Ioop corrections to the lowest order four-fermion <strong>in</strong>teractions shown<br />

<strong>in</strong> eq. (3.283). Proceed<strong>in</strong>g analogously to eqs. (3.285), (3.286) and mak<strong>in</strong>g use of eq. (D.1) one<br />

can express the divergent <strong>in</strong>tegral enter<strong>in</strong>g eq. (3.283) <strong>in</strong> terms of the loop functions JO,2 as<br />

(2)<br />

V NN,1-1oop -6::1 ; C� (3 - Tl . T2) (0\ . 0'2) / d3ZZ4 wi3 (3.290)<br />

- g� j2 C� (3 - Tl ' T2) (0'1 . 0'2) {5M; + 3M; In M<br />

4 � + 24n 4h -6M;Jo}<br />

11: p,<br />

or <strong>in</strong> a more compact notation<br />

(3.291)<br />

42 Note that this expression may change if one performs a complete renormalization (<strong>in</strong>clud<strong>in</strong>g the wave function<br />

renormalization) .


102 3. <strong>The</strong> derivation o{ nuclear {orces {rom chiral Lagrangians<br />

with<br />

(3.292)<br />

Perform<strong>in</strong>g anti-symmetrization as described <strong>in</strong> appendix E allows to map the two sp<strong>in</strong>-isosp<strong>in</strong> operators<br />

appear<strong>in</strong>g <strong>in</strong> eq. (3.291) onto the two non-derivative operators used <strong>in</strong> v�o�, cf. eq. (3.269).<br />

<strong>The</strong>refore, as follows from eq. (E.8), the effect of the one-Ioop corrections to the lowest order contact<br />

<strong>in</strong>teractions with four nucleon legs can be completely absorbed by renormalization of the<br />

constants C� and C� ,<br />

Cs = C� -3S, Cf = C� -3S . (3.293)<br />

We note that furt her renormalization of these coupl<strong>in</strong>gs is due to the two-pion exchange, as<br />

discussed below.<br />

Consider now the proper two-pion exchange contribution (3.279). <strong>The</strong> first two <strong>in</strong>tegrals can be<br />

immediately expressed <strong>in</strong> terms of the divergent loop functions JO,2,4 us<strong>in</strong>g h , h and h def<strong>in</strong>ed<br />

<strong>in</strong> eqs. (D.2), (D.3) and (D.6). To calculate the last <strong>in</strong>tegral we use the follow<strong>in</strong>g identity:<br />

1 ä 1 (3.294)<br />

Now it is easy to express the <strong>in</strong>tegrals enter<strong>in</strong>g the last two l<strong>in</strong>es of eq. (3.279) <strong>in</strong> terms of the<br />

loop functions JO,2,4. Specifically, we have:<br />

(3.295)<br />

Here, we have set q == Iql. Putt<strong>in</strong>g pie ces together, the expression for V2�:1-100P takes the form<br />

V2�:1-100P<br />

with<br />

= vJl�p + (Sl + S2 q2) (7"1 . 7"2) + S3 [(0\ . q) (ih . if) - (51 . 52) q2] ,<br />

1 { 2 4 2 M7r 2 4<br />

2f<br />

2<br />

4 3847r 7r -18M7r(5gA -2gA) In - -M7r(61gA - 14gA + 4)<br />

ft<br />

+18M;(5g� -2g�)Jo -3(3g� -2g�)J2 } 1 { 4<br />

,<br />

2 M7r 1 4 2<br />

+(23g� -lOg� - l)Jo },<br />

3g� { M7r 1<br />

647r2 -Jo }<br />

f; ft 3 '<br />

3847r2 f; (-23gA + 10gA + 1) In -;- - 2(13gA + 2gA)<br />

- ln- + -<br />

and the non-polynomial part vJlJP given by<br />

(3.296)<br />

(3.297)<br />

(3.298)<br />

(3.299)


3.8. Two-nuc1eon potential<br />

with<br />

L(q) = � 14M2 + q2 In J4M; + q2 + q .<br />

q V 7r 2M7r<br />

103<br />

(3.301)<br />

<strong>The</strong> polynomial terms, obviously, renormalize the coupl<strong>in</strong>g constants of the dimension zero and<br />

two contact terms with four nucleon legs. Aga<strong>in</strong>, we perform anti-symmetrization to map the<br />

terms appear<strong>in</strong>g <strong>in</strong> eq. (3.296) via eq. (E.13) onto the basis used <strong>in</strong> the polynomial part of the<br />

V(O ) and <strong>in</strong> the V�2h,tree' cf. eqs. (3.269), (3.270). Includ<strong>in</strong>g the contribution from eq. (3.293),<br />

the complete renormalization of the four-nucleon coupl<strong>in</strong>gs takes the form<br />

Cf<br />

cr<br />

cr<br />

C� - 38 -81 , Cs = C� -38 -281 ,<br />

Cp - 82 , C� = cg - 482 , Cf = cg -83 ,<br />

482 , C� = cg , C6 = cg + 83 , C; = C$ .<br />

c2 -<br />

(3.302)<br />

Note that C5 and C7 do not get renormalized to this order.<br />

Now we would like to comment on the obta<strong>in</strong>ed results. <strong>The</strong> effective N N potential at NLO is<br />

given by the non-polynomial and the polynomial parts shown <strong>in</strong> eqs. (3.269), (3.300) and (3.270).<br />

<strong>The</strong> coupl<strong>in</strong>g constants Ci 's are renormalized via eq. (3.302). Note that each of these two parts, the<br />

polynomial and the non-polynomial ones, separately does not depend on the renormalization scale<br />

fl,. This fl,-<strong>in</strong>dependence is not accidental. Indeed, assume that the potential can be expressed as<br />

(3.303)<br />

where CT and gT correspond to sets of renormalized four-nucleon and rema<strong>in</strong><strong>in</strong>g coupl<strong>in</strong>gs, which<br />

<strong>in</strong> our case do not depend on fl" Q denotes generic nucleon three-momenta and VI and V2 are<br />

non-polynomial and polynomial parts of the potential. For simplicity, we consider here the case<br />

m -+ 00. S<strong>in</strong>ce V2 is a polynomial, there exists some non-negative number nm<strong>in</strong> such that for all<br />

n > nm<strong>in</strong>: 43<br />

dnV2( Q, M7r, fl" gT, CT)<br />

=<br />

dQn 0 . (3.304)<br />

We now require that the whole effective potential V does not depend on fl,:<br />

dV<br />

dfl, = 0<br />

<strong>The</strong>refore, we obta<strong>in</strong> for all n > nm<strong>in</strong>:<br />

(3.306)<br />

Here we assume the usual cont<strong>in</strong>uity properties of the function V2( Q, M7r, fl" gT, CT). Consequently,<br />

one can express VI as<br />

(3.307)<br />

Further, the function V? (M7r , fl" gT, CT) should vanish s<strong>in</strong>ce VI does not conta<strong>in</strong> a polynomial part.<br />

That is why both VI and V2 should be separately <strong>in</strong>dependent on fl,. In our case it turns out that<br />

the explicit fl,-dependence even vanishes completely if both VI and V2 are expressed <strong>in</strong> terms of the<br />

renormalized coupl<strong>in</strong>g constants. All these coupl<strong>in</strong>gs should be fixed from fitt<strong>in</strong>g to data. This will<br />

.<br />

(3.305)<br />

43We use here a symbolic notation for derivatives. It should be kept <strong>in</strong> m<strong>in</strong>d that Q represents vectorial quantities.


104 3. <strong>The</strong> derivation of nuclear forces from chiral Lagrangians<br />

be described <strong>in</strong> detail below. For gA and i1f we will take the values known from the one-nucleon<br />

sector. Note, however, that we have not performed here a complete renormalization ofthe potential<br />

at NLO, which would also require a calculation of the contributions from disconnected diagrams<br />

(zero- and one-nucleon operators). <strong>The</strong>refore, the values of gA and i1f may, strictly speak<strong>in</strong>g,<br />

differ from the correspond<strong>in</strong>g ones obta<strong>in</strong>ed from the 1fN scatter<strong>in</strong>g by order Q2 corrections and<br />

should, <strong>in</strong> pr<strong>in</strong>ciple, be extracted from the N N scatter<strong>in</strong>g data. It would be <strong>in</strong>terest<strong>in</strong>g to perform<br />

a complete renormalization of the effective potential to obta<strong>in</strong> more rigorously the values of these<br />

constants. As we have found, the N N scatter<strong>in</strong>g data can be reproduced quite accurately us<strong>in</strong>g<br />

the values i1f = 93 MeV and gA = 1.26.<br />

Let us now make another comment concern<strong>in</strong>g the choice of the loop functions JO,2,4, eq. (3.284).<br />

Clearly, any other choice of def<strong>in</strong><strong>in</strong>g this divergent loop <strong>in</strong>tegrals would give different f<strong>in</strong>ite subtractions<br />

but leads to the same non-polynomial terms (3.300) <strong>in</strong> the potential. For example, to<br />

express the potential <strong>in</strong> terms of<br />

Ja = J2/L<br />

T ' - 100 2/L 3<br />

- r�o dl<br />

J4 = 1 dl ,<br />

(3.308)<br />

we have to replace Ja, J2 and J4 by Ja + In 2, J2 + 2f-L2 and J4 + 4f-L4, respectively, <strong>in</strong> eqs.<br />

(3.292)<br />

(3.289),<br />

and (3.297)-(3.299). This only modifies the def<strong>in</strong>itions of the renormalized coupl<strong>in</strong>gs<br />

gA and Gi'S but does not change the expressions (3.300) and (3.270) for the effective potential.<br />

Furthermore, to reproduce the results obta<strong>in</strong>ed us<strong>in</strong>g dimensional regularization we have to skip<br />

the power-Iaw divergences, i.e. to set J2 = 0, J4 = O. Also <strong>in</strong> that case we get the same expressions<br />

for the effective potential.<br />

<strong>The</strong> effective potential at NNLO correspond<strong>in</strong>g to eq. (3.255) can be renormalized analogously.<br />

As can be seen from eq. (3.255), the contribution to the effective potential <strong>in</strong> the projection<br />

formalism is the same as the one obta<strong>in</strong>ed with time-ordered perturbation theory (<strong>in</strong> the static<br />

limit for nucleons). Furthermore, the related graphs shown <strong>in</strong> fig. 3.15 <strong>in</strong>volve all possible time<br />

order<strong>in</strong>gs. As a consequence, the contribution to the effective potential can be obta<strong>in</strong>ed us<strong>in</strong>g<br />

covariant perturbation theory and the technique of Feynman diagrams. This has been done by<br />

Kaiser et al. us<strong>in</strong>g dimensional regularization [108]. Here, we will not perform explicit calculations<br />

and simply adopt their result. <strong>The</strong> TPEP at NNLO reads:<br />

where<br />

(3) _<br />

V21f,1-loop - VNNLO + P(k, q) , (3.309)<br />

TPEP<br />

-<br />

VJJtJ -l��;i { -16m(���+ q2) + (2M;(2Cl -C3) -q2 (C3 + ::�)) (2M; + q2)A(q) }<br />

128��ii (Tl ' T2) { -4�1��2 + (4M; + 2q2 -g�(4M; + 3q2))(2M; + q2)A(q)}<br />

� �<br />

+ 51;:�ii ((0\ . ij)(ih . ij) -q2(ih .52)) (2M; + q2)A(q)<br />

3J:ii (Tl ' T2) ((51 ' ij)(52' ij) -l(5l .52))<br />

X {(C4 + _1 4m _)(4M; + q2) - 8m<br />

g� (10M; + 3q2)} A(q)<br />

3g� . ( al � � ) ( � I �) (2M2 2)A()<br />

641fmii z<br />

+ a2 . P x P 1f + q q


3.8. Two-nucleon potential<br />

Here,<br />

g� (1 - g�) ( ) .<br />

641fmf� Tl ' T2 Z (Tl + (T2 . P x P 1f + q q .<br />

( � � ) ( � I �) (4M 2 2)A( )<br />

A(q) =<br />

1 q<br />

2q 2M1f<br />

- arctan -- .<br />

Furt her , P(k, if) <strong>in</strong> eq. (3.309) is a polynomial <strong>in</strong> momenta of at most second degree and has the<br />

same structure as the expressions <strong>in</strong> eq. (3.270).44 Thus, its explicit form is of no relevance here,<br />

s<strong>in</strong>ce it only contributes to the renormalization of the coupl<strong>in</strong>gs Cs , CT , Ci . Aga<strong>in</strong>, no explicit<br />

dependence on the renormalization scale appears <strong>in</strong> the expression (3.310) für the non-polynomial<br />

terms. In ref. [108] it is also po<strong>in</strong>ted out that all NNLO one-pion exchange diagrams conta<strong>in</strong><strong>in</strong>g<br />

vertex corrections do not yield any pion-nucleon form factor and only lead to renormalization of<br />

the 1fN coupl<strong>in</strong>g gA (i.e. they have the same form as the proper one-pion exchange). Clearly, the<br />

same holds true for all NNLO graphs represent<strong>in</strong>g vertex corrections to short range <strong>in</strong>teractions.<br />

For the LECs Cl,3,4 enter<strong>in</strong>g eq. (3.310) we should take the values obta<strong>in</strong>ed from fitt<strong>in</strong>g 1fN phases<br />

<strong>in</strong> the threshold region, see e.g. ref. [71] or, alternatively, from fitt<strong>in</strong>g the <strong>in</strong>variant amplitudes<br />

<strong>in</strong>side the Mandelstarn triangle, i.e. <strong>in</strong> the unphysical region [195]. <strong>The</strong> so determ<strong>in</strong>ed parameters<br />

are only slightly different, but these small differences will play a role later on. For example, the<br />

LECs CI,3,4 from fit 1 of ref. [71] are Cl = -1.23 GeV-l, C3 = -5.94 GeV-l and C4 = 3.47 GeV-l.<br />

A recent <strong>in</strong>vestigation of the subthreshold amplitudes [195] leads to slightly different values, Cl =<br />

-0.81 GeV-l, C3 = -4.70 GeV-l and C4 = 3.40 GeV-l. It is this latter set we will use <strong>in</strong> the<br />

follow<strong>in</strong>g. <strong>The</strong>se values are also consistent with the re cent determ<strong>in</strong>ation from the proton-proton<br />

<strong>in</strong>teraction based on the chiral two-pion exchange potential [198].<br />

Kaiser et al. also <strong>in</strong>cluded l/m corrections <strong>in</strong>to the expression (3.310) for the two-pion exchange<br />

potential an NNLO. This is consistent with the power count<strong>in</strong>g scheme <strong>in</strong> the one-nucleon sector.<br />

In our power count<strong>in</strong>g scheme with Q/m rv Q2 / A�, where Q corresponds to the low moment um<br />

scale, such l/m terms appear first one order higher. Nevertheless, we have decided to keep these<br />

corrections, s<strong>in</strong>ce otherwise one cannot directly use the values of the LECs Cl,3,4 as determ<strong>in</strong>ed<br />

from the 1fN sector <strong>in</strong> the presence of the l/m terms. By do<strong>in</strong>g so we only <strong>in</strong>clude some sm aller<br />

terms of higher order <strong>in</strong> the potential. It can easily be checked, that those terms are <strong>in</strong>deed small<br />

as compared to the Cl,3,ccontributions. For example, the constant C4 enters eq. (3.310) only <strong>in</strong><br />

the comb<strong>in</strong>ation C4 + 1/ ( 4m). Correspond<strong>in</strong>gly, the pert<strong>in</strong>ent C4 contribution is numerically more<br />

than 10 times larger than the l/m correction.<br />

To end this section we would like to po<strong>in</strong>t out once more that eqs. (3.269), (3.300), (3.270) and<br />

(3.310) def<strong>in</strong>e the unique expressions for the effective potential up to NNLO, i.e. the results do<br />

not depend on the regularization scheme, as discussed above.<br />

105<br />

(3.310)<br />

(3.311)<br />

3.8.3 Phenomenological <strong>in</strong>terpretation of some of the 1f N LEes and the role<br />

of the ß(1232)<br />

It is well known that the values of some of the LECs can be understood phenomenologically <strong>in</strong><br />

terms of the resonance saturation hypotheses. This is discussed <strong>in</strong> detail <strong>in</strong> the reference [199]<br />

for the purely meson sector and <strong>in</strong> ref. [200] for pion-nucleon <strong>in</strong>teractions. <strong>The</strong> idea of such<br />

a phenomenological <strong>in</strong>terpretation is very simple. Consider the most general chiral <strong>in</strong>variant<br />

Lagrangian for pions, nucleons and their excitations. <strong>The</strong> resonances can be <strong>in</strong>tegrated out from<br />

44 More precisely, after perform<strong>in</strong>g the partial wave decomposition, fCk, if) leads <strong>in</strong> each partial wave to polynomials<br />

<strong>in</strong> p and pi of at most second degree.


106 3. <strong>The</strong> derivation of nuclear forces from chiral Lagrangians<br />

the Lagrangian if one regards their excitation energies to be very large (or, equivalently, if one<br />

considers 7r N scatter<strong>in</strong>g at energies much smaller than the excitation energies). This generates a<br />

I<br />

I<br />

+<br />

,<br />

/<br />

,<br />

/<br />

, /<br />

, /<br />

, /<br />

, /<br />

..<br />

Figure 3.16: Ll-resonance saturation of the 7rN LECs C3 and C4. Double solid l<strong>in</strong>e<br />

represents Ll-isobar. For rema<strong>in</strong><strong>in</strong>g notations see figs. 3.6, 3.14.<br />

series of local pion-nucleon operators of <strong>in</strong>creas<strong>in</strong>g dimension with the coupl<strong>in</strong>g constants fixed by<br />

details of the pion- (nucleon-) resonance <strong>in</strong>teractions. Certa<strong>in</strong>ly, one expects that the resonances<br />

with the lowest excitation energy give the dom<strong>in</strong>ant contributions to the values of the LECs. In<br />

particular, the Ll(1232) with the excitation energy of only about two pion masses is expected<br />

to be quite important for the low-energy pion-nucleon dynamics. This expectation is confirmed<br />

by a phenomenological analyses [200]. It turns out that the value of C3 is dom<strong>in</strong>ated by the Ll<br />

contributions. <strong>The</strong> Ll-isobar also leads to a sizable contribution to C4, whereas the value of Cl is<br />

ma<strong>in</strong>ly saturated by the scalar-isoscalar meson contributions.45<br />

In many approaches to the N N <strong>in</strong>teractions the effects of the Ll-excitations <strong>in</strong> the <strong>in</strong>termediate<br />

states are explicitly <strong>in</strong>cluded. Because of the relative small value of the LlN-mass splitt<strong>in</strong>g (293<br />

MeV) such effects might be quite important for the low-energy N N dynamics. Already <strong>in</strong> their<br />

pioneer<strong>in</strong>g work [78], Ord6iiez et al. <strong>in</strong>corporated the lead<strong>in</strong>g effects due to the <strong>in</strong>termediate Llexcitations<br />

treat<strong>in</strong>g the LlN-mass splitt<strong>in</strong>g as a small quantity on the same foot<strong>in</strong>g as the pion<br />

mass. Although the LlN-mass splitt<strong>in</strong>g does not vanish <strong>in</strong> the chiral limit, such a phenomenological<br />

extension of chiral perturbation theory is quite useful <strong>in</strong> many situations and may be<br />

formulated <strong>in</strong> a systematic fashion (the so-called "small scale expansion") [201]. In this approach<br />

one starts from the most general chiral <strong>in</strong>variant Lagrangian for relativistic pions, nucleons and<br />

deltas. To describe the sp<strong>in</strong>- and isosp<strong>in</strong>-3/2 field correspond<strong>in</strong>g to the Ll, one typically uses the<br />

Rarita-Schw<strong>in</strong>ger formalism [202], i.e. one <strong>in</strong>troduces a vector-sp<strong>in</strong>or field W jl (x) that satisfies the<br />

equation of motion<br />

(3.312)<br />

with the subsidiary condition<br />

(3.313)<br />

Furthermore, the Rarita-Schw<strong>in</strong>ger sp<strong>in</strong>ors for the sp<strong>in</strong> 3/2 field are constructed by coupl<strong>in</strong>g sp<strong>in</strong>-<br />

1 vector to sp<strong>in</strong>-1/2 Dirac sp<strong>in</strong>or fields via Clebsch-Gordon coefficients. One then <strong>in</strong>troduces a<br />

complete set of the projection operators (p3/2)jll/ and (PiY\w with i, j = 1,2 onto the sp<strong>in</strong>-3/2<br />

and sp<strong>in</strong>-1/2 components that satisfy the algebra [201]<br />

( P 3/2) jll/ + ( Pn 1/2 ) jll/ + ( P22<br />

1/2 ) jll/ = g jll/ , (3.314)<br />

(3.315)<br />

45 In the one-boson exchange models of the nuclear <strong>in</strong>teraction one typically <strong>in</strong>tro duces the effective (J meson with<br />

a mass of ab out 600 MeV to parametrize the strong pionic correlations observed <strong>in</strong> this channel.


3.8. Two-nuc1eon potential 107<br />

where i, j, k, 1 = 1 for (p3/2)J-tv, Us<strong>in</strong>g these projection operators one can decompose the Rarita­<br />

Schw<strong>in</strong>ger field \[! J-t <strong>in</strong>to one sp<strong>in</strong> 3/2 and two sp<strong>in</strong> 1/2 components. To perform the nonrelativistic<br />

reduction one can proceed <strong>in</strong> the same way as for the pion-nucleon Lagrangian. One factors out<br />

the exponential factor exp (imv . x) from the nucleon and delta fields, where m is the nucleon mass,<br />

and <strong>in</strong>troduces the the small and large component fields via eq. (3.160). This leads to altogether<br />

six components for the field \[! J.t' Only the large component TJ-t of the sp<strong>in</strong> 3/2 projection of the<br />

Rarita-Schw<strong>in</strong>ger sp<strong>in</strong>or \[! J-t corresponds to the light field with the mass ß = mf::, - m. <strong>The</strong><br />

large mass scale m enters the free equations of motion for the rema<strong>in</strong><strong>in</strong>g five components. Thus,<br />

all these fields can be <strong>in</strong>tegrated out, which leads to local l/m corrections to the Lagrangian.<br />

Proceed<strong>in</strong>g <strong>in</strong> this way one ends up with the free Lagrangian (<strong>in</strong> the rest frame)<br />

where i, j = 1,2,3<br />

( 'l1 ,, )s:ij TV<br />

Lf::, O - - i Zuo - L.l. u gJ-tv j , (3.316)<br />

r _ TJ-tt<br />

are the isosp<strong>in</strong> <strong>in</strong>dices.46 <strong>The</strong> projection formalism <strong>in</strong>troduced <strong>in</strong> sections<br />

3.5, 3.6 can be generalized to <strong>in</strong>corporate the .6.'s. <strong>The</strong> subspace Ai of the full Fock space is<br />

now enlarged to <strong>in</strong>clude the states with any number of ß's apart from the nucleons and i pions.<br />

Different to the pure pion-nucleon <strong>in</strong>teractions, one also has to <strong>in</strong>clude the projection A 0, that<br />

conta<strong>in</strong>s any positive number of .6.'s but no pions. This requires an appropriate generalization<br />

of the projection formalism. We first note that the structure of the <strong>in</strong>teractions with the .6. 's <strong>in</strong><br />

\<br />

I<br />

\<br />

\<br />

- - -<br />

T<br />

5<br />

\<br />

I<br />

2<br />

\<br />

I<br />

\<br />

I<br />

3 4<br />

\<br />

\ \<br />

- - -<br />

- - -<br />

T T<br />

6 7<br />

Figure 3.17: First corrections to the NN potential with .6.-excitations: vertex corrections<br />

to the one-pion exchange. A class of diagrams is shown for which no purely<br />

nucleonic <strong>in</strong>termediate states are possible. For notations see figs. 3.6, 3.16.<br />

the effective Lagrangian is the same as for the correspond<strong>in</strong>g nucleonic vertices. <strong>The</strong> sp<strong>in</strong>-isosp<strong>in</strong><br />

structure is, of course, different but this does not affect the power count<strong>in</strong>g arguments, for which<br />

only the number of derivatives is of relevance. <strong>The</strong>refore, all results and conclusions of appendices<br />

46 <strong>The</strong> isosp<strong>in</strong> 3/2 field T is described by three isosp<strong>in</strong> doublets T l , T 2 , T 3 that satisfy the condition r i T i (x) = O.


108 3. <strong>The</strong> derivation of nuclear forces from chiral Lagrangians<br />

A and B are valid also <strong>in</strong> this case. Furthermore, one has to <strong>in</strong>clude states conta<strong>in</strong>ed <strong>in</strong> A ° with<br />

.6.'s and without pions. This is discussed <strong>in</strong> appendix C. Let us now take a closer look at these<br />

modifications.<br />

\ /<br />

\<br />

\<br />

\<br />

,<br />

,<br />

,<br />

\ I I /<br />

, /<br />

\<br />

I<br />

\<br />

\<br />

/<br />

/<br />

/<br />

/<br />

/<br />

/<br />

,<br />

,<br />

\ ,<br />

I<br />

2 3 4<br />

\ \<br />

, " I I<br />

, "<br />

, " "<br />

\ \<br />

I I<br />

5 6 7 !\<br />

Figure 3.18: First corrections to the NN potential with .6.-excitations: irreducible<br />

(1-4) and reducible (5-8) vertex and self-energy corrections to the one-pion exchange.<br />

For notations see figs. 3.6, 3.16.<br />

For the projected operator Aa A1] we make the same ansatz as <strong>in</strong> the case without .6., namely that<br />

it consists of an equal number of vertices and energy denom<strong>in</strong>ators. S<strong>in</strong>ce the <strong>in</strong>clusion of the .6.<br />

does not affect the power count<strong>in</strong>g scheme, equations (3.210) and (3.212) are not modified. Here<br />

and <strong>in</strong> what follows, we will denote by N the baryon number. Consequently, the m<strong>in</strong>imal value<br />

of VA is aga<strong>in</strong> given by eq. (3.213). Furthermore, m<strong>in</strong>(vA) = 2 for the operator AOA1], as follows<br />

from eq. (3.210). <strong>The</strong>refore, we will aga<strong>in</strong> def<strong>in</strong>e the order l of the operator Aa A1] via eq. (3.214).<br />

As discussed <strong>in</strong> appendix C, the <strong>in</strong>clusion of the ß's does not change the m<strong>in</strong>imal value of the<br />

chiral power v for the projected decoupl<strong>in</strong>g equation (3.206). <strong>The</strong>refore, we can apply eqs.<br />

(3.216)<br />

(3.215),<br />

without any changes. Thus, the system of equations (3.205) can be solved perturbatively<br />

precisely <strong>in</strong> the same way as <strong>in</strong> the case without ß. <strong>The</strong> only modification is that at each order<br />

r one has to start by solv<strong>in</strong>g the equation (3.217) projected with AO • It is shown <strong>in</strong> appendix C<br />

that all operators Aa A/1] of the right-hand side of this equation are of higher orders l 2: r + 2.<br />

<strong>The</strong> result<strong>in</strong>g operator A ° Ar 1] is then used to solve the rema<strong>in</strong><strong>in</strong>g equations at order r projected<br />

onto the states with pions.<br />

S<strong>in</strong>ce equation (3.217) with 4k + i = 0 vanishes at orders r = 0 and r = 1, the start<strong>in</strong>g equations<br />

are aga<strong>in</strong> (3.221), (3.222). <strong>The</strong>refore, the ansatz about the structure of the operator A can be<br />

justified <strong>in</strong> the same way as <strong>in</strong> sec. 3.6. F<strong>in</strong>ally, all expressions (3.225)-(3.229) can be applied<br />

without any changes to obta<strong>in</strong> the effective potential.<br />

We are now <strong>in</strong> the position to calculate the effective potential <strong>in</strong>clud<strong>in</strong>g .6.-excitations. We will<br />

" "


3.8. Two-nuc1eon potential<br />

2 3 4 5<br />

6 7 8 9 10<br />

Figure 3.19: First corrections to the NN potential with ß-excitations: irreducible<br />

vertex corrections to the four-nucleon contact <strong>in</strong>teractions. For notations see<br />

figs. 3.6, 3.16.<br />

restrict ourselves to the lead<strong>in</strong>g and next-to-lead<strong>in</strong>g orders. <strong>The</strong>n we need the follow<strong>in</strong>g operators:<br />

).1 A01], ).2 A01], ).4A01], ). 0 A21] and ).1 A21]. Note that the operators ). 0 AO,l1] and ).1 A11] vanish, as<br />

discussed above. Obviously, we obta<strong>in</strong> the same expressions (3.241), (3.242) and (3.243) for the<br />

zeroth order operators, where the energy denom<strong>in</strong>ators are modified appropriately:<br />

(3.317)<br />

(3.318)<br />

(3.319)<br />

Here, E is a sum of the pion energies and N ß mass splitt<strong>in</strong>gs. For <strong>in</strong>stance, E = W1 + W2 + 2ß<br />

for a state with two pions and two deltas. For the rema<strong>in</strong><strong>in</strong>g operators ). aAlT] at order l = 2 we<br />

have<br />

109<br />

(3.320)<br />

(3.321)<br />

<strong>The</strong> effective potential at LO and NLO can now be obta<strong>in</strong>ed by straightforward calculations. We


110 3. <strong>The</strong> derivation of nuclear forces from chiral Lagrangians<br />

f<strong>in</strong>d the follow<strong>in</strong>g expressions:<br />

V (6 -3N )<br />

elf<br />

V(8-3N)<br />

elf<br />

(3.323)<br />

We will now discuss these expressions <strong>in</strong> more detail. Obviously, the lead<strong>in</strong>g order contribution<br />

Figure 3.20: First corrections to the NN potential with ß-excitations: reducible<br />

self-energy corrections to the four-nucleon contact <strong>in</strong>teractions. For notations see<br />

figs. 3.6, 3.16.<br />

(3.322) to the effective N N potential is not changed by the explicit <strong>in</strong>clusion of the ß.47 At<br />

NLO one has many additional contributions to the two-pion exchange diagrams and to the vertex<br />

corrections and self-energy graphs. <strong>The</strong> first four l<strong>in</strong>es of eq. (3.323) give formally the complete<br />

NLO potential <strong>in</strong> the case without ß. In addition to the one-pion exchange diagrams conta<strong>in</strong><strong>in</strong>g<br />

self-energy <strong>in</strong>sertions and vertex corrections discussed <strong>in</strong> sec. 3.8.1 and shown <strong>in</strong> figs. 3.10, 3.11<br />

one has to take <strong>in</strong>to account the graphs <strong>in</strong> figs. 3.17, 3.18. In the diagrams shown <strong>in</strong> fig. 3.17,<br />

which are related to the first term <strong>in</strong> the second l<strong>in</strong>e and to the last term <strong>in</strong> eq. (3.323), no purely<br />

nucleonic <strong>in</strong>termediate states appear if one sums up over all possible time order<strong>in</strong>gs. <strong>The</strong>refore, the<br />

projection formalism yields the same result as time-ordered perturbation theory, which agrees after<br />

summation over all time order<strong>in</strong>gs with the one obta<strong>in</strong>ed us<strong>in</strong>g the Feynmann diagram technique.<br />

Aga<strong>in</strong> one should keep <strong>in</strong> m<strong>in</strong>d that this statement holds true because of the static approximation<br />

for the nucleons. Note that we have depicted <strong>in</strong> fig. 3.17 the correspond<strong>in</strong>g Feynmann diagrams<br />

without show<strong>in</strong>g all time order<strong>in</strong>gs. <strong>The</strong> one-pion exchange diagrams of fig. 3.18 have a different<br />

topology. <strong>The</strong> irreducible graphs 1-4 correspond aga<strong>in</strong> to the first term <strong>in</strong> the second l<strong>in</strong>e of<br />

47 Note that there are new contributions to the one-nucleon operators due to the diagram with an <strong>in</strong>termediate<br />

delta-excitation, which will not be considered <strong>in</strong> what folIows.


3.8. Two�nucleon potential<br />

2 3<br />

Figure 3.21: First corrections to the NN potential with Ll�excitations: One�loop<br />

diagrams without <strong>in</strong>termediate pions. For notations see figs. 3.6, 3.16.<br />

eq. (3.323) and represent the correction obta<strong>in</strong>ed with time�ordered perturbation theory. In<br />

the projection formalism one has to take <strong>in</strong>to account also "reducible" diagrams 5�8 <strong>in</strong> fig. 3.18<br />

result<strong>in</strong>g from the last two terms <strong>in</strong> the second l<strong>in</strong>e of eq. (3.323). Note that all diagrams conta<strong>in</strong><strong>in</strong>g<br />

vertex corrections with one 1r1r N Ll vertex give no contributions for the same reason as <strong>in</strong> the case<br />

without Ll.<br />

<strong>The</strong>re are many new vertex and self�energy corrections with the <strong>in</strong>termediate Ll 's that conta<strong>in</strong><br />

contact <strong>in</strong>teractions. In fig. 3.19 we show the dass of irreducible diagrams that correspond to the<br />

second term <strong>in</strong> the first l<strong>in</strong>e and to the second and third terms <strong>in</strong> the last l<strong>in</strong>e of eq. (3.323). This<br />

is the complete contribution <strong>in</strong> time�ordered perturbation theory. In the projection formalism one<br />

has an additional correction result<strong>in</strong>g from two "reducible" graphs of fig. 3.20, which are related<br />

to the terms <strong>in</strong> the third l<strong>in</strong>e of eq. (3.323).<br />

, /<br />

, /<br />

,<br />

,<br />

'( '(<br />

/<br />

/<br />

,<br />

/<br />

,<br />

/<br />

/<br />

/<br />

/<br />

,<br />

/<br />

2 3 4 5<br />

Figure 3.22: Lead<strong>in</strong>g two�pion exchange contributions with s<strong>in</strong>gle and double Ll�<br />

excitations to the effective potential. For notations see fig. 3.6, 3.16.<br />

A completely new type of the one�loop diagrams with only contact <strong>in</strong>teractions is related to the<br />

first operator <strong>in</strong> the last l<strong>in</strong>e of eq. (3.323). <strong>The</strong> three graphs with s<strong>in</strong>gle and double Ll�excitations<br />

are shown <strong>in</strong> fig. 3.21. Note that these diagrams yield a purely short�range contribution that<br />

renormalizes the N N contact <strong>in</strong>teractions without derivatives. This is because no momentum<br />

dependence is <strong>in</strong>troduced by the correspond<strong>in</strong>g vertices and energy denom<strong>in</strong>ators. <strong>The</strong> only<br />

,<br />

111


112 3. <strong>The</strong> derivation of nuclear forces from chiral Lagrangians<br />

moment um dependence is due to the loop <strong>in</strong>tegration ensur<strong>in</strong>g that the result is given solely by a<br />

power-Iaw divergent <strong>in</strong>tegral. Note that no analogous diagrams with purely nucleonic <strong>in</strong>termediate<br />

states contribute to the effective potential <strong>in</strong> our approach.<br />

We now discuss the most <strong>in</strong>terest<strong>in</strong>g type of correction, the two-pion exchange diagrams with<br />

.6.-excitations. Different to the purely nucleonic case, one has no "reducible" graphs and, consequently,<br />

obta<strong>in</strong>s the same results with time-ordered perturbation theory and the projection<br />

formalism. <strong>The</strong> TPE graphs with the .6.'s at NLO correspond<strong>in</strong>g to eq. (3.323) are shown <strong>in</strong><br />

fig. 3.22. <strong>The</strong> tri angle diagram 1 <strong>in</strong> this figure is related to the second, third and fourth terms <strong>in</strong><br />

the first l<strong>in</strong>e of eq. (3.323). <strong>The</strong> first term <strong>in</strong> the second l<strong>in</strong>e and the last term <strong>in</strong> eq. (3.323) refer<br />

to graphs 2-5 <strong>in</strong> fig. 3.22.<br />

We will not calculate the complete NLO potential s<strong>in</strong>ce the <strong>in</strong>clusion of the .6. is performed,<br />

basically, to <strong>in</strong>terpret the physics associated with the low-energy pion-nucleon constants. Such a<br />

calculation has been performed by the Munich group [109]. <strong>The</strong>y have found that all one-Ioop selfenergy<br />

and vertex corrections with .6.-isobar excitations lead only to mass and coupl<strong>in</strong>g constant<br />

renormalization and have the same structure as the OPE and N N contact <strong>in</strong>teractions. <strong>The</strong> only<br />

new <strong>in</strong>teraction <strong>in</strong> the Hamiltonian, that <strong>in</strong>cludes the .6.-field and is relevant for calculation of<br />

the NLO potential is<br />

where the 2x4 sp<strong>in</strong> and isosp<strong>in</strong> transition matrices Si and Ti are normalized via<br />

�<br />

(28" - if."kO'k)<br />

3<br />

1 .<br />

-(28·· - Zf."kTk)<br />

3<br />

1) 1) ,<br />

1) 1) •<br />

(3.324)<br />

(3.325)<br />

(3.326)<br />

An explicit form for the matrices S and T can be found, for example, <strong>in</strong> ref. [189]. In eq. (3.324) we<br />

adopt the same value for the coupl<strong>in</strong>g constant correspond<strong>in</strong>g to the 7r N .6. vertex with one derivative<br />

as <strong>in</strong> [109]. <strong>The</strong> TPE diagrams with .6.-excitation were also evaluated (but not renormalized)<br />

by Ord6iiez et al. [78] us<strong>in</strong>g time-ordered perturbation theory. For completeness, we collect here<br />

the pert<strong>in</strong>ent formulae for the renormalized TPEP with .6.'s worked out by the Munich group<br />

[109]. <strong>The</strong>re are three dist<strong>in</strong>ct contributions .<br />

.6.-excitation <strong>in</strong> the tri angle graphs:<br />

with<br />

s<br />

L(q)<br />

D(q)<br />

.6.<br />

E<br />

V4M; + q2 ,<br />

� In s + q<br />

q 2M1': '<br />

1 100 dJ.l<br />

arctan<br />

mt::. - m = 293 MeV ,<br />

2M; + q2 _ 2.6.2 .<br />

..6. 2M" J.l2 + q2<br />

V J.l2 - 4M2<br />

2.6.<br />

1':<br />

(3.327)<br />

(3.328)<br />

(3.329)<br />

(3.330)<br />

(3.331)<br />

(3.332)


3.9. Three-nucleon potential<br />

S<strong>in</strong>gle ß-excitation <strong>in</strong> the box graphs:<br />

VTPEP A,box-1 =<br />

3g�<br />

(2M2 + q2)2 A(q)<br />

327f f: 7f ß<br />

19::2 f: (Ti · T2) {(12ß2 - 20M; - Ul)L(q) + 6E2 D(q)} (3.333)<br />

12��� f : ((51 . if)(52 . if) - q2(51 . (2)) { -2L(q) + (s2 -4ß2)D(q)}<br />

128��: (Tl · T2) ((51 . if)(52 · if) -q2(51 · 52)) s2 A(q) ,<br />

ß<br />

with A(q) given <strong>in</strong> eq. (3.311).<br />

Double ß-excitation <strong>in</strong> the box graphs:<br />

VTPEP A,box-2 = -6 :::f: { -4ß2 L(q) + E[H(q) + (E + 8ß2)D(q)]}<br />

with<br />

38 ::2 f: (Tl · T2) { (12E - s2)L(q) + 3E[H(q) + (8ß2 -E)D(q)]}<br />

51�� f: ((51 . if)(52 . if) - q2(51 . (2)) {6L(q) + (12ß 2 - s2)D(q)} (3.334)<br />

102��2 f: (Tl · T2) ((51 . if)(52 · if) - q2(51 · 52)) {2L(q) + (4ß2 + s2)D(q)}<br />

113<br />

(3.335)<br />

Note that we have not shown the polynomial part of the potential s<strong>in</strong>ce it has the structure given<br />

by eq. (3.270). Further note that some of the contributions, <strong>in</strong> particular, those ones correspond<strong>in</strong>g<br />

to the first and the last l<strong>in</strong>es <strong>in</strong> eq. (3.333) have the same structure as the correspond<strong>in</strong>g NNLO<br />

terms <strong>in</strong> eq. (3.310) with -C3 = 2C4 = g�/(2ß). This is discussed <strong>in</strong> detail <strong>in</strong> ref. [109]. However,<br />

the rema<strong>in</strong><strong>in</strong>g contributions show a non-trivial dependence of the N N potential on the N ß mass<br />

splitt<strong>in</strong>g. In the next chapter we will furt her discuss effects of the explicit <strong>in</strong>clusion of the ß-isobar<br />

excitations for the low-energy N N observables. It would also be <strong>in</strong>terest<strong>in</strong>g to perform NNLO<br />

analysis of the TPEP with explicit ß's. In that case one should refit the LEC's Cl , C3 and C4 from<br />

pion-nucleon scatter<strong>in</strong>g us<strong>in</strong>g the small scale expansion. This work is under way [190].<br />

3.9 Three-nucleon potential<br />

Let us consider the three-nucleon force. Obviously, the lead<strong>in</strong>g part of the effective potential,<br />

Ve�-3N <strong>in</strong> eq. (3.253), does not <strong>in</strong>volve three-nucleon operators. <strong>The</strong> first contributions to the 3N<br />

force start at order 8-3N = -1. Let us now take a closer look at eq. (3.254). <strong>The</strong> first operator <strong>in</strong><br />

this equation corresponds to contact <strong>in</strong>teractions with four nucleon legs and without derivatives.<br />

It does not lead to a three-body force. <strong>The</strong> next three terms <strong>in</strong> the first l<strong>in</strong>e of eq. (3.254) yield<br />

the two-pion exchange three-nucleon <strong>in</strong>teraction represented by the graph 9 <strong>in</strong> fig. 3.23. Here, one<br />

has to sum over all possible time order<strong>in</strong>gs. It is <strong>in</strong>terest<strong>in</strong>g that after perform<strong>in</strong>g such summation<br />

this three-nucleon force vanishes completely, as has been po<strong>in</strong>ted out by We<strong>in</strong>berg [73]. This can<br />

be shown <strong>in</strong> an elegant way [114] without perform<strong>in</strong>g the explicit calculation. Indeed, one obta<strong>in</strong>s


114<br />

/<br />

/<br />

/<br />

/<br />

/<br />

/<br />

/<br />

5<br />

/<br />

/<br />

\<br />

\<br />

\<br />

\<br />

I<br />

I<br />

I<br />

I<br />

3. <strong>The</strong> derivation of nuclear forces from chiral Lagrangians<br />

2 3<br />

6 7<br />

9 10<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

/<br />

/<br />

/<br />

/<br />

\<br />

\<br />

\<br />

\<br />

Figure 3.23: Lead<strong>in</strong>g contributions to the three-nucleon potential: irreducible twopion<br />

exchange diagrams and irreducible one-pion exchange graph with the NN contact<br />

<strong>in</strong>teraction. Graphs which result from the <strong>in</strong>terchange of the nucleon l<strong>in</strong>es and<br />

from the application of time reversal operation are not shown. In the case of diagram<br />

9, one should sum over all possible time order<strong>in</strong>gs. For rema<strong>in</strong><strong>in</strong>g notations<br />

see fig. 3.6.<br />

<strong>in</strong> this case the same result with<strong>in</strong> the projection formalism and time-ordered perturbation theory<br />

and can use the Feynmann diagram technique, s<strong>in</strong>ce no reducible topologies appear. Further, the<br />

7r7r N N vertex conta<strong>in</strong>s a time derivative of the pion field, that has been counted as one power<br />

of small momentum. But s<strong>in</strong>ce the energy is conserved at each vertex when one calculates a<br />

Feynmann diagram, this time derivative yields a difference of nucleon k<strong>in</strong>etic energies, which is of<br />

higher order.<br />

<strong>The</strong> first term <strong>in</strong> the third l<strong>in</strong>e of eq. (3.254) subsurnes the irreducible diagrams 1-8 <strong>in</strong> fig. 3.23,<br />

represent<strong>in</strong>g time-ordered perturbation theory result for the two-pion exchange 3N force. Analogously,<br />

the se co nd term <strong>in</strong> the first l<strong>in</strong>e of eq. (3.254) refers to the irreducible one-pion exchange<br />

3N force <strong>in</strong>volv<strong>in</strong>g contact <strong>in</strong>teractions with four nucleon legs and without derivatives. <strong>The</strong> correspond<strong>in</strong>g<br />

graph is shown <strong>in</strong> fig. 3.23 (10). <strong>The</strong> diagrams depicted <strong>in</strong> fig. 3.23 def<strong>in</strong>e the complete<br />

4<br />

/<br />

/<br />

/<br />

/<br />

/<br />

/<br />

/<br />

/


3.9. Three-nucleon potential 115<br />

lead<strong>in</strong>g-order 3N force with<strong>in</strong> time-ordered perturbation theory. It is weIl known that the static<br />

2 3 4<br />

5 6<br />

Figure 3.24: Lead<strong>in</strong>g contributions to the three-nucleon potential: reducible twopion<br />

exchange diagrams and reducible one-pion exchange graphs with the NN contact<br />

<strong>in</strong>teraction. For notations see figs. 3.6, 3.23.<br />

TPE 3N force cancels aga<strong>in</strong>st the recoil corrections of the nucleons to the static OPE 2N potential,<br />

when the latter is iterated <strong>in</strong> the Lippmann-Schw<strong>in</strong>ger equation [191], [46]. <strong>The</strong> same sort<br />

of cancelation happens for the lead<strong>in</strong>g TPE and OPE 3N forces related to diagrams 1-8 and 10<br />

<strong>in</strong> fig. 3.23, as has been found by van KoIck [77]. S<strong>in</strong>ce the energy dependence of the NLO 2N<br />

potential is entirely given by recoil corrections of the nucleons to the static OPE, one can describe<br />

systems of three or more nucleons us<strong>in</strong>g the energy-<strong>in</strong>dependent part of the 2N potential and<br />

without explicit three- and many-nucleon forces (at next-to-Iead<strong>in</strong>g order <strong>in</strong> the chiral expansion<br />

for the potential). However, such type of cancelations does not help to remove the problems<br />

<strong>in</strong> the two-nucleon sector due to the explicit energy-dependence as noted before (i.e. that the<br />

wavefunctions are only orthonormal to the order one is work<strong>in</strong>g).<br />

Let us now take a closer look at the 3N force obta<strong>in</strong>ed with the projection formalism. As already<br />

stated above, for the TPE graph 9 <strong>in</strong> fig. 3.23 one obta<strong>in</strong>s the same result us<strong>in</strong>g both schemes.<br />

Apart from the irreducible TPE diagrams 1-8 and OPE diagram 10 <strong>in</strong> fig. 3.23, one also has to<br />

take <strong>in</strong>to account "reducible" graphs shown <strong>in</strong> fig. 3.24. <strong>The</strong> diagrams 1-4 <strong>in</strong> this figure refer to the<br />

last two terms <strong>in</strong> the third l<strong>in</strong>e of eq. (3.254), whereas the graphs 5 and 6 <strong>in</strong>volv<strong>in</strong>g the N N contact<br />

<strong>in</strong>teractions arise from the terms <strong>in</strong> the fourth l<strong>in</strong>e of this equation. Obviously, the cancelation of<br />

the lead<strong>in</strong>g 3N force with the iterated energy dependent part of the 2N potential, as observed <strong>in</strong><br />

the context of old-fashioned perturbation theory, is now not possible because the potential <strong>in</strong> the<br />

projection formalism is energy <strong>in</strong>dependent. Nevertheless, the lead<strong>in</strong>g-order 3N force completely<br />

vanishes <strong>in</strong> the method of unitary transformation, although the mechanism of the cancelation<br />

is different from the above case. In the projection formalism, the 3N force vanishes because of


116 3. <strong>The</strong> derivation o{ nuc1ear {orces {rom chiral Lagrangians<br />

2 3<br />

Figure 3.25: Three-nucleon force: TPE, OPE and contact <strong>in</strong>teraction. In the case<br />

of diagrams 1 and 2, all possible time order<strong>in</strong>gs should be considered. For notations<br />

see figs. 3.6, 3.23 and fig. 3.14.<br />

an exact cancelation between the contributions from the "reducible" and irreducible OPE and<br />

TPE diagrams. This cancelation was recently po<strong>in</strong>ted out <strong>in</strong> [185] for the case of an expansion<br />

<strong>in</strong> the pion-nucleon coupl<strong>in</strong>g constant and adopt<strong>in</strong>g the static approximation for nucleons. To<br />

understand why the lead<strong>in</strong>g 3N force vanishes, let us take a closer look at the terms <strong>in</strong> the third<br />

l<strong>in</strong>e of eq. (3.254). <strong>The</strong> contributions from the irreducible TPE diagrams 1-8 <strong>in</strong> fig. 3.23 can be<br />

expressed schematically as:<br />

(3.336)<br />

where we pulled out the common factor M represent<strong>in</strong>g the sp<strong>in</strong>, isosp<strong>in</strong> and momentum structure,<br />

which is obviously the same for all graphs 1-8 <strong>in</strong> fig. 3.23. <strong>The</strong> contribution from the "reducible"<br />

diagrams 1-4 <strong>in</strong> fig. 3.24 can be expressed as<br />

[ 2 2 ] Wl + W2<br />

+ -2- w1 w2 WIW2<br />

--2 M=2 w1 22M. w2<br />

(3.337)<br />

<strong>The</strong> cancelation is now evident. <strong>The</strong> same sort of cancelation can be observed for the irreducible<br />

diagram 10 <strong>in</strong> fig. 3.23 and the "reducible" graphs 5 and 6 <strong>in</strong> fig. 3.24 <strong>in</strong>volv<strong>in</strong>g contact <strong>in</strong>teractions.<br />

We conclude that there is no three-nucleon force at the order v = -l.<br />

Let us now consider the 3N force at order v = 0 related to the effective potential (3.255). <strong>The</strong><br />

terms <strong>in</strong> the second l<strong>in</strong>e of eq. (3.255) refer to the two-pion exchange diagram 1 <strong>in</strong> fig. 3.25. <strong>The</strong><br />

first term <strong>in</strong> this equation corresponds to the contact force shown <strong>in</strong> fig. 3.25 (3). F<strong>in</strong>ally, the<br />

one pion exchange graph 2 <strong>in</strong>volv<strong>in</strong>g contact <strong>in</strong>teractions with four nucleon legs arises from the<br />

second and third terms <strong>in</strong> eq. (3.255). In all cases the method of unitary transformation does not<br />

<strong>in</strong>troduce any new aspects, s<strong>in</strong>ce it yields the same result as time-ordered perturbation theory.<br />

With<strong>in</strong> the last approach, this 3N force has been calculated and discussed by van Kolck [77].<br />

In that reference a complete expression for the lead<strong>in</strong>g chiral 3N force is given. Unfortunately,<br />

the <strong>in</strong>clusion of the lead<strong>in</strong>g 3N <strong>in</strong>teraction <strong>in</strong>tro duces several new parameters. While the 1f N N<br />

coupl<strong>in</strong>gs D1 and D2 <strong>in</strong> eq. (3.236) can, <strong>in</strong> pr<strong>in</strong>ciple, be determ<strong>in</strong>ed from the processes like 1fdeuteron<br />

scatter<strong>in</strong>g or 1f production and absorption on N N system, the rema<strong>in</strong><strong>in</strong>g three contact<br />

<strong>in</strong>teractions El,2,3 can only be fixed from data <strong>in</strong>volv<strong>in</strong>g systems with more than two nucleons.<br />

At present, this 3N force has not yet been applied <strong>in</strong> systematic calculations of the three- and


3.9. Three-nuc1eon potential<br />

2 3<br />

Figure 3.26: Lead<strong>in</strong>g three-nuc1eon force with b,-isobar excitations. All possible<br />

time order<strong>in</strong>gs should be considered. For notations see figs. 3.6, 3.16 and fig. 3.23.<br />

more-nuc1eon system. First steps <strong>in</strong> this direction have been done <strong>in</strong> refs. [118], [196]. In the<br />

first work, Friar et al. consider the constra<strong>in</strong>ts on a possible form of the TPE force aris<strong>in</strong>g from<br />

requirement of its (approximate) chiral symmetry. <strong>The</strong>y po<strong>in</strong>ted out that any TPE 3N force can<br />

be expressed as<br />

where<br />

117<br />

(3.338)<br />

(3.339)<br />

Here ij and ij' are the moment um transfers between the nuc1eons 1, 3 and 3, 2. Note that these<br />

expressions are valid modulo l/m corrections. <strong>The</strong> authors of ref. [118] extracted the coefficients<br />

a, b, C and d from various exist<strong>in</strong>g 3N forces, which are based on different models, and compared<br />

them with the predictions obta<strong>in</strong>ed with<strong>in</strong> the framework of chiral perturbation theory without<br />

explicit b,'s. In the latter case, the lead<strong>in</strong>g order values of these coefficients can be calculated<br />

from the 3N force shown <strong>in</strong> fig. 3.25 (1). <strong>The</strong> values of the relevant 7r7rNN coupl<strong>in</strong>gs Cl , C3 and<br />

C4 are known from the pion-nuc1eon sector, as discussed <strong>in</strong> sec. 3.8.2 and thus the coefficients a,<br />

b, c and d can be predicted without free parameters. It turns out that although the signs of these<br />

coefficients are always the same, their values differ substantially (by factors of two) for different<br />

three-nuc1eon forces. Furthermore, to lead<strong>in</strong>g order <strong>in</strong> low-momentum expansion CHPT leads to<br />

the largest absolute values for the coefficients a, b and d48 and to c = O. <strong>The</strong> c-term does not<br />

vanish for the Tucson-Melbourne (TM) force [43] and thus violates chiral constra<strong>in</strong>ts. <strong>The</strong>refore<br />

<strong>in</strong> ref. [118] it is recommended to drop this c-term <strong>in</strong> the TM force.<br />

In the second work, Hüber et al. analyse the effects of the 3N force correspond<strong>in</strong>g to the second<br />

graph <strong>in</strong> fig. (3.25) <strong>in</strong> elastic neutron-deuteron scatter<strong>in</strong>g at low-energies. <strong>The</strong>y found that the<br />

<strong>in</strong>clusion of such a short-range-long-range force might considerably improve the agreement for<br />

the analyz<strong>in</strong>g power Ay• This study is, however, merely qualitative, s<strong>in</strong>ce only a part of the<br />

lead<strong>in</strong>g-order 3N force result<strong>in</strong>g from CHPT has been <strong>in</strong>cluded and no attempt was made to<br />

obta<strong>in</strong> a reasonable fit to data.<br />

An important observation has been done by van Kolck <strong>in</strong> ref. [77]. He po<strong>in</strong>ted out that several<br />

vertices enter<strong>in</strong>g the expressions for the lead<strong>in</strong>g 3N force are saturated by virtual b,-isobar ex-<br />

4 8 Note, however, that the authors of ref. [118) used the values for Cl,3,4 as given <strong>in</strong> [71) that are somewhat larger<br />

than the ones from the later publication [195], which we adopt <strong>in</strong> this work.


118 3. <strong>The</strong> derivation of nuclear forces from chiral Lagrangians<br />

citations. <strong>The</strong> situation here is similar to the NNLO two-nucleon potential. In that case one<br />

has three <strong>in</strong>dependent 1f1fNN vertices, two of which, the C3- and q-coupl<strong>in</strong>gs, are governed by<br />

<strong>in</strong>termediate Ll-excitations. An explicit <strong>in</strong>clusion of the Ll's leads to NLO corrections to the 2N<br />

potential, if the delta-nucleon mass splitt<strong>in</strong>g is treated as the small quantity, on the same foot<strong>in</strong>g<br />

with M1f' We will now consider the situation with the 3N force if the Ll's are <strong>in</strong>cluded. <strong>The</strong>n,<br />

many additional contributions to the lead<strong>in</strong>g 3N force at v = -1 arise from eq. (3.323), that<br />

correspond to diagrams with <strong>in</strong>termediate Ll-excitation. <strong>The</strong> first term <strong>in</strong> the second l<strong>in</strong>e and<br />

the last term <strong>in</strong> this equation refer not only to the TPE graphs of fig. 3.23 but also to the TPE<br />

3N force with one <strong>in</strong>termediate Ll shown <strong>in</strong> fig. 3.26 (1). <strong>The</strong> second term <strong>in</strong> the first li ne of<br />

eq. (3.323) together with the second and third terms <strong>in</strong> the last l<strong>in</strong>e lead to OPE diagram with<br />

virtual Ll-excitation shown <strong>in</strong> fig. 3.26 (2). F<strong>in</strong>ally, the first term <strong>in</strong> the last l<strong>in</strong>e of this expression<br />

refers to diagram 3 <strong>in</strong> fig. 3.26. Note that <strong>in</strong> all cases one gets the same result from the projection<br />

formalism and time-ordered perturbation theory, s<strong>in</strong>ce reducible topologies are impossible<br />

for diagrams shown <strong>in</strong> fig. 3.26. Furthermore, one verifies that if the mass of the Ll is regarded<br />

to be large, the graphs of fig. 3.26 go <strong>in</strong>to the diagrams shown <strong>in</strong> fig. 3.25. <strong>The</strong> saturation of the<br />

correspond<strong>in</strong>g vertices due to <strong>in</strong>termediate Ll-excitations is now transparent.<br />

One should stress that not all these 3N forces are new. For example, the TPE 3N <strong>in</strong>teraction<br />

with one <strong>in</strong>termediate delta is <strong>in</strong>cluded <strong>in</strong> many phenomenological models, like for <strong>in</strong>stance, the<br />

Fujita-Miyazawa [42] or the Urbana [197] force. <strong>The</strong> rema<strong>in</strong><strong>in</strong>g 3N forces 2 and 3 <strong>in</strong> fig. 3.26 that<br />

<strong>in</strong>clude contact <strong>in</strong>teractions are, certa<strong>in</strong>ly, less common, s<strong>in</strong>ce most of the "realistic" 3N forces<br />

are based on meson-exchange models. However, implicitly, such short range contact <strong>in</strong>teractions<br />

are also present <strong>in</strong> form of the heavy meson-exchange.<br />

F<strong>in</strong>ally, we would like to discuss another k<strong>in</strong>d of forces, which may aIso appear <strong>in</strong> the threebody<br />

calculations: two-body <strong>in</strong>teractions, that depend on the total moment um P of a twonucleon<br />

subsystem. Such three-body-like two-nucleon forces do not affect the pure two-nucleon<br />

calculations <strong>in</strong> the cms, where P = 0, but become important for processes <strong>in</strong>clud<strong>in</strong>g additional<br />

particles (for example, pion production on the deuteron) and for three and more nucleons, where<br />

the total moment um P of the two-nucleon subsystem is not conserved any more. <strong>The</strong> Lagrangian<br />

eq. (F.13) given <strong>in</strong> refs. [77], [78] for the contact <strong>in</strong>teractions with two derivatives will necessarily<br />

lead to the forces of this k<strong>in</strong>d. Moreover, fitt<strong>in</strong>g the N N phase shifts will only fix seven parameters<br />

of the fourteen enter<strong>in</strong>g eq. (F.13), see e.g. [74], [76], [78], [127]. Thus, the P-dependent forces<br />

appear to have unknown coefficients. Such a situation is, clearly, not satisfactory, s<strong>in</strong>ce Lorentz<br />

<strong>in</strong>variance would be violated, see appendix F. In this appendix we have analyzed all possible<br />

contact <strong>in</strong>teractions with four nucleon legs up to order Lli = 3, requir<strong>in</strong>g their reparametrization<br />

<strong>in</strong>variance. It turns out that only seven <strong>in</strong>dependent coupl<strong>in</strong>g constants enter the Lagrangian<br />

L�;.,= 2), which all can be fixed from nucleon-nucleon scatter<strong>in</strong>g. Furthermore, the N N potential<br />

at NLO does not depend on the total momentum P (as it should because of Galilean <strong>in</strong>variance).<br />

We have also found that no 1/m-corrections to the contact terms with two derivatives appear <strong>in</strong><br />

the effective Lagrangian and that no terms enter L�;.,=3). Consequently, also our NNLO potential<br />

does not depend on P. <strong>The</strong> P-dependent N N forces may only appear at order N3LO and will<br />

not <strong>in</strong>troduce new unknown coefficients beyond the ones needed <strong>in</strong> the 2N cms.


Chapter 4<br />

<strong>The</strong> two-nucleon system: numerical<br />

results<br />

4.1 Bound and scatter<strong>in</strong>g state equations<br />

In the last chapter we have given the explicit expressions for the N N force up to NNLO. To<br />

make this presentation more transparent, we will now summarize .our f<strong>in</strong>d<strong>in</strong>gs and enumerate all<br />

contributions to the effective potential V = VLO + VNLO + VNNLO:<br />

V(O) + VOPEP ,<br />

( 4.1)<br />

CS +CT,<br />

VOPEP<br />

V;TPEP<br />

NLO<br />

( 9A ) 2 o\ ·ifih·if<br />

- 21 7f 'Tl . 'T2 q 2 + M2 7f '<br />

V(O) + V(2) + VOPEP + vJlJP ,<br />

Cl if2 + C2 P + (C3 if2 + C 4 P)(51 · 52) + iC5 � (51 + 52) ' (ifx k)<br />

+ C6 (if· 51)(if· 52) + C7 (k· 5t)(k· 52) ,<br />

- 'Tl . 'T2 { 2 4 2 2 4 2 48g�M; }<br />

3847r2 I ; L(q) 4M7f(59A - 4gA - 1) + q (239A - 10gA - 1) + 4M; + q2<br />

3g� L( ) { � � � � 2 � � }<br />

- 647r2 I ; q a1 ' q a2 . q - q a1 ' a2 ,<br />

VNNLO V(O) + V(2) + VOPEP + vJlJP + vJJf6' , (4.3)<br />

vJJf6'<br />

- 1��;; { - 16m(���+ q2) + (2M;(2C1 - C3) - q2 (C3 + ::�)) (2M; + q2)A(q)}<br />

128�� 1; ('Tl ' 'T2) { - 4�1:� 2 + (4M; + 2q2 - g�(4M; + 3q2))(2M; + q2)A(q)}<br />

+ 51;:� 1; ((51 . if)(52 . if) - q2(51 . 52)) (2M; + q2)A(q)<br />

3;:1 ; ('Tl ' 'T2) ((51 ' if)(52 · if) - q2(51 . 52))<br />

119<br />

( 4.2)


120 4. <strong>The</strong> two-nuc1eon system: numerical results<br />

where<br />

and q=p' - p.<br />

4 39� r i (0\ + eh) . (p ' x ff) (2M; + q2)A(q)<br />

6 7fm 'Ir<br />

647fm f: Tl' T2 2 0"1 + 0"2 •<br />

x {(c4 + 4 �)(4M; + q2) - :� (10M; + 3q2)} A(q)<br />

g � (1 - g �) ( ) . ( � � ) ( �' ;;'\ (4M2 2)A( )<br />

L(q)<br />

A(q)<br />

q V 'Ir + q n<br />

1 q<br />

P X p) 'Ir + q q ,<br />

� . /4M2 2 I V 4M; + q2 + q<br />

2M'Ir '<br />

-arctan --<br />

2q 2M'Ir '<br />

Now we want to apply this potential to calculate the two-nucleon observables. <strong>The</strong> scatter<strong>in</strong>g<br />

states are described by the Lippmann-Schw<strong>in</strong>ger <strong>in</strong>tegral equation. <strong>The</strong> LS equation (for the<br />

T-matrix) projected onto states with orbital angular momentum I, total sp<strong>in</strong> s and total angular<br />

moment um j is<br />

InOO d " ,,2<br />

sj , sj , P P sj ,,, m sj<br />

Tl'<br />

"<br />

I(P , p) = Vi, I (P , p) + L<br />

(2 )3 Vi, 1" (P , p ) 2 ,,2 . Tl" , ,<br />

I (P , p) ,<br />

I" ° 7f ' P - P + 2'TJ '<br />

with 'TJ --+ 0+. In the uncoupled case, I is conserved. <strong>The</strong> partial wave projected potential Vi��(p' , p)<br />

can be obta<strong>in</strong>ed us<strong>in</strong>g the formulae of the appendix G. <strong>The</strong> relation between the on-shell 8- and<br />

T-matrices is given by<br />

S � ( )_ r<br />

2<br />

T� ( )<br />

1'1 P - Ul'l - 87f2 pm 1'1 P ,<br />

where P denotes the two-nucleon center-of-mass three-momentum. <strong>The</strong> phase shifts <strong>in</strong> the uncoupled<br />

cases can be obta<strong>in</strong>ed from the S-matrix via<br />

SOj ( 2 ' rOj )<br />

JJ J ' Slj (2·r1j)<br />

.. = exp 2u ·<br />

(4.4)<br />

(4.5)<br />

(4.6)<br />

jj = exp w j , (4.7)<br />

where we have used the notation 8t j . Throughout, we use the so-called Stapp parametrization<br />

[203] of the S-matrix <strong>in</strong> the coupled channels (j > 0):<br />

S =<br />

)<br />

2 . sm<br />

.<br />

(2 f ) exp ( W' r1j<br />

j_ 1 ;-. 2Uj+1<br />

. r1j<br />

) .<br />

(4.8)<br />

cos (2f) exp (2i8 j� 1)<br />

For the discussion of the effective range expansion for the 3 S I partial wave we will use the different<br />

parametrization of the S-matrix, namely the one due to Blatt and Biedenharn [204]. <strong>The</strong><br />

connection between these two sets of parameter is given by the follow<strong>in</strong>g equations:<br />

8j-1 + 8j+1<br />

s<strong>in</strong>(8j_ 1 - 8j+1 )<br />

8j-1 + 8j+1 ,<br />

tan(2f)<br />

tan(2E') ,<br />

s<strong>in</strong>(2f)<br />

s<strong>in</strong>(2E') ,<br />

(4.9)


4.1. Bound and scatter<strong>in</strong>g state equations 121<br />

where J and E denote the quantities <strong>in</strong> the Blatt-Biedenharn parametrization.<br />

<strong>The</strong> bound state is obta<strong>in</strong>ed from the homogeneous part of eq. (4.5) and obeys<br />

where s = j = 1, [ = [' = 0,2 and Ed denotes the bound-state energy.<br />

( 4.10)<br />

<strong>The</strong> potential (4.1)-(4.3) is only mean<strong>in</strong>gful for momenta below a certa<strong>in</strong> scale. This is obvious<br />

both from a conceptual and a practical po<strong>in</strong>t of view. Indeed, s<strong>in</strong>ce we are work<strong>in</strong>g with<strong>in</strong><br />

the effective field theory approach, only the low-momentum matrix elements can be derived<br />

systematicaHy. Our perturbative expansion far the potential breaks down for momenta of the<br />

nucleons comparable with the scale Ax. Also from the practical po<strong>in</strong>t of view, the expressions<br />

(4.1)-(4.3) are, clearly, not acceptable for large values of the moment um transfer q. In particular,<br />

s<strong>in</strong>ce the potential grows for large momenta, it leads to ultraviolet divergences <strong>in</strong> the LS equation<br />

(4.5). As it is appropriate <strong>in</strong> effective theory, we regularize the potential. This is done <strong>in</strong> the<br />

follow<strong>in</strong>g way:<br />

(4.11)<br />

where fR(iJ) is a regulator function chosen <strong>in</strong> harmony with the underly<strong>in</strong>g symmetries. In what<br />

follows, we work with two different regulator functions,<br />

ftarp(p)<br />

f �xpon (p)<br />

B(A2 _ p2) ,<br />

exp( _p2n / A 2n) ,<br />

( 4.12)<br />

(4.13)<br />

with n = 2,3, ... , p = Ipl and p' = Ip'l. Such a regularization of the effective potential is also<br />

consistent with the discussion <strong>in</strong> chapter 2. We must <strong>in</strong>troduce a cut-off <strong>in</strong> order to exclude<br />

the high-momentum <strong>in</strong>termediate states <strong>in</strong> the LS equation, that can not be described correctly<br />

with<strong>in</strong> the low-energy effective theory.<br />

In eqs. (4.12), (4.13) we show the two different choices of the regulator function. <strong>The</strong> sharp cut-off<br />

is most appropriate for comparison with realistic phenomenological potentials. To enable such a<br />

comparison one first needs to <strong>in</strong>tegrate out the high-momentum components from the realistic<br />

potentials, s<strong>in</strong>ce the effective one is def<strong>in</strong>ed only for momenta p, p' < A. Elim<strong>in</strong>at<strong>in</strong>g the highmoment<br />

um components can be performed via the unitary transformation, as described <strong>in</strong> section<br />

2.3. We already performed that step but leave the discussion of the results to a furt her study. <strong>The</strong><br />

sharp cut-off regularization scheme is suitable for deriv<strong>in</strong>g the phase shifts but leads to troubles<br />

when calculat<strong>in</strong>g some deuteron properties. This is because discont<strong>in</strong>uities <strong>in</strong> the moment um<br />

space are <strong>in</strong>troduced at p, p' = A. In that case one should use a smooth regularization like the<br />

exponential one given <strong>in</strong> eq. (4.13). For very large <strong>in</strong>tegers n the exponential cut-off approximates<br />

the sharp one. Throughout, we work with n = 2. To the order we are work<strong>in</strong>g, the choice n = 1<br />

has to be excluded s<strong>in</strong>ce the terms of order p2,p /2 would be modified. For n = 2, the error we<br />

make is beyond the accuracy of the order we are calculat<strong>in</strong>g. We would like to po<strong>in</strong>t out that the<br />

low-energy observables should not be sensitive to the choice of the regulat<strong>in</strong>g function fR as weH<br />

as to an exact value of the cut-off. We will also confirm this statement by explicit calculations.<br />

<strong>The</strong> rema<strong>in</strong><strong>in</strong>g (weak) dependence of the observables on the choice of fR and on the value of A<br />

can be systematically removed by <strong>in</strong>clud<strong>in</strong>g the higher order terms [141]. In the follow<strong>in</strong>g seetions<br />

we will discuss these uncerta<strong>in</strong>ties <strong>in</strong> more details.


122 4. <strong>The</strong> two-nuc1eon system: numerical results<br />

4.2 <strong>The</strong> fits<br />

In this section we, basicaIly, concentrate on the determ<strong>in</strong>ation of the various coupl<strong>in</strong>g constants.<br />

For Mn:, <strong>in</strong>: and gA we use the follow<strong>in</strong>g values:<br />

Mn: = 138.03 Me V , <strong>in</strong>: = 93 MeV , gA = 1.26 . ( 4.14)<br />

Furthermore, as already stated above, the values of C 1 ,3,4 are<br />

Cl = -0.81 GeV -1 , C3 = -4.70 GeV-1 , C4 = 3.40 GeV-1 . ( 4.15)<br />

Thus, all parameters enter<strong>in</strong>g the non-polynomial part of the potential are fixed.<br />

Consider now the polynomial part vcontact of the potential represented by contact <strong>in</strong>teractions<br />

vcontact = V(O) + V(2). To p<strong>in</strong> down the n<strong>in</strong>e parameters Cs, CT, Cl , ... ,C7 we do not perform<br />

global fits as done <strong>in</strong> ref. [78]. Rather we <strong>in</strong>troduce the <strong>in</strong>dependent new parameters C2s+1l.,<br />

J<br />

02S+1l. via the follow<strong>in</strong>g equations:<br />

J<br />

v contact (3 SI )<br />

41f (Cs - 3CT) + 1f (4C1 + C2 - 12C3 - 3C 4 - 4C6 - C7)(p2 + p'2)<br />

- 2 2<br />

C1S0 + C1S0 (p + p' ) , (4.16)<br />

41f (Cs + CT) + i (12C1 + 3C 2 + 12C3 + 3C4 + 4C6 + C7)(p2 + p'2)<br />

- 2 2<br />

C3S1 +C3S 1 (p + p' ), (4.17)<br />

2 ; (-4C1 + C2 + 12C3 - 3C4 + 4C6 - C7) (p p') = Cl PI (pp') , (4.18)<br />

2 ; (-4C1 + C2 - 4C3 + C4 + 2C5 + 4C6 + C7) (p p')<br />

C3P1 (pp') ,<br />

2 ; (-4C1 + C2 - 4C3 + C 4 + 2C5) (pp') = C3P2 (pp') ,<br />

21f<br />

3 (-4C1 -<br />

+ C2 4C3<br />

) ,<br />

+ C4 + 4C5 + 12C6 - 3C7 (pp )<br />

C1 Po (pp') ,<br />

2.j21f ( ,2 ,2<br />

- 3 - 4C6 + C7) p = C3Dl-3S1 P ,<br />

2.j21f 2 2<br />

- 3 - (4C6 + C7)p = C3Dl-3S1 P .<br />

(4.19)<br />

( 4.20)<br />

(4.21)<br />

(4.22)<br />

(4.23)<br />

Here, Ves+1lj) denotes the matrix element (lsjlVllsj) and Ves+1lj _2s+1lj) is (lsjlVll'sj). <strong>The</strong><br />

equations (4.16)-(4.23) can be obta<strong>in</strong>ed with the help ofthe formulae of appendix G for the partial<br />

wave decomposition. <strong>The</strong> ma<strong>in</strong> advantage of us<strong>in</strong>g the new parameters C2s+1[., 02s+1l. <strong>in</strong>stead of<br />

J J<br />

the old ones Cs, CT and Cl , ... , C7 is that now we can fit each partial wave separately. This not<br />

only makes the fitt<strong>in</strong>g procedure extremely simple, but also leads to unique results. To lead<strong>in</strong>g<br />

order, the two S-waves are depend<strong>in</strong>g on one parameter each. At NLO, we have one additional<br />

parameter for 1 So and 3 SI as weIl as one parameter <strong>in</strong> each of the four P-waves and <strong>in</strong> EI' At<br />

NNLO (NNLO-Ll), l we have no new parameters, but must refit the various contact <strong>in</strong>teractions<br />

due to the TPEP contribution <strong>in</strong> all partial waves. We have used two different methods to fix the<br />

1We will denote by NNLO-ß the potential<br />

(4.24)


4.2. <strong>The</strong> fits<br />

10000<br />

1000<br />

100<br />

10<br />

0.1<br />

0.01<br />

0.001<br />

0.0001<br />

, ,<br />

,<br />

1e-05<br />

0.001<br />

1000<br />

100<br />

10<br />

1<br />

0.1<br />

0.01<br />

0.001<br />

0.0001<br />

1e-05<br />

1e-06<br />

1e-07<br />

0.001<br />

,<br />

, ,<br />

,<br />

,<br />

,<br />

,<br />

,<br />

,<br />

,<br />

,<br />

,<br />

,<br />

,<br />

,<br />

0.01<br />

,<br />

,<br />

,<br />

,<br />

,<br />

,<br />

,<br />

,<br />

0.01<br />

I SO<br />

1Pl<br />

0.1<br />

/<br />

--<br />

0.1<br />

/ -, :<br />

1000 r-���r-��������<br />

100<br />

10<br />

1<br />

0. 1<br />

0.01<br />

0.001<br />

0.0001<br />

1 e-05 ,--� .... .. ..<br />

0.001 0.01 0.1<br />

"<br />

:<br />

,<br />

,",-,-,""-�-,-,-,-,-,-,-


124 4. <strong>The</strong> two-nuc1eon system: numerical results<br />

LEes of the contact <strong>in</strong>teractions. First, we fit to the phase shifts of the Nijmegen partial wave<br />

analysis [33] for laboratory energies smaller than (50) 100 MeV at (NLO) NNLO. 2 Alternatively,<br />

- -<br />

3<br />

we used the effective range parameters for the phases ISO, SI and EI to fix ClSO ' ClSO ' C3Sp C3Sp<br />

and C3Dl -3Sl ' This is completely analogous to the fitt<strong>in</strong>g procedure <strong>in</strong> the case of the effective<br />

1 5<br />

5<br />

-5<br />

�<br />

-1 5 0.7 0.8 0.9<br />

1 5<br />

-5<br />

r l------<br />

-- -=-::. . -:...-= =-:::- - - ------<br />

--- -- - - ---<br />

-1 5 0.7 0.8 0.9<br />

A [GeV]<br />

Figure 4.2: Runn<strong>in</strong>g of the four-nucleon coupl<strong>in</strong>g constants <strong>in</strong> the 1 So (upper panel)<br />

and 3 SI _3 Dl (lower panel) partial waves. In the upper panel, the solid (dashed)<br />

l<strong>in</strong>e refers to Cl So (C\ s o ) . In the lower panel, the solid (dashed) l<strong>in</strong>e refers to C3 SI<br />

( 03 sJ . <strong>The</strong> dashed-dotted l<strong>in</strong>e refers to the constant <strong>in</strong> the coupled 3 SI - 3 Dl<br />

system. <strong>The</strong> units are the same as <strong>in</strong> the table 4.1.<br />

theory considered <strong>in</strong> section 2.2. In what follows, we will mark the correspond<strong>in</strong>g potentials by a<br />

where v( O ), V(2), VOPEP, vJlJ1P are given <strong>in</strong> eqs. (4.1), (4.2) and V:LO corresponds to the expressions (3.327)­<br />

(3.334). Although this potential corresponds to the NLO result <strong>in</strong> the "small scale expansion" , we will consider<br />

it merely <strong>in</strong> the context of the saturation of the NNLO Cl,3,4 corrections. <strong>The</strong>refore, we denote it by NNLO-ß<br />

potential.<br />

2Note that equally weil we could fit directly to the data. However, for easier comparison with other EFT<br />

calculations, we use the Nijmegen PSA to simulate the data.<br />

-.<br />

I<br />

1<br />

I<br />

I


4.2. <strong>The</strong> fits 125<br />

"*" if the LECs were fixed from the effective range parameters. We have found that the observables<br />

(phase shifts) depend rather weekly on what fitt<strong>in</strong>g procedure is used. <strong>The</strong> values of the LECs do<br />

not change much except for some C's at NLO, where significant variations were observed. Note<br />

furt her that <strong>in</strong> the S-waves, especially <strong>in</strong> 1 So, isosp<strong>in</strong> break<strong>in</strong>g effects like e.g. the charged to<br />

neutral pion mass difference, are known to be important. We do not consider such effects <strong>in</strong> this<br />

work and thus take an average value for the pion mass. <strong>The</strong> actual values of the S-wave LECs<br />

see m to be rat her sensitive to the choice of the pion mass. For the phases 1 So, 3 Sl and E1 we use<br />

the errors as given <strong>in</strong> ref. [33], for all other partial waves we assign an absolute error of 3%. This<br />

number is arbitrary, but tak<strong>in</strong>g any other value would not change the fit results, only the total<br />

X2• To perform the fits, we have to specify the value of the cut-off A <strong>in</strong> the regulator functions<br />

as def<strong>in</strong>ed <strong>in</strong> eqs. (4.12), (4.13). At NLO, for any choice between 380 MeV and 600 MeV, we get<br />

very similar fits (a very shallow X2 distribution <strong>in</strong> each partial wave). At NNLO, this shallow<br />

distribution turns <strong>in</strong>to a plateau, which shifts to higher values of the cut-off. We can now use<br />

values between 600 MeV and 1 GeV. <strong>The</strong> results obta<strong>in</strong>ed us<strong>in</strong>g the sharp and the exponential<br />

cut-off are very similar. For illustration, we consider the sharp cut-off with A = 500 Me V at NLO<br />

and A = 875 MeV at NNLO. We show <strong>in</strong> fig. 4.1 the absolute quadratic deviations of the fit to<br />

the Nijmegen phase shift analysis (PSA), def<strong>in</strong>ed by (8fit -<br />

8PSA)2.<br />

Consider first the S-waves.<br />

Both <strong>in</strong> 1 So and 3 Sl, we observe a clear improvement when go<strong>in</strong>g from LO to NLO to NNLO<br />

(NNLO-Ll). A similar pattern holds for the P-waves and E1 , although the differences between<br />

NLO and NNLO are somewhat less pronounced. Note that the 3 Po wave is very sensitive to the<br />

value of the pion mass, therefore the slightly better NLO fit should not be considered problematic.<br />

<strong>The</strong> correspond<strong>in</strong>g parameters of the coupl<strong>in</strong>g constants are collected <strong>in</strong> table 4.1.<br />

Cl So<br />

Cl So<br />

C 3S1<br />

C3S1<br />

Cl PI<br />

C3P1<br />

C3Po<br />

C3P2<br />

C3Dl-3S1<br />

NLO 1 NLO* 1 NNLO 1 NNLO* 1 NNLO-Ll 11<br />

-0.1337 -0.09276 -4.249 -4.246 -5.731<br />

1.822 2.125 11.95 11.84 13.82<br />

-0.1304 -0.1022 -6.508 -6.655 -0.9767<br />

-0.3933 0.02432 11.29 11.28 3.446<br />

0.3442 0.3442 -2.045 -2.045 -2.494<br />

-0.3941 -0.3941 -7.061 -7.061 -8.188<br />

1.335 1.335 -2.832 -2.832 -2.993<br />

-0.1907 -0.1907 -8.056 -8.056 -8.431<br />

-0.03170 -0.03568 -3.424 -3.516 -0.5623<br />

Table 4.1: <strong>The</strong> values of the LECs as determ<strong>in</strong>ed from the low partial waves. We use the sharp<br />

cut-off with A = 500 MeV and 875 MeV at NLO and NNLO, respectively. <strong>The</strong> Ci are <strong>in</strong> 104<br />

GeV-2 while the others are <strong>in</strong> 104 GeV-4. <strong>The</strong> parameters of the NLO, NNLO and NNLO­<br />

Ll potentials are obta<strong>in</strong>ed from fitt<strong>in</strong>g to the Nijmegen PSA. <strong>The</strong> LECs of the NLO*, NNLO*<br />

potentials <strong>in</strong> the 1S0 and 3S1 _3 D1 channels are fixed to reproduce exactly the effective range<br />

parameters.<br />

To illustrate the dependence on the cut-off, we show <strong>in</strong> fig. 4.2 the runn<strong>in</strong>g of the two (three)<br />

coupl<strong>in</strong>gs <strong>in</strong> the 1S0 eSd channels at NNLO (note that the third parameter <strong>in</strong> 3S1 comes <strong>in</strong> via<br />

the mix<strong>in</strong>g with the 3 D1 wave). We notice that the variation of these LECs over a wide range of<br />

cut-offs is rat her modest. We also mention that us<strong>in</strong>g the 7rN parameters from refs. [200, 205, 71]


126 4. <strong>The</strong> two-nuc1eon system: numerical results<br />

leads to a considerably worse X 2 <strong>in</strong> the fits. We take that as an <strong>in</strong>dication that the determ<strong>in</strong>ation<br />

of the Ci based on the method employed <strong>in</strong> ref. [195] is more reliable than fitt<strong>in</strong>g to 7rN phase<br />

shifts (as long as one works to third order <strong>in</strong> the chiral expansion). We remark that us<strong>in</strong>g the<br />

parameters of ref. [195], the deuteron b<strong>in</strong>d<strong>in</strong>g energy Ed comes out as<br />

NLO Ed = -2.175 MeV ,<br />

NNLO Ed = -2.208 MeV , (4.25)<br />

Le. the NNLO result is already with<strong>in</strong> 7.5 permille of the experimental number. F<strong>in</strong>e tun<strong>in</strong>g<br />

<strong>in</strong> the parameters <strong>in</strong> the deuteron channel would allow to get the b<strong>in</strong>d<strong>in</strong>g energy at the exact<br />

value of -2.224575(9) MeV without lead<strong>in</strong>g to any noticeable change <strong>in</strong> the phase shifts. We<br />

later consider the deuteron channel separately with an exponential regulator. This will lead to an<br />

improved b<strong>in</strong>d<strong>in</strong>g energy but no attempt is made to match the exact value <strong>in</strong> all digits.<br />

At this po<strong>in</strong>t we would like to comment on the <strong>in</strong>crease <strong>in</strong> the cut-off values when go<strong>in</strong>g from<br />

NLO to NNLO (NNLO-b.). Consider first the lead<strong>in</strong>g order result. Lepage [141] has po<strong>in</strong>ted<br />

out that the <strong>in</strong>clusion of the one-pion exchange does not lead to a remarkable <strong>in</strong>crease <strong>in</strong> the<br />

cut-off values compared to a pionless theory. In order to fit the phase shifts <strong>in</strong> the S-waves one<br />

should choose the cut-off below 500-600 MeV even if the contact <strong>in</strong>teractions with two derivatives<br />

are taken <strong>in</strong>to account (with<strong>in</strong> our power count<strong>in</strong>g scheme such contact <strong>in</strong>teractions contribute<br />

first at next-to-Iead<strong>in</strong>g order and are of the same size as the lad<strong>in</strong>g two-pion exchange terms).<br />

Lepage assumed that such a low value of the cut-off is due to the missed physics associated with<br />

the two-pion exchange. So, naively, one would expect that the <strong>in</strong>clusion of the lead<strong>in</strong>g two-pion<br />

exchange contributions at NLO would allow to take larger cut-off values. However, that does not<br />

happen. This was also po<strong>in</strong>ted out <strong>in</strong> refs. [105], [106]. Accord<strong>in</strong>g to our analysis, only at NNLO,<br />

after the sublead<strong>in</strong>g two-pion exchange contributions are taken <strong>in</strong>to account, one can <strong>in</strong>crease the<br />

cut-off up to 800 to 1000 MeV. <strong>The</strong> <strong>in</strong>clusion of the dimension two operators of the pion-nudeon<br />

<strong>in</strong>teraction at NNLO encodes some <strong>in</strong>formation about heavy meson exchange as weIl as virtual<br />

isobar excitations, as discussed <strong>in</strong> detail <strong>in</strong> ref. [200]. In the present work we were able to separate<br />

the lead<strong>in</strong>g effects of the b.-resonance (NNLO-b.). <strong>The</strong> clear <strong>in</strong>crease <strong>in</strong> the cut-off values when<br />

go<strong>in</strong>g from NLO to NNLO-b. <strong>in</strong>dicates the importance of physics associated with heavier mass<br />

states like e.g. the b.-resonance. Our NNLO (NNLO-b.) TPEP is sensitive to moment um scales<br />

sizably larger than twice the pion mass (as it would be the case for uncorrelated TPE) and deltanucleon<br />

mass splitt<strong>in</strong>g. Consequently, the cut-off has to be chosen safely above these scales, say<br />

above 500 MeV (with the sharp regulator). <strong>The</strong> upper limit of about 1 GeV is related to the<br />

cancelations <strong>in</strong> the S-waves (f<strong>in</strong>e-tun<strong>in</strong>g), s<strong>in</strong>ce for too large values of A it is no longer possible<br />

to keep this <strong>in</strong>tricate balance. It is, however, comfort<strong>in</strong>g to see that <strong>in</strong>clud<strong>in</strong>g more physics <strong>in</strong> the<br />

potential leads <strong>in</strong>deed to a wider range of applicability of the EFT.<br />

F<strong>in</strong>aIly, we need to discuss one furt her topic. Perform<strong>in</strong>g the fits, we have found two m<strong>in</strong>ima <strong>in</strong><br />

both the ISO and the 3S1 channel. This is not unexpected. Indeed, the same happens <strong>in</strong> the case<br />

of the pionless theory considered <strong>in</strong> the section 2.2. In particular, the requirement of reproduc<strong>in</strong>g<br />

exactly the scatter<strong>in</strong>g length and the effective range with<strong>in</strong> the effective theory with the sharp<br />

cut-off leads to the equations (2.37), (2.38) for the constants Co and C2. Thus, one observes two<br />

equivalent solutions for Co and C2. Such a situation with two solutions appears also <strong>in</strong> the NLO<br />

and NNLO theory with pions. At NLO, we f<strong>in</strong>d very similar predictions for the phase shifts and<br />

observables as weIl as a very similar quality of the fits <strong>in</strong> the ISO and 3S 1 _3 D1 channels for<br />

both solutions, see the upper panel <strong>in</strong> fig. 4.3. So, there is no real criterion to prefer one of these<br />

solutions. However, at NNLO, the behavior of the phase shifts at higher energies differs quite<br />

remarkably as it is illustrated <strong>in</strong> the lower panel of fig. 4.3. Also, the X 2 for these two solutions


4.2. <strong>The</strong> nts<br />

60<br />

0; 40<br />

CD<br />

�<br />

0 20<br />

Cf)<br />

�<br />

I<br />

0<br />

0<br />

-l<br />

z<br />

-20<br />

-40<br />

0 0.1<br />

70<br />

0; 50<br />

CD<br />

�<br />

0<br />

Cf) 30<br />

•<br />

0.2 0.3<br />

I - - -<br />

- - - - - - -<br />

0<br />

-l<br />

(\J<br />

z<br />

10<br />

-1 0<br />

0 0.1 0.2 0.3<br />

E1ab [GeV]<br />

Figure 4.3: Phase shifts for the two solutions <strong>in</strong> the 1 So-wave as dicussed <strong>in</strong><br />

the text. At NLO (upper panel), these are <strong>in</strong>dist<strong>in</strong>guishable. At NNLO (lower<br />

panel), one of the solutions (dashed l<strong>in</strong>e) shows an unacceptable behaviour at<br />

higher momenta and is discarded.<br />

127


128 4. <strong>The</strong> two-nuc1eon system: numerical results<br />

differs typically by factors of 2 ... 10. In what follows, we will only discuss the best solution at<br />

NNLO.<br />

4.3 Phase shifts<br />

4.3.1 S-waves<br />

In fig. 4.4 we show the two S-waves at LO, NLO and NNLO for the cut-off values given above.<br />

Clearly, the lowest order OPEP plus non-derivative contact terms is <strong>in</strong>sufficient to describe the 1 So<br />

phase (as it is weIl-known from effective range theory and previous studies <strong>in</strong> EFT approaches).<br />

<strong>The</strong> much more smooth 3 SI phase is already fairly weIl described at lead<strong>in</strong>g order. For energies<br />

above 100 MeV, the improvement by go<strong>in</strong>g from NLO to NNLO is clearly visible. <strong>The</strong> correspond<strong>in</strong>g<br />

values of the S-wave phase shifts at certa<strong>in</strong> energies are given <strong>in</strong> tables 4.2,4.3. For<br />

comparison, we also give the results of the Nijmegen and VPI PSA [206] and of three modern<br />

potentials (Nijmegen 93 [33], Argonne V18 [37] and CD-Bonn [29]). Our NNLO result for 1 So is<br />

visibly better than the one obta<strong>in</strong>ed <strong>in</strong> ref. [207].<br />

It is also of <strong>in</strong>terest to consider the scatter<strong>in</strong>g lengths and effective range parameters as it was<br />

done <strong>in</strong> the cases of the pionless theory and <strong>in</strong> the model calculations <strong>in</strong> chapter 2. <strong>The</strong> effective<br />

range expansion takes the form (written here for a genu<strong>in</strong>e partial wave)<br />

( 4.26)<br />

with p the nucleon cms momentum, a the scatter<strong>in</strong>g length, r the effective range and V2, 3,4 the<br />

shape parameters. It has been stressed <strong>in</strong> ref. [208] that the shape parameters are a good test<strong>in</strong>g<br />

ground far the range of applicability of the underly<strong>in</strong>g EFT s<strong>in</strong>ce a fit to say the scatter<strong>in</strong>g length<br />

and the effective range at NLO leads to predictions for the Vi. In table 4.4, we present our results<br />

for the S-waves <strong>in</strong> comparison to the ones obta<strong>in</strong>ed from the Nijmegen PSA. Note that <strong>in</strong> the<br />

coupled channel we have used the Blatt and Biedenharn parametrization of the S-matrix <strong>in</strong> order<br />

to be able to compare our f<strong>in</strong>d<strong>in</strong>gs with those of ref. [102]. For both S-waves we observe a good<br />

agreement with the data (apart from the last coefficient <strong>in</strong> the ISO channel). In general, the results<br />

for the 1 So partial wave are not as precise as for the 3 SI chan ne 1. This has to be expected because<br />

of the unnaturally large value of the scatter<strong>in</strong>g length <strong>in</strong> the first case. At this po<strong>in</strong>t we would<br />

like to rem<strong>in</strong>d the reader of the similar analysis for the effective range coefficients performed for<br />

the pionless theory <strong>in</strong> sec. 2.2 and for our model <strong>in</strong> sec. 2.3. In the first case one can not obta<strong>in</strong><br />

any predictions for the effective range coefficients, that are not used to fix the LECs. This is<br />

because one describes a purely short-range physics <strong>in</strong> such a theory. In the second example we<br />

<strong>in</strong>cluded the known long-range force <strong>in</strong>to the effective Hamiltonian. It is natural to assurne that<br />

the values of the effective range coefficients are governed by the lowest mass scale associated with<br />

the longest range part of the <strong>in</strong>teraction. In the model considered <strong>in</strong> sec. 2.3 we had, however, no<br />

large separation between the scales related to the long- and short-range parts of the underly<strong>in</strong>g<br />

force. <strong>The</strong>refore, only the first effective range (shape) parameter not used <strong>in</strong> the fit could be<br />

predicted accurately. <strong>The</strong> fairly precise description of the shape parameters shown <strong>in</strong> table 4.4<br />

may be considered as a clear <strong>in</strong>dication of large separations between the relevant scales <strong>in</strong> the case<br />

of the realistic N N <strong>in</strong>teractions. Furthermore, we would like to po<strong>in</strong>t out a clear improvement for<br />

all quantities with exception of V2 for the 1 So partial wave when go<strong>in</strong>g from NLO to NNLO. Note<br />

that <strong>in</strong> both cases we had 2 (3) free parameters <strong>in</strong> the 1 So e Sl-3 Dd channel (and the cut-off).<br />

In our op<strong>in</strong>ion, this is an important argument <strong>in</strong> favor of a good convergence of our expansion for<br />

the effective potential (which survives the iteration).


4.3. Phase shifts<br />

80<br />

60<br />

40<br />

20<br />

o<br />

-20<br />

-40<br />

o 0.05 0.1<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60 � � - - - _<br />

40<br />

20<br />

o<br />

-20<br />

-40<br />

o 0.05 0.1<br />

ISO [deg]<br />

0.15 0.2 0.25 0.3<br />

3S 1 [deg]<br />

0.15 0.2 0.25 0.3<br />

Figure 4.4: Predictions for the S-waves (<strong>in</strong> degrees) for nucleon laboratory<br />

energies Elab below 300 MeV (0.3 GeV). <strong>The</strong> dotted, dashed and solid curves<br />

represent LO, NLO and NNLO results, <strong>in</strong> order. <strong>The</strong> squares depict the<br />

Nijmegen PSA results. In the upper and the lower panel, 1 So and 3 SI, respectively,<br />

are shown.<br />

129


130 4. <strong>The</strong> two-nuc1eon system: numerical results<br />

1 E1ab [MeV] 11 NNLO* NNLO 1 Nijm PSA 1 VPI PSA 1 Nijm93 1 AV18 CD-Bonn<br />

h 147.735 147.727 147.747 147.781 147.768 147.749 147.748<br />

2 136.447 136.450 136.463 136.488 136.495 136.465 136.463<br />

3 128.763 128.781 128.784 128.788 128.826 128.786 128.783<br />

5* 118.150 118.196 118.178 118.129 118.240 118.182 118.175<br />

10* 102.56 102.67 102.61 102.41 102.72 102.62 102.60<br />

20 85.99 86.21 86.12 85.67 86.35 86.16 86.09<br />

30 75.84 76.14 76.06 75.46 76.40 76.12 75.99<br />

50* 62.35 62.79 62.77 62.12 63.36 62.89 62.63<br />

100* 42.33 43.06 43.23 42.98 44.33 43.18 42.93<br />

200 19.54 20.68 21.22 20.88 22.82 21.31 20.88<br />

300 4.15 5.58 6.60 5.08 8.44 7.55 6.70<br />

Table 4.2: 3 Sl np phase shift for the global fit at NNLO (sharp cut-off, A = 875 MeV) compared<br />

to phase shift analyses and modern potentials. <strong>The</strong> parameters of the NNLO potential are fixed<br />

by fitt<strong>in</strong>g the Nijmegen PSA at six energies (E1ab = 1,5, 10,25, 50(, 100) MeV). <strong>The</strong>se energies are<br />

marked by the star. <strong>The</strong> parameters of the NNLO* potential are chosen to reproduce exactly the<br />

scatter<strong>in</strong>g length and the effective range as described <strong>in</strong> the text.<br />

To show that our results are stable and do not depend on the fitt<strong>in</strong>g procedure we present <strong>in</strong><br />

table 4.5 the NLO* and NNLO* predictions. Here, the LECs are fixed directly from the first<br />

effective range parameters, as discussed above. Overall, the agreement between the numbers <strong>in</strong><br />

tables 4.4 and 4.5 is quite satisfactory. <strong>The</strong> NLO results turn out to be slightly more sensitive<br />

to the fitt<strong>in</strong>g procedure. As is po<strong>in</strong>ted out <strong>in</strong> ref. [208], one also can perform the moment um<br />

expansion for E1 <strong>in</strong> a similar way as for the S-waves. <strong>The</strong> authors of the reference [208] show the<br />

values of the correspond<strong>in</strong>g parameters extracted by themselves from the Nijmegen PSA. <strong>The</strong>y<br />

use, presumably, the different (Stapp) parametrization of the S-matrix <strong>in</strong> that case. We have not<br />

found any orig<strong>in</strong>al reference of the Nijmegen group concern<strong>in</strong>g the moment um expansion for E1 .<br />

We thus refra<strong>in</strong> from discuss<strong>in</strong>g this issue any further.3<br />

For completeness, we collect the experimental values for the S-wave scatter<strong>in</strong>g lengths and effective<br />

ranges:<br />

as = (-23.758 ± 0.010) fm , Ts = (2.75 ± 0.05) fm ,<br />

at = (5.424 ± 0.004) fm , Tt = (1.759 ± 0.005) fm .<br />

( 4.27)<br />

( 4.28)<br />

Quite recently the results for the NNLO calculation of the phase shifts <strong>in</strong> the S, P and D channels<br />

with<strong>in</strong> the KSW scheme [91] have been published [211]. Here we would like to compare our<br />

f<strong>in</strong>d<strong>in</strong>gs with those from ref. [211]. <strong>The</strong> lead<strong>in</strong>g and non-perturbative contribution to the N N Smatrix<br />

<strong>in</strong> S channels results <strong>in</strong> the KSW approach from summ<strong>in</strong>g up an <strong>in</strong>f<strong>in</strong>ite series of the contact<br />

3Note, however, that <strong>in</strong> order to fix the LEes <strong>in</strong> the 3S1 _3 D1 channel we have used the lead<strong>in</strong>g coefficient<br />

91 = 1.66 fm3 <strong>in</strong> the momentum expansion of the EI . This value agrees with the one given <strong>in</strong> ref. [208]. In pr<strong>in</strong>ciple,<br />

we could take apart from the 3 SI scatter<strong>in</strong>g length and effective range the deuteron b<strong>in</strong>d<strong>in</strong>g energy as the third<br />

quantity to fix the three free parameters <strong>in</strong> the potential. However we refra<strong>in</strong> from do<strong>in</strong>g that because of a strong<br />

correlation between the deuteron b<strong>in</strong>d<strong>in</strong>g energy and the 3 SI effective range parameters.


4.3. Phase shifts<br />

1 Elab [MeV] 11 NNLO*<br />

h 62.071<br />

2 64.472<br />

3 64.671<br />

5* 63.659<br />

10* 60.02<br />

20 53.66<br />

30 48.55<br />

50* 40.49<br />

100* 26.30<br />

200 7.63<br />

300 -6.41<br />

NNLO 1 Nijm PSA I VPI PSA 1 Nijm93 1 AV18 CD-Bonn I<br />

62.063 62.069 62.156 62.065 62.015 62.078<br />

64.469 64.573 64.573 64.460 64.388 64.478<br />

64.671 64.762 64.762 64.650 64.560 64.671<br />

63.663 63.708 63.708 63.619 63.503 63.645<br />

60.03 59.96 60.00 59.94 59.78 59.97<br />

53.68 53.57 53.77 53.54 53.31 53.56<br />

48.58 48.49 49.00 48.42 48.16 48.43<br />

40.54 40.54 41.66 40.38 40.09 40.37<br />

26.38 26.78 27.86 26.17 26.02 26.26<br />

7.76 8.94 7.86 7.07 8.00 8.14<br />

-6.24 -4.46 -5.55 -7.18 -4.54 -4.45<br />

Table 4.3: ISO np phase shift for the best fit at NNLO (sharp cut-off, A = 875 MeV) compared<br />

to phase shift analyses and modern potentials. <strong>The</strong> parameters of the NNLO potential are fixed<br />

by fitt<strong>in</strong>g the Nijmegen PSA at six energies (E1ab = 1,5, 10, 25,50, 100 MeV). <strong>The</strong>se energies are<br />

marked by the star. <strong>The</strong> parameters of the NNLO* potential are chosen to reproduce exactly the<br />

scatter<strong>in</strong>g length and the effective range as described <strong>in</strong> the text.<br />

I SO NLO -23.555 2.64 -0.58 5.4 -31<br />

I SO NNLO -23.722 2.68 -0.61 5.1 -30<br />

ISO NPSA -23.739 2.68 -0.48 4.0 -20<br />

3S 1 NLO 5.434 1.711 0.075 0.77 -4.2<br />

3S 1 NNLO 5.424 1.741 0.046 0.67 -3.9<br />

3S 1 NPSA 5.420 1.753 0.040 0.67 -4.0<br />

Table 4.4: Scatter<strong>in</strong>g lengths and range parameters for the S-waves at NLO and NNLO (global<br />

fits) compared to the Nijmegen PSA (NPSA). <strong>The</strong> values for V2, 3 , 4 <strong>in</strong> the 1 So channel are based<br />

on the np Nijm II potential and the values of the scatter<strong>in</strong>g length and the effective range are<br />

taken from the ref. [209]. <strong>The</strong> effective range parameters for the 3S 1 _3 D 1 channel are discussed<br />

<strong>in</strong> [102].<br />

<strong>in</strong>teractions without derivatives. <strong>The</strong> first corrections are given by dress<strong>in</strong>g the one-pion exchange<br />

and the contact <strong>in</strong>teractions with two derivatives by the lead<strong>in</strong>g order amplitude. This is the<br />

crucial difference to our power count<strong>in</strong>g scheme, <strong>in</strong> which the OPE diagrams are of the same size as<br />

the lead<strong>in</strong>g contact <strong>in</strong>teractions and thus should both be treated non-perturbatively. <strong>The</strong> NNLO<br />

corrections <strong>in</strong> the KSW scheme are given by various diagrams <strong>in</strong>clud<strong>in</strong>g contact <strong>in</strong>teractions with 0,<br />

2 and 4 derivatives as weH as pion exchange graphs. For more details see ref. [211]. Because of the<br />

perturbative treatment of the pion exchanges, the authors of ref. [211] could perform an analytic<br />

calculation of the amplitude <strong>in</strong>clud<strong>in</strong>g its renormalization. <strong>The</strong> result<strong>in</strong>g S-matrix satisfies the<br />

perturbative unitarity condition <strong>in</strong> the sense of the KSW power count<strong>in</strong>g. Furthermore, at each<br />

131


132 4. <strong>The</strong> two-nuc1eon system: numerical results<br />

I SO NLO* -23.739 2.68 -0.52 5.3 -30<br />

ISO NNLO* -23.739 2.68 -0.61 5.1 -29.7<br />

3S 1 NLO* 5.420 1.753 0.110 0.73 -3.9<br />

3S 1 NNLO* 5.420 1.753 0.057 0.66 -3.8<br />

Table 4.5: Scatter<strong>in</strong>g lengths and range parameters for the S-waves at NLO and NNLO. <strong>The</strong><br />

correspond<strong>in</strong>g LEes are obta<strong>in</strong>ed from the fit to a and r <strong>in</strong> the S-channel and from the first<br />

effective range parameter <strong>in</strong> the moment um expansion of E I , as described <strong>in</strong> text.<br />

order the amplitude is <strong>in</strong>dependent on the renormalization scale. Let us now comment on the<br />

results presented <strong>in</strong> ref. [211]. Impos<strong>in</strong>g the constra<strong>in</strong>ts provided by the perturbative solution of<br />

the renormalization group equations (RGE's) and requir<strong>in</strong>g that unphysical poles are removed<br />

from the amplitude at low momenta leave one free parameter at NLO and two parameters at<br />

NNLO for the 1 So and 3 SI channels, that were fixed by a fit to the phase shifts of the Nijmegen<br />

PSA. For the 1 So phase shift one observes a visible improvement when go<strong>in</strong>g from LO to NLO and<br />

from NLO to NNLO. At NNLO, the ISO phase shift goes very close to the one from the Nijmegen<br />

PSA up to cms momenta rv 300 MeV (E1ab rv 192 MeV), see fig. 3 <strong>in</strong> [211]. Such visible agreement<br />

of the phase shift with the data does, however, not yet allow to conclude about the quality of the<br />

results. For example, the authors of ref. [211] po<strong>in</strong>t out that the the 1 So phase shift at the cms<br />

momentum p = Mn is offits experimental value4 by 17% at NLO and by less then 1% at NNLO. On<br />

the other side, the effective range expansion (4.26) with the first two coefficients (a and r) yields at<br />

p = Mn the value for the phase shift, which differs from the experimental one by only rv 2%. Thus,<br />

this <strong>in</strong>formation is not enough to def<strong>in</strong>itely conclude about improvement of the results obta<strong>in</strong>ed<br />

from the effective theory with explicit pions relative to the calculations with<strong>in</strong> the pionless theory.<br />

A better test<strong>in</strong>g ground for that is given by the shape parameters <strong>in</strong> the effective range expansion<br />

(4.26), which are expected to be sensitive to the pion physics, as discussed above, see also [100],<br />

[101]. At NLO, predictions for V2,3 , 4 totally disagree with the values derived from the Nijmegen<br />

PSA. <strong>The</strong> NNLO predictions for r and the v's, given <strong>in</strong> ref. [211] are r = 2.63 fm, V = 2 -1.2<br />

fm3, V = 3 2.9 fm5 and V4 = -0.7 fm7, which still significantly differ from the experimental values<br />

shown <strong>in</strong> table. 4.4 and are considerably worse than our predictions <strong>in</strong>dicated <strong>in</strong> the same table.<br />

Such dis agreement with the data is surpris<strong>in</strong>g s<strong>in</strong>ce perform<strong>in</strong>g NNLO calculations without pions<br />

and choos<strong>in</strong>g a f<strong>in</strong>ite cut-off of the order of Mn , see sec. 2.2, one expects to be able to reproduce<br />

the first four effective range parameters (a, r, V2 and V3 ) exactly. <strong>The</strong>refore, no clear improvement<br />

relative to the pionless theory can be observed.<br />

For the 3 SI channel the situation turns out to be much worse than for the 1 So channel for the<br />

KSW scheme. Whereas the phase shift is described quite accurately at NLO, NNLO corrections<br />

are large and destroy the agreement with the data already at the cms momenta of the order of<br />

Mn [211]. This is shown <strong>in</strong> fig. 4 of that reference. <strong>The</strong> failure of EFT at NNLO is found to be<br />

due to large contributions result<strong>in</strong>g from the iteration of the pion exchanges, which is missed <strong>in</strong><br />

the KSW approach.<br />

We would also like to comment on the recent work by Hyun et al. [106]. <strong>The</strong>re, the 1 So channel is<br />

considered with<strong>in</strong> an approach similar to ours. In particular, the authors of this reference consider<br />

the potential, which consists of the OPE and lead<strong>in</strong>g TPE contributions given <strong>in</strong> eqs. (4.1), (4.2)<br />

4 As usual, we consider the values of the phase shifts from the Nijmegen PSA as experimental data.


4.3. Phase shifts 133<br />

and a series of contact <strong>in</strong>teractions. <strong>The</strong> obta<strong>in</strong>ed results are similar to ours at NLO. A furt her<br />

important observation made <strong>in</strong> this work is that the <strong>in</strong>clusion of the NNLO contact <strong>in</strong>teractions<br />

alone does not allow to improve predictions for the phase shift relative to the NLO calculation.<br />

As is demonstrated <strong>in</strong> our work, only the <strong>in</strong>clusion of the complete NNLO corrections (4.3) to the<br />

potential given by the sublead<strong>in</strong>g TPE contribution and the contact terms allows to come closer<br />

to the Nijmegen PSA.<br />

F<strong>in</strong>ally, let us briefly comment on the earlier work by Ord6nez et al. [76J. <strong>The</strong>y performed the<br />

LO, NLO and NNLO calculations5 with<strong>in</strong> the potential approach us<strong>in</strong>g time-ordered perturbation<br />

theory to obta<strong>in</strong> the N N force. <strong>The</strong> Cl, 3 ,4 coupl<strong>in</strong>gs were not taken from 1f N scatter<strong>in</strong>g but <strong>in</strong>stead<br />

considered as free parameters. Furthermore, the anti-symmetrization of the potential was not<br />

performed. As a consequence, many additional redundant parameters correspond<strong>in</strong>g to contact<br />

<strong>in</strong>teractions enter the expressions for the effective potential. A global fit <strong>in</strong> all lower partial waves<br />

has been performed to fix the 26 parameters at NNLO. This makes it difficult to separate the<br />

effects on the phase shifts of the <strong>in</strong>dividual contributions to the potential. <strong>The</strong> results for the 1 So<br />

and 3 SI phase shifts shown <strong>in</strong> figs. 6 and 7 <strong>in</strong> this paper are of the same quality as ours (our 1 So<br />

partial wave looks slightly better at <strong>in</strong>termediate energies). We can not compare the predictions<br />

for the effective range parameters, s<strong>in</strong>ce no correspond<strong>in</strong>g analysis has been done <strong>in</strong> ref. [78J.<br />

4.3.2 P-waves<br />

In fig. 4.6 we show the correspond<strong>in</strong>g partial waves together with the mix<strong>in</strong>g parameter EI for<br />

the best global fit. In some cases, the differences between NLO and NNLO are modest, <strong>in</strong> 1 PI<br />

and 3 PI NLO is even somewhat bett er. That means that the chiral TPEP is too strong <strong>in</strong> these<br />

phases. Note also that <strong>in</strong> the 3 PI phase OPEP is dom<strong>in</strong>ant. Thus, the <strong>in</strong>clusion of the contact<br />

<strong>in</strong>teraction does not lead to a visible change. In 3 P2, NNLO is still too strong but the prediction is<br />

considerably better than the NLO one. <strong>The</strong> energy dependence of EI is fairly precisely described<br />

at NLO and NNLO. <strong>The</strong>se results are visibly better than the ones obta<strong>in</strong>ed <strong>in</strong> ref. [78J or <strong>in</strong><br />

refs. [210J and [211], the latter be<strong>in</strong>g a NNLO calculation <strong>in</strong> the KSW scheme. This is shown<br />

<strong>in</strong> detail <strong>in</strong> fig. 4.5, where EI is plotted versus the cms nucleon moment um (p < 350 MeV) <strong>in</strong><br />

comparison to the Nimegen PSA and the results from ref. [210J. <strong>The</strong> most important difference<br />

between our approach and the KSW one is, as already po<strong>in</strong>ted out, that <strong>in</strong> the last one the pions<br />

are treated perturbatively. Thus, our results might be considered as an <strong>in</strong>dication that <strong>in</strong> the<br />

two-nucleon system, pions have to be treated non-perturbatively (if one <strong>in</strong>tends to describe data<br />

above p� 150 MeV).6<br />

In the 1 PI and 3 Po channels the phase shift at lead<strong>in</strong>g order (iterated OPE without contact<br />

<strong>in</strong>teractions) describes the data only at very low energies. Also, the phase shifts are sensitive to<br />

the choice of the cut-off. This is because no contact <strong>in</strong>teractions appear <strong>in</strong> the potential at this<br />

order, that could compensate this cut-off dependence. <strong>The</strong>refore, the LO approximation <strong>in</strong> these<br />

channels should not be taken seriously. In fig. 4.7 we show apart from the LO and NLO phase<br />

shifts also the curve, which results if one adds the contact term with two derivatives to the OPE<br />

potential. This is, certa<strong>in</strong>ly, not the complete NLO potential, s<strong>in</strong>ce the lead<strong>in</strong>g TPE is miss<strong>in</strong>g.<br />

<strong>The</strong> results for such <strong>in</strong>complete and complete NLO potentials are similar and very much improved<br />

relative to the LO calculation.7 Thus, we conclude that this improvement when go<strong>in</strong>g from LO<br />

5 <strong>The</strong>y also <strong>in</strong>cluded the lead<strong>in</strong>g effects of <strong>in</strong>termediate D.-excitations.<br />

6 This is, however, not the only difference between the two schemes. For example, <strong>in</strong> the KSW formalism the<br />

unitarity of the S-matrix is only given perturbatively.<br />

7 A visible closeness of the phase shifts from the <strong>in</strong>complete NLO and from NNLO is accidental.


134<br />

10<br />

8<br />

4<br />

2<br />

o o<br />

• Nijmegen PSA<br />

NNLO<br />

NLO<br />

LO<br />

NNLO (KSW)<br />

NLO (KSW)<br />

0.1<br />

4. <strong>The</strong> two-nuc1eon system: numerical results<br />

/<br />

/<br />

/<br />

/<br />

"<br />

"<br />

0.2<br />

P [GeV]<br />

/<br />

/<br />

/<br />

/<br />

/<br />

/<br />

"<br />

"<br />

I<br />

I<br />

I<br />

I<br />

I<br />

/<br />

/<br />

/<br />

/<br />

/<br />

/<br />

/<br />

J<br />

//1<br />

Figure 4.5: Predictions for the mix<strong>in</strong>g parameter 1:1 for nucleon cms momenta p<br />

below 350 MeV. <strong>The</strong> short-dashed, long-dashed and solid curves represent our LO,<br />

NLO and NNLO results, <strong>in</strong> order. For comparison, the NLO [91J and NNLO [210J<br />

results <strong>in</strong> the KSW scheme are also shown. <strong>The</strong> filled squares depict the Nijmegen<br />

PSA results.<br />

to NLO is not due to <strong>in</strong>clusion of the lead<strong>in</strong>g TPE but ma<strong>in</strong>ly because the lead<strong>in</strong>g short range<br />

contact term with two derivatives is taken <strong>in</strong>to account.<br />

<strong>The</strong> P-waves have also been recently calculated <strong>in</strong> the KSW scheme, see fig. 9 of ref. [211J. <strong>The</strong><br />

lead<strong>in</strong>g non-vanish<strong>in</strong>g contributions to the phase shifts come out <strong>in</strong> this approach at NL08 from<br />

the (non-iterated) OPE and the first corrections (NNLO) correspond to a s<strong>in</strong>gle iteration of the<br />

OPE. <strong>The</strong> contact <strong>in</strong>teractions with two and more derivatives are expected to contribute at higher<br />

orders. No free parameters appear <strong>in</strong> the calculation of the phase shifts <strong>in</strong> these channels. <strong>The</strong><br />

results shown <strong>in</strong> ref. [211 J should, <strong>in</strong> pr<strong>in</strong>ciple, be compared to our LO calculations. <strong>The</strong> difference<br />

is that we iterate the OPE <strong>in</strong>f<strong>in</strong>itely many times (and not just one time as <strong>in</strong> ref. [211 J). Compar<strong>in</strong>g<br />

the NLO and NNLO phase shifts presented <strong>in</strong> [211 J with each other and with the phase shifts<br />

shown <strong>in</strong> fig. 4.6 we conclude, that the one-pion exchange becomes non-perturbative <strong>in</strong> sp<strong>in</strong> triplet<br />

channels at momenta comparable with M7r • As already stressed before, one needs to <strong>in</strong>clude the<br />

lead<strong>in</strong>g short range effects to obta<strong>in</strong> a reasonable description of the phases at <strong>in</strong>termediate energies<br />

<strong>in</strong> the 1 P1 and 3 Po channels. This observation is also confirmed by the analysis of ref. [211],<br />

8 At lead<strong>in</strong>g order these phase shifts are zero.<br />

0.3<br />

I


4.3. Phase shifts<br />

I PI [deg]<br />

0 _---,- -_. .. .- -,_-_ __._-_...<br />

.-_ ____,<br />

-5<br />

-10<br />

-15<br />

-20<br />

-25<br />

-30<br />

-35 '---<br />

o 0.05 0.1 0.15 0.2 0.25 0.3<br />

3 PI [deg]<br />

o �---,- --. .. .- -,- -- --.- --. .. .- -- -- -,<br />

-5<br />

-10<br />

-15<br />

-20<br />

-25<br />

-30<br />

-35<br />

-40 '---<br />

o 0.05 0.1 0.15 0.2 0.25 0.3<br />

--'- -- -- -'- --'- -- --'- -- -- -'- -- -'<br />

--'- -- --'- --'- -- --'- -- --'- -- -- -'<br />

EI [deg]<br />

3 Po [deg]<br />

135<br />

80 r--,-<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

o<br />

-10<br />

-20<br />

14 .--- -,- --,- -,- -�- -�-�<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

-30 '---<br />

o 0.05 0.1 0.15 0.2 0.25 0.3<br />

3 P 2 [deg]<br />

60 ,--,- --,- -,- -,- --,- -,<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0.05 0.1 0.15 0.2 0.25 0.3<br />

o<br />

//


136 4. <strong>The</strong> two-nucleon system: numerical results<br />

0<br />

-5<br />

-10<br />

I PI<br />

-1 5 , , , " , , ,<br />

-20<br />

-25<br />

-30<br />

-35<br />

0 0.05 0.1 0.15<br />

[deg]<br />

- - ------- -----<br />

,<br />

,<br />

,<br />

,<br />

,<br />

'0'" ,<br />

,<br />

,<br />

'-


4.3. Phase shifts 137<br />

12<br />

10<br />

1 D2 [deg] 3Dl [deg]<br />

, ,<br />

, ,<br />

�,<br />

, , -10 '<br />

, ,<br />

��':--''':,:::-...<br />

8<br />

, )v<br />

, -15<br />

', ........ , ........ '<br />

/ ,<br />

, , -20<br />

"::�:-. ..........<br />

6<br />

, , ,<br />

, ,<br />

,<br />

, , ,<br />

-25<br />

,<br />

, , , , , , , / , ,<br />

4 , , , , -30<br />

,<br />

, , , , ,<br />

, , ,<br />

,<br />

, ,<br />

-35<br />

2 , / -- -------<br />

, , , ,<br />

- - -- -40<br />

t":'-"'.<br />

0 -45<br />

0 0.05 0.1 0.15 0.2 0.25 0.3 0 0.05 0.1 0.15 0.2 0.25 0.3<br />

3D2 [deg] 3D 3 [deg]<br />

40 6<br />

35 4 0<br />

30<br />

25 //"


138 4. <strong>The</strong> two-nuc1eon system: numerical results<br />

20<br />

.-.<br />

950 MeV<br />

.... 15<br />

0><br />

Q)<br />

::2..<br />

10<br />

(\)<br />

0<br />

875 MeV<br />

800 MeV<br />

• Nijm PSA<br />

•<br />

I 5<br />

0<br />

--.J<br />

(\)<br />

z 0<br />

-5<br />

20<br />

0 0.1 0.2 0.3<br />

.-. ....<br />

0><br />

15<br />

950 MeV<br />

875 MeV<br />

Q)<br />

::2..<br />

10<br />

(\)<br />

800 MeV<br />

• Nijm PSA •<br />

0<br />

�<br />

I 5<br />

0<br />

--.J<br />

C')<br />

z 0<br />

-5<br />

- --- ------------::.= -<br />

0 0.1 0.2 0.3<br />

E1ab [GeV]<br />

Figure 4.9: <strong>The</strong> 1 D2 partial wave at NNLO for three different values of the<br />

cut-off A (upper panel) and at N3LO (lower panel). <strong>The</strong> diamonds are the<br />

result of the Nijmegen partial wave analysis.<br />

- -<br />

- -


4.3. Phase shifts 139<br />

-0.5<br />

1 F3 [deg]<br />

3 F2 [deg]<br />

O �--,- --�- --.- -- -.- --�- --. 6 .---�- -- -.- --�- --.- -- -�- --.<br />

-1<br />

-1 .5<br />

-2<br />

-2.5<br />

-3<br />

-3.5<br />

-4<br />

-4.5<br />

o<br />

-1<br />

-2<br />

-3<br />

-4<br />

'\:" '\"-,:,<br />

"�·


140 4. <strong>The</strong> two-nucleon system: numerical results<br />

More precisely, we have one <strong>in</strong>dependent parameter <strong>in</strong> each D-wave. Thus the cut-off <strong>in</strong>dependence<br />

will be restored by the runn<strong>in</strong>g of the correspond<strong>in</strong>g LECs. To illustrate this, we show<br />

<strong>in</strong> the lower panel of fig. 4.9 the partial N3LO results for the 1 D2 channel. <strong>The</strong> correspond<strong>in</strong>g<br />

potential consists of the NNLO terms plus one N3LO contact <strong>in</strong>teraction. As expected, the cut-off<br />

dependence of the phase shift is very much reduced compared to the NNLO result.9 Of course, this<br />

illustrative example can not substitute for a complete N3LO calculation, but one should expect<br />

very similar results. Note that accord<strong>in</strong>g to our f<strong>in</strong>d<strong>in</strong>gs, the NNLO potential <strong>in</strong> all the D-wave<br />

channels is not weak enough to be treated perturbatively, as it has been done <strong>in</strong> ref. [108]. <strong>The</strong><br />

potential has to be iterated to all orders <strong>in</strong> the LS equation. Only then one obta<strong>in</strong>s a reasonable<br />

description of the phase shifts <strong>in</strong> these partial waves. Concern<strong>in</strong>g the F-waves, which are shown<br />

<strong>in</strong> fig. 4.10, 1 F 3 and 1: 3 are well described, whereas the NNLO TPEP is visibly too strong <strong>in</strong> 3 F2,<br />

3 F 3 , and 3 F4• This can be cured at higher orders by contact <strong>in</strong>teractions. More precisely, a N3LO<br />

calculation should be sufficient. Our phases <strong>in</strong> the F-waves look very similar to those shown <strong>in</strong><br />

ref. [108]. Consequently, a perturbative treatment of the potential <strong>in</strong> these channels is justified.<br />

<strong>The</strong> lead<strong>in</strong>g non-vanish<strong>in</strong>g contributions to the phases <strong>in</strong> the D-waves <strong>in</strong> the KSW sheme result<br />

at NLO from the non-iterated OPE.1° <strong>The</strong> first corrections come out from a s<strong>in</strong>gle iteration of<br />

the OPE at NNLO. <strong>The</strong> results for the 1 D2 and 3 D2 phases shown <strong>in</strong> fig. 10 of [211] are rather<br />

elose to our LO approximation. In the case of the 1 D2 channel, the OPE term projected onto the<br />

correspond<strong>in</strong>g partial wave is quite weak, so that iterat<strong>in</strong>g the potential <strong>in</strong> the LS equation does<br />

not improve the result obta<strong>in</strong>ed with the Born approximation. For the 3 D2 partial wave, iteration<br />

of the OPE is more important. <strong>The</strong> NNLO result of ref. [211] improves the Born approximation<br />

significantly, see fig. 10 <strong>in</strong> [211], and is elose to our LO prediction. In the case of the 3 D 3 partial<br />

wave, the authors of [211] observe a good agreement with the data at NNLO, i.e. with the Tmatrix<br />

given by sum of the OPE and its s<strong>in</strong>gle iteration. Accord<strong>in</strong>g to our analysis, we stress<br />

that this agreement might be fortituous, because the terms result<strong>in</strong>g from furt her iterat<strong>in</strong>g the<br />

OPE are of the same size as those ones <strong>in</strong>eluded <strong>in</strong> the NNLO calculation <strong>in</strong> [211]. In particular,<br />

after summ<strong>in</strong>g up an <strong>in</strong>f<strong>in</strong>ite series of the iterated OPE we obta<strong>in</strong> the phase shift, see LO result<br />

<strong>in</strong> fig. 4.8, which is totally different to the NNLO calculation of [211]. Furthermore, as already<br />

po<strong>in</strong>ted out above, the dom<strong>in</strong>ant effect <strong>in</strong> this channel is due to the correlated two-pion exchange,<br />

which starts to contribute <strong>in</strong> the KSW scheme at higher orders and is not <strong>in</strong>corporated <strong>in</strong> the<br />

NLO and NNLO calculations <strong>in</strong> [211].<br />

Compar<strong>in</strong>g our results to the ones obta<strong>in</strong>ed by Ord6iiez et al. [78] we note that our predictions for<br />

the 1 D2 and 3 D 1 phase shifts and for the mix<strong>in</strong>g parameter 1:2 are slightly better at <strong>in</strong>termediate<br />

energies, whereas those one for 3 D2 are a somewhat worse. Unfortunately, the 3 D 3 partial wave<br />

is not shown <strong>in</strong> ref. [78].<br />

4.3.4 Peripheral waves<br />

In figs. 4.11, 4.12 and 4.13 we show the G-, H- and I-waves together with the mix<strong>in</strong>g parameters<br />

1:4,5,6' <strong>The</strong>se partial waves were first discussed <strong>in</strong> detail by the Munich group [108]. <strong>The</strong>ir calculation<br />

was perturbative and based on dimensional regularization of the TPE graphs. However,<br />

for these partial waves the iteration becomes unimportant and our f<strong>in</strong>d<strong>in</strong>gs confirm their results.<br />

<strong>The</strong> description of IG4, 3G 3 , 3G5, 3 H5, 3 H6, 3 h and 3 h is visibly improved by the NNLO TPEP.<br />

Only <strong>in</strong> 116 the NLO result is better than the NNLO one. Of course, for the peripheral partial<br />

9<strong>The</strong> situation here is very much similar to the one with the 1 H and 3 Po phases at lead<strong>in</strong>g order considered <strong>in</strong><br />

the preced<strong>in</strong>g section.<br />

10<br />

As <strong>in</strong> the case of the P-waves, these phase shifts are zero at lead<strong>in</strong>g order.


4.3. Phase shifts 141<br />

I G4 [deg]<br />

2 °<br />

1.8 -0.5<br />

1.6<br />

1.4 -1 .5<br />

1.2<br />

1 0<br />

0<br />

.-- ;---"<br />

-1<br />

-2<br />

-2.5<br />

3 G3 [deg]<br />

0,8 -3 '�:.' �<br />

- - - -<br />

"<br />

,<br />

"<br />

,<br />

,<br />

,<br />

'�" d><br />

"�;��" 0<br />

.<br />

0,6<br />

-3,5<br />

0.4<br />

-<br />

.... .... . -:.<br />

-:.",:,-::- '<br />

-4<br />

'���"<br />

"'�§'-<br />

0,2 -4.5<br />

"<br />

�'� "<br />

' , ° -5<br />

:>. ,<br />

° 0.05 0,1 0, 15 0.2 0,25 0.3 ° 0,05 0.1 0,15 0,2 0,25 0,3<br />

3 G4 [deg]<br />

8 0,2<br />

7 .' - °<br />

6<br />

:J>o-;:/<br />

-;>;�<br />

.;.<br />

5 / -0.4 '- , :.�- ,<br />

---<br />

. .;;;:.",<br />

-0.2<br />

4 ,p:'-"'" -0.6<br />

,/<br />

"<br />

3 -0.8<br />

2 -1<br />

1 -1 .2<br />

3 G5 [deg]<br />

, , , ,<br />

0<br />

, , ,<br />

,<br />

,<br />

, , , , ,<br />

,<br />

,<br />

,<br />

,<br />

,<br />

,<br />

,<br />

,<br />

, , ,<br />

, , , ,<br />

° -1.4<br />

0 0.05 0,1 0.15 0.2 0.25 0.3 ° 0,05 0.1 0.15 0.2 0.25 0.3<br />

-0.2<br />

-0.4<br />

-0,6<br />

-0.8<br />

E4 [deg]<br />

O �::;c- -.- -- -.- -- --,- -.- -- -.- -- -,<br />

-1<br />

-1.2<br />

-1 .4<br />

'--_-'--_--'-_---L __ -'--_-'-_-'-'<br />

-1 .6<br />

° 0.05 0.1 0.15 0.2 0.25 0,3<br />

Figure 4.11: Predictions for the G-waves and the mix<strong>in</strong>g parameter E4 (<strong>in</strong> degrees) for nucleon<br />

laboratory energies E1ab below 300 MeV. For notations, see fig. 4.4.


142 4. <strong>The</strong> two-nuc1eon system: numerical results<br />

-0.2<br />

IH5 [deg]<br />

0 0.6<br />

-0.4 0.5<br />

3H4 [deg]<br />

-0.6 0.4 , ,f«'<br />

-0.8 , //<br />

0.3 ,4'<br />

-1<br />

,<br />

, ,/'<br />

-1.2 "''''', 0.2 ,�<br />

.<br />

,<br />

"'


4.3. Phase shifts<br />

0.45 .---.,.- -- -,- -- -- -r- -.,- --r- --,<br />

0.4<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0. 1<br />

0.05<br />

.l. .. .- -- --'- -- -- -'- --'- -- --'- -- -'<br />

O ��...<br />

o 0.05 0.1 0.15 0.2 0.25 0.3<br />

2.5 r--- -,- -_,- -.- -- -,- -- -,- -- -,<br />

2<br />

1.5<br />

0.5<br />

0 �4=::.<br />

o 0.05 0.1 0.15 0.2 0.25 0.3<br />

0<br />

-0. 1<br />

-0.2<br />

-0.3<br />

-0.4<br />

-0.5<br />

-0.6<br />

0 0.05 0.1<br />

.. .L. .- -- -l.- --'- -- --'- -- -'- -- -- -'<br />

E6 [deg]<br />

<br />

-0.1<br />

-0.2<br />

-0.3<br />

-0.4<br />

-0.5<br />

-0.6<br />

-0.7<br />

-0.8<br />

-0.9<br />

<br />

143<br />

o ��=---.-�- -�-�- -,<br />

-1<br />

-0.05<br />

-0.1<br />

-0.15<br />

-0.2<br />

-0.25<br />

-0.3<br />

-0.35<br />

o 0.05 0.1 0.15 0.2 0.25 0.3<br />

O ���-_r-_,--.-<br />

-._- -.<br />

-0.4 "--_ _'___-'-_ ___'_ _ __'_ __ L----I<br />

o 0.05 0.1 0.15 0.2 0.25 0.3<br />

0.15 0.2 0.25 0.3<br />

Figure 4.13: Predictions for the I-waves and the mix<strong>in</strong>g parameter E6 (<strong>in</strong> degrees) for nucleon<br />

laboratory energies E1ab below 300 MeV. For notations, see fig. 4.4<br />


144 4. <strong>The</strong> two-nuc1eon system: numerical results<br />

waves OPE does already a fairly good job, but the improvement <strong>in</strong> some of these phases due to<br />

the NNLO TPEP clearly underl<strong>in</strong>es the importance of chiral symmetry <strong>in</strong> a precise description of<br />

low-energy nuclear physics.<br />

<strong>The</strong> most <strong>in</strong>terest<strong>in</strong>g situation <strong>in</strong> the peripheral partial waves appears for the 3 G5 phase,u In<br />

these channel the OPE and the lead<strong>in</strong>g TPE are not sufficient to describe the phase shift correctly<br />

at energies higher than 100 MeV and the largest discrepancy of our NLO predictions with the<br />

data is observed. Add<strong>in</strong>g the sublead<strong>in</strong>g TPE exchange (NNLO potential) that <strong>in</strong>corporates the<br />

lead<strong>in</strong>g effects of the heavier meson exchanges and <strong>in</strong>termediate ..6.-excitations, which is hidden <strong>in</strong><br />

the values of the coupl<strong>in</strong>gs Cl,3,4 allows to improve the NLO result considerably and to obta<strong>in</strong> an<br />

excellent parameter free and cut-off <strong>in</strong>dependent description of the phase shift. Perform<strong>in</strong>g the<br />

calculations with the NNLO-Ll potential we were even able to separate the lead<strong>in</strong>g effects of the<br />

..6.'s. We will comment on that later on. It is comfort<strong>in</strong>g to have such a clear <strong>in</strong>dication that the<br />

values for Cl,3,4 fixed from 7f N scatter<strong>in</strong>g are consistent with N N calculations.<br />

4.4 Deuteron properties<br />

We now turn to the bound state properties. At NNLO (NLO), we consider the exponential<br />

regulator (4.13) with n = 2 and A = 1.05 (0.60) GeV, which reproduces the deuteron b<strong>in</strong>d<strong>in</strong>g<br />

energy with<strong>in</strong> an accuracy of about one third of a permille (2.5 percent).We make no attempt to<br />

reproduce this number with better precision.12 <strong>The</strong> results for the phase shifts, which correspond<br />

to these values of the exponential regulator, are very similar to those obta<strong>in</strong>ed with the sharp<br />

cutoff A = 0.875 (0.50) GeV. For completeness, we list <strong>in</strong> table 4.6 the values of the coupl<strong>in</strong>g<br />

constants <strong>in</strong> the 3 SI - 3 Dl channel correspond<strong>in</strong>g to the exponential regulator.<br />

NLO -0.0363 0.186 -0.190<br />

NNLO -14.497 15.588 -4.358<br />

NNLO-..6. -8.637 7.264 -0.447<br />

Table 4.6: <strong>The</strong> values of the LECs as determ<strong>in</strong>ed from the 3 SI _ 3 Dl channel. We use an<br />

exponential cut-off with A = 0.6 GeV and 1.05 GeV at NLO and NNLO (NNLO-..6.), respectively.<br />

<strong>The</strong> LEC 0 3 5 1 is <strong>in</strong> 104 GeV-2 , while the others are <strong>in</strong> 104 GeV-4 . <strong>The</strong> parameters of the NLO,<br />

NNLO and NNLO-..6. potentials are obta<strong>in</strong>ed from fitt<strong>in</strong>g to the Nijmegen PSA.<br />

In table 4.7 we collect the deuteron properties <strong>in</strong> comparison to the data and two realistic potential<br />

model predictions (the pert<strong>in</strong>ent formulae are given <strong>in</strong> app. H). We give the results for NLO and<br />

NNLO. We note that the deviation of our prediction for the quadrupole moment compared to<br />

the empirical value is slightly larger than for the realistic potentials. <strong>The</strong> asymptotic D / S ratio,<br />

called ry, and the strength of the asymptotic wave function, As, are weIl described. <strong>The</strong> D-state<br />

probability, which is not an observable, is most sensitive to small variations <strong>in</strong> the cut-off. At<br />

NLO, it is comparable and at NNLO somewhat larger than the one obta<strong>in</strong>ed <strong>in</strong> the CD-Bonn or<br />

ll Note that the 3Zj=I+I-phases show, <strong>in</strong> general, the largest effects when go<strong>in</strong>g from NLO to NNLO and thus are<br />

most sensitive to the short range physics. <strong>The</strong> three extreme cases are the 1 P 2 -, 3 D 3 - and 3G5-waves. We assurne<br />

some sort of cancelation <strong>in</strong> the potential <strong>in</strong> these channels, wh ich leads to a suppression of the OPE and the lead<strong>in</strong>g<br />

TPE contributions.<br />

12Note that the deuteron b<strong>in</strong>d<strong>in</strong>g energy is not used to fit the free parameters <strong>in</strong> the potential.


4.4. Deuteron properties 145<br />

the Nijmegen-93 potential. This <strong>in</strong>creased value of PD is related to the strong NNLO TPEP. At<br />

N3LO, we expect this to be compensated by dimension four counterterms. Altogether, we f<strong>in</strong>d<br />

a much improved description of the deuteron as compared to ref. [78], where the b<strong>in</strong>d<strong>in</strong>g energy,<br />

magnetic moment and quadrupole moment were used <strong>in</strong> fits. Our results are almost as precise as<br />

the ones obta<strong>in</strong>ed <strong>in</strong> the much more complicated and less systematic meson-exchange models.<br />

11 Ed [MeV]<br />

Qd [fm2]<br />

77<br />

rd [fm]<br />

As [fm-l/2]<br />

PD[%]<br />

NLO 1 NNLO 1 NNLO-Ll 11 Nijm93 1 CD-Bonn 11<br />

-2.1650 -2.2238 -2.1849 -2.224575 -2.224575<br />

0.266 0.262 0.268 0.271 0.270<br />

0.0248 0.0245 0.0247 0.0252 0.0255<br />

1.975 1.967 1.970 1.968 1.966<br />

0.866 0.884 0.873 0.8845 0.8845<br />

3.62 6.11 5.00 5.76 4.83<br />

Exp.<br />

-2.224575(9)<br />

0.2859(3)<br />

0.0256(4)<br />

1.9671(6)<br />

0.8846(16)<br />

-<br />

Table 4.7: Deuteron properties derived from our chiral potential compared to two "realistic"<br />

potentials (Nijmegen-93 and CD-Bonn) and the data. Here, rd is the root-mean-square matter<br />

radius. An exponential regulator with A = 600 MeV and A = 1.05 Ge V at NLO and NNLO<br />

(NNLO-Ll), <strong>in</strong> order, is used.<br />

It is also <strong>in</strong>terest<strong>in</strong>g to compare our f<strong>in</strong>d<strong>in</strong>gs with the results reported by Park et al. [105]. <strong>The</strong>re,<br />

np scatter<strong>in</strong>g <strong>in</strong> the 3 SI-3 Dl channel as well as various deuteron properties are <strong>in</strong>vestigated. <strong>The</strong><br />

potential considered <strong>in</strong> this work consists of the lead<strong>in</strong>g OPE plus contact <strong>in</strong>teractions without<br />

and with two derivatives. To fix three free parameters correspond<strong>in</strong>g to these contact terms the<br />

authors of [105] use the deuteron b<strong>in</strong>d<strong>in</strong>g energy and the experimental values for As and 77. For<br />

the quadrupole moment they obta<strong>in</strong> values from 0.261 to 0.274 fm2 depend<strong>in</strong>g on the choice of<br />

the cut-off. <strong>The</strong> D-state prob ability varies from 3.16% to 5.39%.<br />

Kaplan et al. have recently reported on the NLO calculation of the deuteron charge radius and<br />

the quadrupole moment <strong>in</strong> the KSW scheme [92]. <strong>The</strong>y found analytic expressions for these<br />

quantities. Hav<strong>in</strong>g fixed three free parameters from the 3 SI phase shift, deuteron b<strong>in</strong>d<strong>in</strong>g energy<br />

and magnetic moment, they made the follow<strong>in</strong>g predictions for the deuteron charge radius and<br />

the quadrupole moment: reh = 1.89 fm 13 and Qd = 0.40 fm2. <strong>The</strong> large discrepancy for the<br />

quadrupole moment is because this quantity is zero at LO <strong>in</strong> this formalism. Thus, the (formally)<br />

NLO correction for Q d yields the first non-vanish<strong>in</strong>g contribution.<br />

<strong>The</strong> coord<strong>in</strong>ate space S- and D-state wave functions obta<strong>in</strong>ed <strong>in</strong> our approach are shown <strong>in</strong><br />

fig. 4.14. At NLO they look qualitatively quite similar to the ones obta<strong>in</strong>ed from various potential<br />

models. At NNLO one obta<strong>in</strong>s a lot of structure <strong>in</strong> the wave functions below 2 fm. This is because<br />

two additional spurious (unphysical) very deeply bound states appear <strong>in</strong> the 3S1 _3 Dl channel.<br />

<strong>The</strong> b<strong>in</strong>d<strong>in</strong>g energy of these states varies strongly by chang<strong>in</strong>g the cut-off. For the exponential<br />

regulator with A = 1.05 GeV we get b<strong>in</strong>d<strong>in</strong>g energies of EI = 47.1 GeV and E 2<br />

= 2.5 GeV,<br />

respectively. This values correspond to center-of-mass momenta of about a few Ge V which is<br />

clearly out of the applicability range of the low-momentum effective theory. Furthermore, because<br />

of such huge values of the b<strong>in</strong>d<strong>in</strong>g energy these unphysical states obviously do not <strong>in</strong>fluence physics<br />

<strong>in</strong> the energy region below 350 MeV that we are <strong>in</strong>terested <strong>in</strong> and can, <strong>in</strong> pr<strong>in</strong>ciple, be <strong>in</strong>tegrated<br />

1 3 <strong>The</strong> experimental value of the charge radius is 2.1303±O.0066 fm [212].


146<br />

---<br />

.... .<br />

�<br />

-<br />

---<br />

.... .<br />

.... .. .. .<br />

:::J<br />

0.5<br />

0<br />

0.7<br />

0.2<br />

-0.3<br />

0<br />

o<br />

/<br />

/'<br />

1<br />

1<br />

/" --<br />

/ " "<br />

---<br />

2 3<br />

2 3<br />

4<br />

4. <strong>The</strong> two-nuc1eon system: numerical results<br />

- - -<br />

5<br />

S-wave<br />

--- D-wave<br />

- - - - - - --<br />

6 7 8 9<br />

S-wave<br />

--- D-wave<br />

- - - - - - - - - - - --- -<br />

10<br />

4 5 6 7 8 9 10<br />

r [fm]<br />

Figure 4.14: Coord<strong>in</strong>ate space representations of the S- (solid l<strong>in</strong>e) and Dwave<br />

(dashed l<strong>in</strong>e) deuteron wave functions at NLO (upper panel) and NNLO<br />

(lower panel).


4.4. Deuteron properties<br />

---<br />

.... .<br />

---<br />

3:<br />

�<br />

---<br />

.... .<br />

---<br />

:::J<br />

---<br />

.... .<br />

---<br />

3:<br />

---<br />

.... .<br />

---<br />

:::J<br />

2<br />

1 .5 S-wave<br />

1<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

2<br />

.... .. .<br />

-... .. .<br />

./<br />

-... .. .<br />

./<br />

--- - ---<br />

- - -<br />

- - - D-wave<br />

0 1 2 3<br />

1.5 S-wave<br />

1<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

�<br />

- - - D-wave<br />

0 1 2 3<br />

r [fm]<br />

Figure 4.15: Coord<strong>in</strong>ate space representations of the S� (solid l<strong>in</strong>e) and D�<br />

wave (dashed l<strong>in</strong>e) for the two unphysical boundstates.<br />

147


148<br />

�<br />

....<br />

---<br />

�<br />

�<br />

....<br />

---<br />

::J<br />

0.7<br />

0.5<br />

0.3<br />

0.1<br />

-0.1<br />

-0.3<br />

0.2<br />

0. 15<br />

0.1<br />

0.05<br />

0<br />

-0.05<br />

0<br />

1 2<br />

r\<br />

I >-�A"<br />

I '\<br />

I / ""<br />

I I '<br />

I I "�<br />

I �<br />

I<br />

I ,�<br />

I I<br />

.... �<br />

f /<br />

.1..- '<br />

3<br />

4 5<br />

o 1 2 3 4 5 6<br />

r [fm]<br />

4. <strong>The</strong> two-nuc1eon system: numerical results<br />

_____________ 0 CD-Bonn<br />

NNLO<br />

6 7 8 9 10<br />

--- NNLO<br />

---- CD-Bonn<br />

- --<br />

- ---. ._ --<br />

7 8 9 10<br />

Figure 4.16: Coord<strong>in</strong>ate space representations of the S- (upper panel) and<br />

D-wave (lower panel) deuteron wave functions at NNLO compared to the one<br />

from the CD-Bonn potential.


4.5. Results for the NNLO-f:. approach 149<br />

out.14 A very similar situation for the spurious states happens at NNLO also <strong>in</strong> other S-, P- and<br />

D-waves. Note that these unphysical states are purely short range effects: as one can see from the<br />

fig. 4.15 the wave-functions correspond<strong>in</strong>g to such states become negligable for distances above 2<br />

fm. <strong>The</strong> correspond<strong>in</strong>g root-mean-square matter radii are (ri)1/2 = 0.27 fm and (r�)1/2 =<br />

0.40 fm.<br />

For separations above 2 fm the NNLO deuteron wave-function is very elose to the one obta<strong>in</strong>ed<br />

with the CD-Bonn potential.15 This is shown <strong>in</strong> fig. 4.16. For a discussion on such deeply bound<br />

states <strong>in</strong> effective field theories, see ref. [141]. We end this paragraph with the follow<strong>in</strong>g remark:<br />

Accord<strong>in</strong>g to Lev<strong>in</strong>son's theorem, the difference between the phase shift at the orig<strong>in</strong> and at<br />

<strong>in</strong>f<strong>in</strong>ity is given by mf, with n the number of bound states. Thus, the phase shifts <strong>in</strong> the S-, Pand<br />

D-waves should become unphysical at large energies. This is, however, of no relevance for<br />

the EFT s<strong>in</strong>ce we do not attempt to correctly reproduce (or predict) the phase shift behavior for<br />

all energies (from threshold to <strong>in</strong>f<strong>in</strong>ity).<br />

4.5 Results for the NNLO-ß approach<br />

We would like now to discuss the results obta<strong>in</strong>ed with the NNLO-f:. potential. While the LECs<br />

C 3 and C4 are dom<strong>in</strong>ated by the f:., see ref. [200], most of the correlated two-pion exchange is<br />

parametrized <strong>in</strong> Cl . Here, we are mostly <strong>in</strong>terested <strong>in</strong> <strong>in</strong>vestigat<strong>in</strong>g the role of the f:. <strong>in</strong> all partial<br />

waves and therefore keep the cut-off A fixed at 875 MeV but refit the LECs C i (see table 4.1 for<br />

their values). More precisely, a best global fit leads to a very similar cut-off value as <strong>in</strong> NNLO.<br />

Note that, as expected, the precision of the fits is better than NLO <strong>in</strong> the theory without f:. but<br />

somewhat worse than the correspond<strong>in</strong>g NNLO fits. This is due to the absence of contributions<br />

from higher mass states encoded <strong>in</strong> the LEes C 1,3 ,4 not present <strong>in</strong> the NNLO-f:. approach discussed<br />

here. We aga<strong>in</strong> po<strong>in</strong>t out that it would be <strong>in</strong>terest<strong>in</strong>g to calculate the NNLO corrections with<br />

explicit f:. <strong>in</strong> the framework of the EFT expansion as detailed <strong>in</strong> ref. [201]. This would also require<br />

refitt<strong>in</strong>g of the LECs C1, 3 ,4' In fact, a study of pion-nueleon scatter<strong>in</strong>g <strong>in</strong> that framework is not<br />

yet available and thus the correspond<strong>in</strong>g LECs are not determ<strong>in</strong>ed.<br />

Let us now discuss the results of the NNLO-f:. approach. Formally, we follow the Munich<br />

group [109] (for details, see sec. 3.8.3). Aga<strong>in</strong>, it is important to stress that we iterate our<br />

potential to all orders. We refra<strong>in</strong> from show<strong>in</strong>g all partial waves but rat her discuss some particular<br />

examples, collected <strong>in</strong> fig. 4.17. <strong>The</strong> two S-waves shown <strong>in</strong> that figure are not very different<br />

from the NNLO result, although the description of 3 Sl is slightly worse at higher energies. All<br />

P-waves are very similar <strong>in</strong> NNLO and NNLO-f:., the most visible difference appears <strong>in</strong> E1, as<br />

can be seen <strong>in</strong> the figure.<br />

<strong>The</strong> most dramatic effects appear <strong>in</strong> the D-waves. This is expected s<strong>in</strong>ce these are parameter-free<br />

predictions and we had already po<strong>in</strong>ted out the cut-off sensitivity <strong>in</strong> sec. 4.3.3. Interest<strong>in</strong>gly, the<br />

description of 1 D 2 is almost identical <strong>in</strong> the two approaches, consequently any important isobar<br />

effect <strong>in</strong> this partial wave can be weIl represented by contact <strong>in</strong>teractions with their strength given<br />

by the coupl<strong>in</strong>g of the f:. to the 7f N system. In 3 D 3 (also shown <strong>in</strong> fig. 4.17) the absence of the<br />

scalar-isoscalar two-pion correlations is elearly visible. Our result thus confirms a f<strong>in</strong>d<strong>in</strong>g made<br />

14 As soon as one is deal<strong>in</strong>g with only the two-nucleon system there is no need to <strong>in</strong>tegrate out such unphysical<br />

states, s<strong>in</strong>ce this does not modify the low-energy observables. We refra<strong>in</strong> here from the discussion of the complicatians<br />

which may arise <strong>in</strong> three- and more-body calculations due to such spurious states. Note, however, that<br />

accard<strong>in</strong>g to aur power count<strong>in</strong>g one has an additional three-body force at NNLO which possibly can compensate<br />

the effects of the spurious states.<br />

1 5 We would like to thank Hiroyuki Kamada for supply<strong>in</strong>g us with the deuteron wave-function calculated with<br />

the CD-Bonn potential.


4.5. Results for the NNLO-ß approach 151<br />

already <strong>in</strong> the Bonn potential, namely that this particular partial wave is essential dom<strong>in</strong>ated by<br />

correlated TPE [213]. We also note that the description of 3 D1 and 3 D2 is worse <strong>in</strong> NNLO-ß than<br />

<strong>in</strong> NNLO. For the F -waves, the differences between the two approaches are very small, with the<br />

exception of 3 F4, which is improved <strong>in</strong> the presence of the isobar. <strong>The</strong> most significant effect <strong>in</strong><br />

the higher partial waves shows up <strong>in</strong> 3G5 as shown <strong>in</strong> fig. 4.17. Clearly, two-pion correlations not<br />

related to the ß play an important role to br<strong>in</strong>g the prediction for this partial wave <strong>in</strong> agreement<br />

with the data. <strong>The</strong> deuteron properties for an exponential regulator with A = 1.05 Ge V are listed<br />

<strong>in</strong> table 4.7. Most observables come out <strong>in</strong> between the NLO and NNLO results for the NNLO-ß<br />

approach. <strong>The</strong> sole exception is the quadrupole moment, which is improved.<br />

An important conclusion follow<strong>in</strong>g from comparison of the NNLO and NNLO-ß results is that<br />

simply us<strong>in</strong>g resonance saturation to encode the physics of the isobar <strong>in</strong> the dimension two pionnucleon<br />

LECs turns out to be a sufficient procedure <strong>in</strong> the two-nucleon sector. We also note that<br />

explicit isobar degrees of freedom were considered <strong>in</strong> ref. [78]. A direct comparison with their<br />

work is, however, not possible s<strong>in</strong>ce no separate result for fits with and without delta are given.


Chapter 5<br />

Isosp<strong>in</strong> violation <strong>in</strong> the two-nucleon<br />

system<br />

In this chapter we would like to discuss charge symmetry and charge <strong>in</strong>dependence break<strong>in</strong>g <strong>in</strong><br />

an effective field theory approach for few-nucleon systems. In particular, we will concentrate on<br />

the 1 So channel, <strong>in</strong> which the largest isosp<strong>in</strong> violat<strong>in</strong>g effects are observed. Further , we will use<br />

the formalism proposed by Kaplan, Savage and Wise (KSW) [91] throughout this chapter.<br />

It is weIl established that the nucleon-nucleon <strong>in</strong>teractions are charge dependent (for a review, see<br />

e.g. [216] ). For example, <strong>in</strong> the ISO channel one has for the scatter<strong>in</strong>g lengths a and the effective<br />

ranges r (n and p refers to the neutron and the proton, respectively)<br />

.6.rcIB<br />

1<br />

2" (ann + app) - anp = 5.7 ± 0.3 fm ,<br />

1<br />

2" (rnn + rpp) - rnp = 0.05 ± 0.08 fm . (5.1)<br />

<strong>The</strong>se numbers for charge <strong>in</strong>dependence break<strong>in</strong>g (CIB) are based on the Nijmegen potential<br />

and the Coulomb effect for pp scatter<strong>in</strong>g is subtracted based on standard methods.1 <strong>The</strong><br />

charge <strong>in</strong>dependence break<strong>in</strong>g <strong>in</strong> the scatter<strong>in</strong>g lengths is large, of the order of 25%, s<strong>in</strong>ce<br />

anp = (-23.714 ± 0.013) fm. In addition, there are charge symmetry break<strong>in</strong>g (CSB) effects<br />

lead<strong>in</strong>g to different values for the pp and nn threshold parameters,<br />

.6.acsB<br />

.6.rcsB<br />

app - ann = 1.5 ± 0.5 fm ,<br />

rpp - rnn = 0.10 ± 0.12 fm . (5.2)<br />

Both the CIB and CSB effects have been studied <strong>in</strong>tensively with<strong>in</strong> potential models of the<br />

nucleon-nucleon (NN) <strong>in</strong>teractions. In such approaches, the dom<strong>in</strong>ant CIB comes from the charged<br />

to neutral pion mass difference <strong>in</strong> the one-pion exchange (OPE), rv .6.agrBE 3.6±0.2 fm. Additional<br />

contributions come from 17f and 27f (TPE) exchanges. Note also that the charge dependence <strong>in</strong> the<br />

pion-nucleon coupl<strong>in</strong>g constants <strong>in</strong> OPE and TPE almost entirely cancel. In the meson-exchange<br />

picture, CSB orig<strong>in</strong>ates mostly from p - w mix<strong>in</strong>g, .6.a�s� rv 1.2 ± 0.4 fm. Other contributions due<br />

to 7r - 7], 7f - 7] ' mix<strong>in</strong>g or the proton-neutron mass difference are known to be much smaller.<br />

With<strong>in</strong> QCD, CSB and CIB are of course due to the different masses and charges of the up and<br />

down quarks. Such isosp<strong>in</strong> violat<strong>in</strong>g effects can be systematically analyzed with<strong>in</strong> the framework<br />

of chiral effective field theories. In the two-nucleon sector, a complication arises due to the<br />

1 In particular, the magnetic <strong>in</strong>ter action had also been to be considered.<br />

152


5.1 Isosp<strong>in</strong> violat<strong>in</strong>g effective Lagrangian 153<br />

unnaturally large S-wave scatter<strong>in</strong>g lengths. This can be dealt with <strong>in</strong> different manners. One<br />

is the approach proposed by We<strong>in</strong>berg, <strong>in</strong> which chiral perturbation theory is applied to the<br />

kernel of the Lippmann-Schw<strong>in</strong>ger equation (effective potential). This approach is very similar<br />

to the Hamiltonian formalism used <strong>in</strong> this work and expla<strong>in</strong>ed <strong>in</strong> detail <strong>in</strong> chapter3. This route<br />

was followed by van Kolck et al. , see refs [75], [74], [76], [78]. A different fashion to deal with<br />

low-energy nucleon-nucleon scatter<strong>in</strong>g is the approach recently proposed by Kaplan, Savage and<br />

Wise (KSW) [91].2 Essentially, one resums the lowest order local four-nucleon contact terms rv<br />

Co (Nt N)2 (<strong>in</strong> the S-waves) to generate the large scatter<strong>in</strong>g lengths and treats the rema<strong>in</strong><strong>in</strong>g effects<br />

perturbatively, <strong>in</strong> particular also pion exchange. This means that most low-energy observables<br />

are dom<strong>in</strong>ated by contact <strong>in</strong>teractions. <strong>The</strong> chiral expansion for NN scatter<strong>in</strong>g entails a new<br />

scale ANN of the order of 300 MeV, so that one can systematically treat external momenta up<br />

to the size of the pion mass. <strong>The</strong>re have been suggestions that the radius of convergence can<br />

be somewhat enlarged [88], but <strong>in</strong> any case ANN is considerably sm aller than the typical scale of<br />

about 1 Ge V appear<strong>in</strong>g <strong>in</strong> the pion-nucleon sector . For recent calculations of various properties of<br />

the two-nucleon system with<strong>in</strong> this formalism see e.g. refs. [87], [88], [92], [95], [98], [210], [211]. In<br />

this context, it appears to be particularly <strong>in</strong>terest<strong>in</strong>g to study CIB (or <strong>in</strong> general isosp<strong>in</strong> violation)<br />

which is believed to be dom<strong>in</strong>ated by long range pion effects. That is done here.3 First, we write<br />

down the lead<strong>in</strong>g strong and electromagnetic four-nucleon contact terms. It is important to note<br />

that <strong>in</strong> contrast to the pion or pion-nucleon sector, one can not easily lump the expansion <strong>in</strong><br />

small momenta and the electromagnetic coupl<strong>in</strong>g <strong>in</strong>to one expansion but rat her has to treat them<br />

separately.4 <strong>The</strong>n we consider <strong>in</strong> detail CIB. <strong>The</strong> lead<strong>in</strong>g effect starts out at order aQ-2, where Q<br />

is the generic expansion parameter <strong>in</strong> the KSW approach. It sterns from OPE plus a contact term<br />

of order a with a coefficient aE� l ) of natural size that scales as Q-2. Similarly, the lead<strong>in</strong>g CSB<br />

effect results from contact terms with four nucleon legs of order a and order E == mu - md, which<br />

also scale as Q-2. While <strong>in</strong> the case of E�l) this scal<strong>in</strong>g property is enforced by a cancellation<br />

of a divergence, the situation is a priori different for CSB. However, for a consistent count<strong>in</strong>g of<br />

all isosp<strong>in</strong> break<strong>in</strong>g effects related to strong or electromagnetic (ern) <strong>in</strong>sertions, one should count<br />

the quark mass difference and virtual photon effects similarly. Note, however, that these CIB and<br />

eSB terms are numerically much smaller than the lead<strong>in</strong>g strong contributions which scale as<br />

Q-l because a« 1 and (mu - md)/Ax «1. <strong>The</strong> correspond<strong>in</strong>g constants, which we call E�1,2),<br />

together with the strong parameters (as given <strong>in</strong> the work of KSW) can be determ<strong>in</strong>ed by fitt<strong>in</strong>g<br />

the three scatter<strong>in</strong>g lengths a pp , ann, an p and the np effective range.5 That allows to predict the<br />

moment um dependence of the np and the nn 1 So phase shifts. Based on these observations, we<br />

can <strong>in</strong> addition give a general classification for the relevant operators contribut<strong>in</strong>g to eIB and<br />

eSB <strong>in</strong> this scheme. Additional work related to long-range Coulomb photon exchange is necessary<br />

<strong>in</strong> the proton-proton system. We do not deal with this issue here but refer to recent work us<strong>in</strong>g<br />

EFT approaches <strong>in</strong> refs. [219] , [220], [221].<br />

5.1 Isosp<strong>in</strong> violat<strong>in</strong>g effective Lagrangian<br />

Let us first discuss the various parts of the effective Lagrangian underly<strong>in</strong>g the analysis of isosp<strong>in</strong><br />

violation <strong>in</strong> the two-nucleon system. To <strong>in</strong>clude virtual photons <strong>in</strong> the pion and the pion-nucleon<br />

2 <strong>The</strong>re exist by now modifications of this approach and it has been argued that it is equivalent to cut-off schemes.<br />

We do not want to enter this discussion here but rather stick to its orig<strong>in</strong>al version.<br />

3For a first look at these effects <strong>in</strong> an EFT framework (based on the We<strong>in</strong>berg power count<strong>in</strong>g) , see the work of<br />

van Kolck [75]. Electromagnetic corrections to the one-pion exchange potential have been considered <strong>in</strong> [218].<br />

4 This is because of the different power count<strong>in</strong>g schemes <strong>in</strong> these cases.<br />

5Whenever we talk of the pp system, we assume that the Coulomb effects have been subtracted.


154 5. Isosp<strong>in</strong> violation <strong>in</strong> the two-nuc1eon system<br />

system is by now a standard procedure [199], [222]-[227]. <strong>The</strong> lowest order (dimension two) pion<br />

Lagrangian takes the form<br />

(5.3)<br />

with f7r = 92.4MeV the pion decay constant, V' ft the (pion) covariant derivative conta<strong>in</strong><strong>in</strong>g the<br />

virtual photons, ( ) denotes the trace <strong>in</strong> flavor space. Further, X conta<strong>in</strong>s the light quark mass<br />

matrix M. Speak<strong>in</strong>g more precisely, X can be expressed <strong>in</strong> the most general case <strong>in</strong> terms of the<br />

scalar and pseudoscalar external sour ces s and p,6 respectively, as follows:<br />

X(x) = 2B(s(x) + ip(x)), (5.4)<br />

where the constant B is def<strong>in</strong>ed <strong>in</strong> eq. (3.134). Clearly, one has to set p = 0, s = M to end up with<br />

the usual QCD Lagrangian. Further, the last term <strong>in</strong> eq. (5.3) conta<strong>in</strong>s the nucleon charge matrix<br />

Q=ediag(I,0),7 and leads to the charged to neutral pion mass difference, 8M2 = M;± - M;o,<br />

via 8M2 = 87fcxC/ f;, i.e. C = 5.9· 10-5 GeV4. Note that to this order the quark mass difference<br />

mu - md does not appear <strong>in</strong> the meson Lagrangian (due to G-parity). That is chiefly the reason<br />

why the pion mass difference is almost entirely an electromagnetic (ern) effect. <strong>The</strong> equivalent<br />

pion-nucleon Lagrangian to second order8 takes the form<br />

Nt (iDo - g; a . ü) N + Nt { �� + Cl (X+) + (C2 - :�) U6 + C3UftUft C str 7rN<br />

+ l (q + 4�) [O"i,O"j]UiUj + C5 (X+ - �(X+)) +., .} N , (5.5)<br />

which is the standard heavy baryon effective Lagrangian <strong>in</strong> the rest-frame vft = (1,0,0,0).<br />

Further, m is the nucleon mass and Uft the chiral viel-be<strong>in</strong> <strong>in</strong>troduced <strong>in</strong> eq. (3.102), uft '"<br />

-ÖftrP/ f7r + ... , <strong>The</strong> quantities X± are def<strong>in</strong>ed via<br />

(5.6)<br />

and transform covariantly under chiral rotation, i.e. via<br />

90 I h h-l X± -"--'- -t X± = X± ,<br />

(5.7)<br />

where the compensator field h is def<strong>in</strong>ed <strong>in</strong> eq. (3.99). <strong>The</strong> contact <strong>in</strong>teractions to be discussed<br />

below do not modify the form of this Lagrangian (for a general discussion, see e.g. ref. [71]).<br />

Strong isosp<strong>in</strong> break<strong>in</strong>g is due to the operator '" C5. Electromagnetic terms to second order are<br />

given by [226]:9<br />

C;� = f;Nt {h (Q� - Q�) + hQ+(Q+) + h(Q� + Q�) + f4(Q+)2} N , (5.8)<br />

6<strong>The</strong> extern al fields s and p are <strong>in</strong>troduced <strong>in</strong> the QCD Lagrangian via the term -q(s - ip/5)q. <strong>The</strong> seal ar<br />

sour ce s has already been discussed <strong>in</strong> sec. 3.2. <strong>The</strong> transformation properties of the p under charge conjugation,<br />

parity transformation and chiral rotation can be obta<strong>in</strong>ed requir<strong>in</strong>g <strong>in</strong>variance of the above term <strong>in</strong> the same<br />

way as it has been done for s <strong>in</strong> sec. 3.2. In particular, one obta<strong>in</strong>s: p ---+ pe = pT, P ---+ pP = -p and<br />

p � pi = hLphj/ = hRph"[,l, where hR,L are the same matrices as <strong>in</strong> <strong>in</strong> eq. (3.98). Note further that the field p is<br />

hermitian: pt = p.<br />

70r equivalently, one can use the quark charge matrix e( � + T3 ) /2.<br />

8 Here and <strong>in</strong> what follows we count the nucleon mass <strong>in</strong> the same way as the scale Ax ' Note furt her that this<br />

Lagrangian was used <strong>in</strong> the context of the NNLO two-nucleon potential <strong>in</strong> sec. 3.8 as weil as <strong>in</strong> the discussion of<br />

the three-nucleon <strong>in</strong>teractions <strong>in</strong> sec. 3.9.<br />

gOne of these four terms can be elim<strong>in</strong>ated us<strong>in</strong>g the matrix relation given <strong>in</strong> ref. [227].


5.1 Isosp<strong>in</strong> violat<strong>in</strong>g effective Lagrangian 155<br />

with Q± = 1/2( uQut ± ut Qu) and A = A - (A) /2 projects onto the off-diagonal elements of the<br />

operator A. It can be checked [226] that the Q± transform covariantly under chiral SU(2) v x<br />

SU(2)A rotation, Le.:<br />

(5.9)<br />

Further, under parity and charge conjugation transformations one f<strong>in</strong>ds:<br />

Q± ---+ Q� =<br />

±Q�<br />

. (5.10)<br />

Evidently, the charge matrices always have to appear quadratic s<strong>in</strong>ce a virtual photon can never<br />

leave a diagram. <strong>The</strong> last two terms <strong>in</strong> eq. (5.8) are not observable s<strong>in</strong>ce they lead to an equal em<br />

mass shift for the proton and the neutron, whereas the operator rv h to this order gives the em<br />

proton-neutron mass difference. In what follows, we will refra<strong>in</strong> from writ<strong>in</strong>g down such types of<br />

operators which only lead to an overall shift of masses or coupl<strong>in</strong>g constants. We note that <strong>in</strong> the<br />

pion and pion-nucleon sector, one can effectively count the electric charge as a small moment um<br />

or meson mass. This is based on the observation that Mn / Ax rv e/...(47r = fo rv 1/10 s<strong>in</strong>ce<br />

Ax :::: 41ffn = 1.2 GeV. It is thus possible to turn the dual expansion <strong>in</strong> small momenta/meson<br />

masses on one side and <strong>in</strong> the electric coupl<strong>in</strong>g e on the other side <strong>in</strong>to an expansion with one<br />

generic small parameter. We also remark that from here on we use the f<strong>in</strong>e structure constant<br />

a = e2 /41f as the em expansion parameter.<br />

We now turn to the two-nucleon sector, i.e. the four-fermion contact <strong>in</strong>teractions without pion<br />

fields. Consider first the strong terms. <strong>The</strong> effective Lagrangian takes the form<br />

Cf:tN<br />

h(Nt N)2 + l 2 (NtiJN)2 + l 3 (Nt (X+)N)(Nt N) + l4(Nt X+N)(Nt N)<br />

+ l5(Nt iJ(X+)N)(Nt iJN) + l6(Nt iJx+N) (Nt iJN) + . .. , (5.11)<br />

w here the ellipsis denotes terms with two (or more) derivatives act<strong>in</strong>g on the nucleon fields.<br />

Similarly, one can construct the em terms. <strong>The</strong> ones without derivatives on the nucleon fields<br />

read<br />

CNN<br />

Nt {r1 (Q� - Q�) + r2 Q + (Q +) } N (Nt N)<br />

+ NtiJ {r3(Q� - Q�) + r4Q+(Q+)} N(NtiJN)<br />

+ Nt {r5Q+ + r6(Q+)} N(Nt Q+N) + NtiJ {r7Q+ + r8(Q+)} N(Nt iJQ+N)<br />

+ rg(Nt Q+N)2 + rlO(Nt iJQ+N)2 . (5.12)<br />

<strong>The</strong>re are also various terms result<strong>in</strong>g from the <strong>in</strong>sertion of the Pauli isosp<strong>in</strong> matrices i <strong>in</strong> different<br />

Nt N b<strong>in</strong>omials. Some of these can be elim<strong>in</strong>ated by Fierz reorder<strong>in</strong>g (or anti-symmetrization, see<br />

appendix E), while the others are of no importance for our considerations. Note that from now on<br />

we consider em effects. <strong>The</strong> lead<strong>in</strong>g CSB rv mu - md has the same structure as the correspond<strong>in</strong>g<br />

em term and thus its contribution can be effectively absorbed <strong>in</strong> the value of E62) , as def<strong>in</strong>ed below.<br />

We re mark s<strong>in</strong>ce ANN is significantly smaller than Ax' it does not pay to treat the expansion <strong>in</strong><br />

the generic KSW moment um Q simultaneously with the one <strong>in</strong> the f<strong>in</strong>e structure constant (as it is<br />

done e.g. <strong>in</strong> the pion-nucleon sector ). Instead, one has to assign to each term a double expansion<br />

parameter Qnam, with n and m <strong>in</strong>tegers. Lowest order charge <strong>in</strong>dependence break<strong>in</strong>g is due to<br />

a term rv<br />

(Nt<br />

T3 N)2 whereas charge symmetry break<strong>in</strong>g at that order is given by a structure<br />

rv (NtT3N)(NtN). In the KSW approach, it is customary to project the Lagrangian terms on the<br />

pert<strong>in</strong>ent NN partial waves. Denot<strong>in</strong>g by ß the 1 So partial wave for a given cms energy Ecms, the


156 5. Isosp<strong>in</strong> violation <strong>in</strong> the two-nuc1eon system<br />

Born amplitudes for the lowest order eIB and eSB operators between the various two-nucleon<br />

states takes the form<br />

_ (�:)<br />

_ (�:)<br />

a (E�l) + E�2))<br />

a (E�l) _<br />

E�2))<br />

(5.13)<br />

where we will determ<strong>in</strong>e the coupl<strong>in</strong>g constant E�1,2) later on and also derive the scal<strong>in</strong>g properties<br />

of the E�;,2). <strong>The</strong> terms with the superscript '(1)' refer to eIB whereas the second ones relevant<br />

for eSB are denoted by the superscript '(2)'. Higher order operators are denoted accord<strong>in</strong>gly.<br />

<strong>The</strong>re is, of course, also a eIB contribution to the np matrix element. To be consistent with the<br />

charge symmetrie calculation of ref. [91J, we absorb its effect <strong>in</strong> the constant D2, i.e. it amounts<br />

to a f<strong>in</strong>ite renormalization of D2 and is thus not observable. In eq. (5.13), p = JmEcms is the<br />

nucleon cms moment um.<br />

5.2 Brief <strong>in</strong>troduction <strong>in</strong>to the KSW approach<br />

We will now give a very brief <strong>in</strong>troduction <strong>in</strong>to the KSW formalism and repeat so me basic po<strong>in</strong>ts of<br />

ref. [91J. It is weIl known that the scatter<strong>in</strong>g lenghts a <strong>in</strong> both np S-channels take unnatural large<br />

values. Let us first consider a pionless theory. In such a case one can calculate the two-nucleon<br />

T-matrix analytically, see sec. 2.2, s<strong>in</strong>ce all <strong>in</strong>teractions <strong>in</strong> the effective Lagrangian are of contact<br />

type. As discussed <strong>in</strong> section 2.2, the range of applicability of such an effective theory is zero<br />

<strong>in</strong> the case of <strong>in</strong>f<strong>in</strong>itly large scatter<strong>in</strong>g length, if ord<strong>in</strong>ary dimensional regularization is used. In<br />

what follows we will adopt the notation of ref. [91J and work with the amplitude A <strong>in</strong>stead of the<br />

T-matrix def<strong>in</strong>ed <strong>in</strong> eq. (2.6). <strong>The</strong> connection between the amplitude and the on-shell T-matrix<br />

Ton (p) is gi yen by<br />

= A( ) _ Ton(p) p 27r2 '<br />

<strong>The</strong> tree level amplitude <strong>in</strong> the S-channels can be expressed as<br />

Atree =<br />

00<br />

- L C2np2n ,<br />

n=O<br />

(5.14)<br />

(5.15)<br />

where C2n are some constants. Us<strong>in</strong>g dimensional regularization with the m<strong>in</strong>imal subtraction<br />

= scheme (MS), which amounts to subtract<strong>in</strong>g poles <strong>in</strong> the physical dimension (D 4), one f<strong>in</strong>ds<br />

the amplitude A <strong>in</strong> the form:<br />

(5.16)<br />

Here we have used the fact that the power law divergent <strong>in</strong>tegrals (like those one <strong>in</strong> eq. (2.49))<br />

vanish after perform<strong>in</strong>g dimensional regularization. If the scatter<strong>in</strong>g length would be of a natural<br />

size, i.e. of the order a rv 1/ A, where A is ascale enter<strong>in</strong>g the values of the rema<strong>in</strong><strong>in</strong>g effective range<br />

and shape parameters, which is comparable with the pion mass, one could rewrite the effective<br />

range expansion (2.21) for the <strong>in</strong>verse T-matrix <strong>in</strong>to the expansion for the amplitude A:<br />

A =<br />

�<br />

An =<br />

00<br />

- ---;<br />

7ra . ar 2 2 P<br />

4 [ ( )<br />

;: 1 -<br />

zap<br />

( 3)]<br />

+ 2 - a p + 0<br />

A 3 . (5.17)


5.2 Brief <strong>in</strong>troduction <strong>in</strong>to the KSW approach<br />

Match<strong>in</strong>g eq. (5.16) to eq. (5.17) yields the follow<strong>in</strong>g scal<strong>in</strong>g of the C's:<br />

41f 1<br />

C2n rv<br />

mA A2n .<br />

157<br />

(5.18)<br />

Consequently, the effective theory is perturbative: the lead<strong>in</strong>g order amplitude Ao = -Co is given<br />

by the tree graph with Co at the vertix; Al = iCgmp/(41f) results from the one-Ioop diagram<br />

with both Co-vertices and so forth.<br />

In the case of a very large scatter<strong>in</strong>g length, lai » 1/ A, the expansion (5.17) has a very small<br />

range of validity p < I/lai- Kaplan et al. proposed <strong>in</strong> that case to expand the amplitude <strong>in</strong> powers<br />

of p/ A while reta<strong>in</strong><strong>in</strong>g the factors ap to all orders:<br />

A _ [ 1<br />

_ 41f 1 r/2 2 (r/2)2 4 V 4<br />

- 1+ P + P + 2 P + ... (5.19)<br />

m l/a +ip l/a+ip (l/a +ip)2 l/a +ip<br />

<strong>The</strong>refore, for momenta p > I/lai the amplitude can be expressed as<br />

00<br />

A = L An ·<br />

n=-l<br />

(5.20)<br />

As expla<strong>in</strong>ed <strong>in</strong> ref. [91], us<strong>in</strong>g dimension regularization with the MS scheme does not lead to a<br />

consistent effective theory for p > I/lai- This is also demonstrated <strong>in</strong> sec. 2.2. To deal with this<br />

problem, the authors of [91] proposed to use dimensional regularization and the so-called power<br />

divergence subtraction (PDS), i.e. to subtract the poles from the dimensionally regulated loop<br />

<strong>in</strong>tegrals not only <strong>in</strong> the physical dimension, but also <strong>in</strong> the dimension one lower than the physical<br />

one. This allows to take <strong>in</strong>to account l<strong>in</strong>ear divergences. In a pionless effective theory one has to<br />

deal with the (ultraviolet divergent) <strong>in</strong>tegrals of the form<br />

(5.21)<br />

where q == Igl and E = p2/m is the <strong>in</strong>itial energy of the nucleons. Apply<strong>in</strong>g dimension regularization<br />

with PDS leads tolO In --+ -(mEt (:) (ft+ip) . (5.22)<br />

Chos<strong>in</strong>g ft of the order of p, ft rv<br />

coupl<strong>in</strong>gs C 2n (ft):<br />

p<br />

» I/lai, leads to the follow<strong>in</strong>g scal<strong>in</strong>g properties of the<br />

(5.23)<br />

Further , each loop contributes a factor of p and the derivatives at vertices scale as p as weIl. With<br />

these rules one can calculate the amplitude A to any order <strong>in</strong> the expansion (5.20). In particular,<br />

the lead<strong>in</strong>g term A-I is given by sum of bubble diagrams with Co vertices; the next-to-Iead<strong>in</strong>g<br />

order term Ao results from dress<strong>in</strong>g the C2-<strong>in</strong>teraction to all orders by Co and so forth. Note<br />

that s<strong>in</strong>ce one uses a perturbative expansion for the amplitude A, the correspond<strong>in</strong>g S-matrix is<br />

unitary up to the calculated order. To f<strong>in</strong>d the phase shift one can use the relation<br />

lOIn MS one would obta<strong>in</strong> the same result with /-l = O.<br />

(5.24)


158 5. Isosp<strong>in</strong> violation <strong>in</strong> the two-nucleon system<br />

lead<strong>in</strong>g to<br />

.. ..<br />

.. ...<br />

Figure 5.1: Resummation of the lowest order (NtN)2 contact terms ", Co.<br />

1 ( . mp )<br />

6 = 2i In 1 + 2 21f A .<br />

+<br />

• • •<br />

(5.25)<br />

Expand<strong>in</strong>g both sides <strong>in</strong> the small moment um scale Q '" p (for the amplitude A one uses the<br />

expansion (5.20)) one obta<strong>in</strong>s:<br />

(5.26)<br />

where<br />

1 ( mp )<br />

60 = ---; In 1 + i-A-1 ,<br />

22<br />

21f<br />

6 = 60 + 61 + ... ,<br />

(5.27)<br />

Up to now we have not yet <strong>in</strong>corporated pions <strong>in</strong>to the effective theory. <strong>The</strong> tree contribution to<br />

the amplitude due to the one-pion exchange is given by<br />

2 -+<br />

4f2 �2 M2<br />

-+ -+ -+<br />

gA 0"1 . q 0"2 . q<br />

n q + n<br />

Tl . T2 ,<br />

(5.28)<br />

which sc ales as 0(1) and thus occurs at the same order as an <strong>in</strong>sertion of C2p2. Consequently,<br />

pions can be treated perturbatively and the lead<strong>in</strong>g contributions to the amplitude due to the OPE<br />

are given by graphs 2, 3 and 4 <strong>in</strong> fig. 5.2. <strong>The</strong> last graph <strong>in</strong> this figure depicts the contribution from<br />

the contact <strong>in</strong>teraction D2M;, which can be, <strong>in</strong> pr<strong>in</strong>ciple, absorbed by the Co vertex.u To study<br />

at which energies such a perturbative treatment of pions would be no more adequate, the authors<br />

of ref. [91] used the renormalization group technique. We will not repeat their arguments here<br />

and refer the <strong>in</strong>terested reader to the orig<strong>in</strong>al publication. We only note that the scale enter<strong>in</strong>g<br />

the low-momentum expansion of the amplitude turns out to be<br />

161f l;<br />

ANN = - 2 - '" 300 MeV .<br />

gAm<br />

This leads to the expansion parameter Q/ ANN '" Mn/ ANN '" 0.46.<br />

(5.29)<br />

To end this section we would like to write down the expressions for A�I)_A�V) obta<strong>in</strong>ed <strong>in</strong> ref. [91]:<br />

11 However, one needs to keep this term explicitly <strong>in</strong> order to be able to perform consistent renormalization of the<br />

dressed OPE <strong>in</strong> the fourth graph <strong>in</strong> fig. 5.2.


5.3 <strong>The</strong> lead<strong>in</strong>g eIB and eSB effects <strong>in</strong> the np 1 So channel 159<br />

+ + 2<br />

+ +<br />

Figure 5.2: <strong>The</strong> sublead<strong>in</strong>g amplitude Ao <strong>in</strong> the isosp<strong>in</strong> symmetrie ease. <strong>The</strong> shaded ovals are<br />

def<strong>in</strong>ed <strong>in</strong> fig. 5.1. <strong>The</strong> filled square (diamond) eorresponds to the eontaet vertices with two<br />

derivatives (one <strong>in</strong>sertion of M;).<br />

where the lead<strong>in</strong>g term <strong>in</strong> the expansion of the np I SO amplitude [91] is given by:<br />

5.3 <strong>The</strong> lead<strong>in</strong>g CIB and CSB effects <strong>in</strong> the N N lS0 channel<br />

(5.30)<br />

(5.31)<br />

Consider now the effeet of the eharged to neutral pion mass differenee 8M2, see the upper left<br />

diagram <strong>in</strong> fig. 5.3. OPE between two neutrons, neutron and proton or two protons ean obviously<br />

<strong>in</strong>volve eharged and neutral pions. <strong>The</strong> mass differenee ean be treated <strong>in</strong> the follow<strong>in</strong>g way: as<br />

proposed <strong>in</strong> ref. [224], one ean modify the pion propagator,<br />

(5.32)<br />

with e the pion four-momentum and 'i,j' isosp<strong>in</strong> <strong>in</strong>dices. S<strong>in</strong>ee we are <strong>in</strong>terested only <strong>in</strong> the<br />

lead<strong>in</strong>g eorreetions rv 8M2 rv ü, it suffiees to work with the expanded form of eq.(5.32),<br />

(5.33)


160 5. Isosp<strong>in</strong> violation <strong>in</strong> the two-nucleon system<br />

�AII<br />

1,-2<br />

.. I ..<br />

$ + 2<br />

.. ..<br />

+ +<br />

Figure 5.3: Relevant graphs contribut<strong>in</strong>g to charge <strong>in</strong>dependence break<strong>in</strong>g at lead<strong>in</strong>g order aQ -2.<br />

<strong>The</strong> open (filled) circle denotes a pion mass <strong>in</strong>sertion rv 8M2 (an <strong>in</strong>sertion of the lead<strong>in</strong>g fournucleon<br />

operators rv aEb 1 )). For charge symmetry break<strong>in</strong>g, the lead<strong>in</strong>g contribution is given by<br />

the last diagram with the filled circle denot<strong>in</strong>g an <strong>in</strong>sertionrv aEb2) .<br />

From this we conclude that OPE diagrams with different pion masses have the isosp<strong>in</strong> structure<br />

T(I)i��T(I)j and lead to CIB s<strong>in</strong>ce<br />

012 =<br />

= (a + b) T(I) . T(2) - bT(31) T(3 2)<br />

(ppIOdpp)cs<br />

(npIOdnp)<br />

(nnI012Inn) = a ,<br />

+ (npI012Ipn) = a + 2b , (5.34)<br />

for the various isosp<strong>in</strong> components of the two-nucleon system and 'Cs' stands for Coulombsubtracted.<br />

Obviously, these effects are of order aQ-2. <strong>The</strong> np amplitude was already calculated<br />

by KSW. We have worked out the lead<strong>in</strong>g corrections �A = Ann - Anp = A�: - Anp due to the<br />

pion mass difference. <strong>The</strong> pert<strong>in</strong>ent diagrams are shown <strong>in</strong> fig. 5.3. We follow the notation of<br />

KSW and call these correspond<strong>in</strong>g three amplitudes Ai�_,.IiI,IV where the first (second) subscript<br />

refers to the power <strong>in</strong> a (Q) and the superscripts to the first three diagrams of the figure. We f<strong>in</strong>d<br />

r =<br />

r [<br />

4 � 2 In (1 + �;) - M; : 4p2] ,<br />

(mMnA_l) [ 1 2p i ( 4p2) 1 + � ]<br />

47r pMn Mn 2pMn M; M; + 4p2<br />

r -arctan -+ -- In 1 +- _ 7T<br />

r (mMnA_l) 2 [ i 2p 1 ( M; + 4p2) I 1 1 1 + � ]<br />

47r M2 M 2M2 1/2 M2 2 M2 + 4p2<br />

2<br />

n n n ,.., n n<br />

- arctan - - -- n + - - - ---- -c:------"---;o-<br />

-8M2 �;; , 8M2 = M;± -M;o , M; = M;o + 28M2 , (5.35)<br />

with A-1 == AO,-1 the lead<strong>in</strong>g term <strong>in</strong> the expansion of the np I SO amplitude [91], see eq. (5.31)<br />

Here, J.l is the PDS regularization scale. Note while the diagrams II and III are f<strong>in</strong>ite, the correspond<strong>in</strong>g<br />

<strong>in</strong>tegral <strong>in</strong> the �A{v:..2 diverges logarithmically. <strong>The</strong>refore, the Lagrangian must conta<strong>in</strong><br />

,


5.3 <strong>The</strong> lead<strong>in</strong>g CIB and CSB effects <strong>in</strong> the np 1 So channel 161<br />

a counterterm of the structure E61) (J.l)a(Nt T3 N)(Nt T3 N) (cf. sec. 5.2) s<strong>in</strong>ce it is needed to make<br />

the amplitude scale-<strong>in</strong>dependent. Note that for the graph IV we have used the same subtraction<br />

as performed <strong>in</strong> [91] . Consequently, for operators of this type with 2n derivatives we can establish<br />

the scal<strong>in</strong>g property E�� rv Q-2+n. This does not contradict the KSW power count<strong>in</strong>g for the<br />

isosp<strong>in</strong> symmetrie theory s<strong>in</strong>ce a « 1. Stated differently, the lead<strong>in</strong>g CIB term of order aQ-2 is<br />

numerically much smaller than the strong lead<strong>in</strong>g order contribution rv Q-l. <strong>The</strong> <strong>in</strong>sertion from<br />

this contact term is shown <strong>in</strong> the last diagram of fig. 5.3 and leads to an additional contribution to<br />

ßA. In complete analogy, we can treat the lead<strong>in</strong>g order CSB effect which is due to an operator<br />

of the form aE6 2) (J.l) (Nt T3N) (Nt N). This term is, however, f<strong>in</strong>ite. Putt<strong>in</strong>g pieces together, we<br />

get<br />

ßA V 1 = -a<br />

(E(l) + E(2)) [A_l] 2<br />

1,-2,pp 0 0 Co ' ßAV 1 = _ (E(l<br />

_ ) E(2)) [A-l] 2<br />

1,-2,nn a 0 0 Co '<br />

where the coupl<strong>in</strong>g constants E61,2) (J.l) obey the renormalization group equations,<br />

(5.36)<br />

(5.37)<br />

Note that from here on we do no longer exhibit the scale dependence of the various coupl<strong>in</strong>gs<br />

constants E61,2),CO,2,D2. We can now relate the pp and nn scatter<strong>in</strong>g lengths to the np one (of<br />

course, <strong>in</strong> the pp system Coulomb subtraction is assumed),<br />

1<br />

1<br />

For the effective ranges, we have only CIB<br />

(5.38)<br />

(5.39)<br />

Note that this last relation is scale-<strong>in</strong>dependent and that it does not conta<strong>in</strong> any unknown parameter.<br />

We re mark that for the CIB scatter<strong>in</strong>g lengths difference the pion contribution alone is<br />

not scale-<strong>in</strong>dependent and can thus never be uniquely disentangled from the contact term contribut<br />

ion rv While the lead<strong>in</strong>g OPE contribution resembles the result obta<strong>in</strong>ed <strong>in</strong> meson<br />

E61).<br />

exchange models, the mandatory appearance of this contact term is a dist<strong>in</strong>ctively new feature<br />

of the effective field theory approach. It is easy to classify the lead<strong>in</strong>g and next-to-lead<strong>in</strong>g em<br />

corrections to these results. At order aQ-l, one has the contribution from two potential pions<br />

with the pion mass difference and also contact <strong>in</strong>teractions with two derivatives. Effects due to the<br />

charge dependence of the pion-nucleon coupl<strong>in</strong>g constants, i.e. isosp<strong>in</strong> break<strong>in</strong>g terms from .c�N,<br />

only start to contribute at order aQo . Such effects are therefore suppressed by two orders of Q<br />

compared to the lead<strong>in</strong>g terms. This f<strong>in</strong>d<strong>in</strong>g is <strong>in</strong> agreement with the various numerical analyses


162 5. Isosp<strong>in</strong> violation <strong>in</strong> the two-nuc1eon system<br />

performed <strong>in</strong> potential models. We now turn to eSB. Here, to lead<strong>in</strong>g order there is simply a<br />

four-nucleon contact term proportional to the constant E�2). Its value can be determ<strong>in</strong>ed from a<br />

fit to the empirical value given <strong>in</strong> eq. (5.2). First corrections to the lead<strong>in</strong>g order eSB effect are<br />

classified below.<br />

5.4 N umerical results<br />

We now turn to the numerical analysis consider<strong>in</strong>g exclusively the 1 So channel. At lead<strong>in</strong>g order,<br />

all parameters can be fixed from the pert<strong>in</strong>ent scatter<strong>in</strong>g length. Already <strong>in</strong> ref. [91] it was po<strong>in</strong>ted<br />

out that there are various possibilities of fix<strong>in</strong>g the next-to-lead<strong>in</strong>g order constants. One is to stay<br />

at low energies (Le. fitt<strong>in</strong>g a and r) or perform<strong>in</strong>g an overall fit to the phase shift up to momenta<br />

of about 200 MeV. In this latter case, however, the result<strong>in</strong>g low energy parameters deviate from<br />

their empirical values and also, at p rv 150 MeV, the correction is as big as the lead<strong>in</strong>g term. S<strong>in</strong>ce<br />

we are <strong>in</strong>terested <strong>in</strong> small effects like eIB and eSB, we stick to the former approach and use the<br />

1 So np phase shift around p = 0 to fix the parameters as shown by the dashed curve <strong>in</strong> fig. 5.4.<br />

More precisely, we fit the parameters CO,2, D2 to the np phase shift under the condition that the<br />

r--"1<br />

0<br />

'---'<br />

60<br />

r--- 0<br />

0 40<br />

Cf)<br />

.-I<br />

'--"<br />

V:)<br />

20<br />

0<br />

0 0<br />

0<br />

oe<br />

o���������������������<br />

o 50 100 150 200<br />

P [Me VJ<br />

Figure 5.4: ISO phase shifts for the np (dashed l<strong>in</strong>e) and nn (solid l<strong>in</strong>e) systems versus the nucleon<br />

cms moment um. <strong>The</strong> emipirical values for the np case (open squares) are taken from the Nijmegen<br />

analysis [36]. <strong>The</strong> open octagons are the nn "data" based on the Argonne V18 potential.


5.5 Classification scheme 163<br />

scatter<strong>in</strong>g length and effective range are exactly reproduced. <strong>The</strong> two new parameters E� I,2) are<br />

determ<strong>in</strong>ed from the nn and pp scatter<strong>in</strong>g lengths. <strong>The</strong> result<strong>in</strong>g parameters at f-l = Mn are of<br />

natural size,<br />

-3.46 fm2 , C2 = 2.75 fm4 , D 2 = 0.07 fm4 ,<br />

-6.47 fm2 , E� 2) = 1.10 fm2 . (5.40)<br />

To arrive at the curves shown <strong>in</strong> fig. 5.4, we have used the physical masses for the proton and the<br />

neutron. We stress aga<strong>in</strong> that the effect of the em terms rv E� I, 2) is small because of the explicit<br />

factor of a not shown <strong>in</strong> eq. (5.40). Hav<strong>in</strong>g fixed these parameters, we can now predict the nn ISO<br />

phase shift as depicted by the solid l<strong>in</strong>e <strong>in</strong> fig. 5.4. It agrees with nn phase shift extracted from<br />

the Argonne V18 potential (with the scatter<strong>in</strong>g length and effective range exactly reproduced) up<br />

to momenta of about 100 MeV. <strong>The</strong> analogous curve for the pp system (not shown <strong>in</strong> the figure) is<br />

elose to the solid l<strong>in</strong>e s<strong>in</strong>ce the CSB effects are very small. <strong>The</strong> lead<strong>in</strong>g CIB effect for the effective<br />

range, ßrclB = 1/2(rnn + rpp) - rnp, is given by the last term <strong>in</strong> eq. (5.39). With the values of<br />

the parameters shown <strong>in</strong> eq. (5.40) we obta<strong>in</strong><br />

ßrClB = 0.01 fm , (5.41)<br />

which agrees with the small value observed experimentally for this quantity, see eq. (5.1).<br />

5.5 Classification scheme<br />

In the framework presented here, it is straight forward to work out the various lead<strong>in</strong>g (LO), nextto-lead<strong>in</strong>g<br />

(NLO) and next-to-next-to-lead<strong>in</strong>g order (NNLO) contributions to CIB and CSB,<br />

with respect to the expansion <strong>in</strong> Q, to lead<strong>in</strong>g order <strong>in</strong> a and the light quark mass difference. Here,<br />

we will simply enumerate the pert<strong>in</strong>ent contributions which appear at a given order. This also<br />

naturally gives an estimate about their relative numerical importance based on simple dimensional<br />

analysis. Let us first consider CIB. In the elassification scheme given below, TPE/3PE stands for<br />

two / three-pion-exchange.<br />

LO<br />

aQ-2<br />

NLO<br />

a Q-l , c Q-l<br />

NNLO<br />

aQo<br />

Pion mass difference <strong>in</strong> OPE,<br />

four-nueleon contact <strong>in</strong>teraction with no derivatives.<br />

Pion mass difference <strong>in</strong> TPE and <strong>in</strong> the exchange of one radiation pion,<br />

four-nueleon contact <strong>in</strong>ter action with two derivatives,<br />

<strong>in</strong>sertions proportional to the np mass difference,<br />

Pion mass difference <strong>in</strong> 3PE and TPE,<br />

four-nueleon contact <strong>in</strong>teraction with four derivatives,<br />

CIB <strong>in</strong> the pion-nueleon coupl<strong>in</strong>g constants,<br />

Note that there are no CIB effects due to the light quark mass difference l<strong>in</strong>ear <strong>in</strong> c = mu - md<br />

from OPE and from the four-nucleon contact terms. <strong>The</strong>se type of terms can only appear to<br />

second order <strong>in</strong> c. Effects due to the charge dependence of the pion-nucleon coupl<strong>in</strong>g constants,<br />

i.e. isosp<strong>in</strong> break<strong>in</strong>g terms from .c��, only start to contribute at order aQo. Such effects are<br />

therefore suppressed by two orders of Q compared to the lead<strong>in</strong>g terms, Le. by a numerical factor<br />

of about (1/3)2. This f<strong>in</strong>d<strong>in</strong>g is <strong>in</strong> agreement with the various numerical analyses performed <strong>in</strong>


164 5. Isosp<strong>in</strong> violation <strong>in</strong> the two�nuc1eon system<br />

potential models (if one assurnes that there is <strong>in</strong>deed some charge dependence <strong>in</strong> the pion�nucleon<br />

coupl<strong>in</strong>g constants, see e.g. the discussion <strong>in</strong> ref. [216].) We remark that the TPE contribution is<br />

nom<strong>in</strong>ally suppressed by one order <strong>in</strong> the small parameter, Le. one would expect its contribution<br />

to be one third of the lead<strong>in</strong>g OPE with different pion masses.<br />

It is also <strong>in</strong>structive to see how the corrections due to the np mass difference come about. For<br />

that, let us write the nucleon mass as m + 6m, where 6m subsurnes the em and strong contribution<br />

to the np mass splitt<strong>in</strong>g, Le. these terms are 0(0:') and O( E) . Differentiat<strong>in</strong>g the lead<strong>in</strong>g isosp<strong>in</strong>�<br />

symmertic amplitude eq. (5.31) with respect to the nucleon mass shift gives<br />

from which it follows that<br />

8A�1 A�1 .<br />

-- = --(/1+Zp) ,<br />

8m 47f<br />

We now turn to CSB. <strong>The</strong> pattern of the various contributions looks different:<br />

LO<br />

Q�2 0:' ,E Q�2<br />

NLO<br />

Q�1 Q�1 0:' ,E<br />

Electromagnetic four�nucleon contact <strong>in</strong>teractions<br />

with no derivatives.<br />

Ern four-nucleon contact terms with two derivatives,<br />

strong isosp<strong>in</strong>�break<strong>in</strong>g contact terms with two derivatives,<br />

<strong>in</strong>sert ions proportional to the np mass difference.<br />

(5.42)<br />

(5.43)<br />

We remark that the lead<strong>in</strong>g order CSB effects do not modify the effective range but the correspond<strong>in</strong>g<br />

scatter<strong>in</strong>g length. Note furt her that we have not considered effects due to virtual<br />

photons (like, for <strong>in</strong>stance, 7f"( exchanges), see ref. [228]. Such diagrams were calculated with<strong>in</strong><br />

the We<strong>in</strong>berg power count<strong>in</strong>g approach <strong>in</strong> ref. [218]. <strong>The</strong> ISO np low�energy parameters appear<br />

to be very little affected.


Chapter 6<br />

Summary and outlook<br />

In this thesis we have considered some applications of the effective (field) theory techniques to the<br />

problem of nucleon-nucleon scatter<strong>in</strong>g and bound states. Now we would like to summarize the<br />

pert<strong>in</strong>ent results of our <strong>in</strong>vestigation:<br />

1. After an <strong>in</strong>troduction, which describes the current status of research and formulates the<br />

problems, we started <strong>in</strong> chapter 2 to consider the quantum mechanical two-nucleon problem<br />

and have shown how to construct an effective low energy theory based on the method of<br />

unitary transformations based on an arbitrary realistic two-nucleon potential (<strong>in</strong> moment um<br />

space). This is achieved by a decoupl<strong>in</strong>g of the low and high moment um subspaces of the<br />

whole moment um space. <strong>The</strong> unitary transformation can be parametrized by an operator A,<br />

see eq. (2.65), which obeys a nonl<strong>in</strong>ear <strong>in</strong>tegral equation (2.69). This equation can be solved<br />

numerically and any observable can then be calculated <strong>in</strong> the space of small momenta only.<br />

While the method is <strong>in</strong>terest<strong>in</strong>g per se, we have also made contact to chiral perturbation<br />

theory (CHPT) approaches to the two-nucleon system by study<strong>in</strong>g a series of questions,<br />

which can be addressed unambiguously with<strong>in</strong> the framework of our exact low moment um<br />

theory. Clearly, this should not be considered a substitute for a realistic CHPT calculation,<br />

which we have also performed <strong>in</strong> this work, but might be used as a guide. <strong>The</strong> salient results<br />

of this <strong>in</strong>vestigation can be summarized as follows:<br />

• We have demonstrated analytically that the theory projected onto the subspace of<br />

momenta below a given moment um space cut-off A leads to exactly the same S-matrix<br />

as the orig<strong>in</strong>al theory <strong>in</strong> the full (unrestricted) moment um space provided appropriate<br />

boundary conditions for the scatter<strong>in</strong>g states are chosen. In particular, the components<br />

of the transformed scatter<strong>in</strong>g states with <strong>in</strong>itial momenta below the cut-off A are strictly<br />

zero <strong>in</strong> the subspace of momenta above the cut-off A .<br />

• Start<strong>in</strong>g from a S-wave N N potential with an attractive light (/LL � 300 MeV) and repulsive<br />

heavy meson exchange (/LH � 600 MeV) given <strong>in</strong> eq. (2.113), we have rigorously<br />

solved <strong>in</strong> numerical sense the nonl<strong>in</strong>ear equation for the operator A and demonstrated<br />

that the observables related to the bound and scatter<strong>in</strong>g state spectra agree precisely<br />

for the effective and the full theory up to the cut-off A. In particular, we have just one<br />

bound state with a b<strong>in</strong>d<strong>in</strong>g energy of 2.23 MeV. <strong>The</strong>se results are <strong>in</strong>dependent of the<br />

value of the cut-off, which was varied from 200 MeV to 5.5 GeV. We have argued that<br />

the most natural choice is A about 300 MeV. <strong>The</strong> effective potential can differ substantially<br />

from the orig<strong>in</strong>al one (for values of A on the low side of the range mentioned<br />

before).<br />

165


166 5. Summary and outlook<br />

• We have also considered an alternative way of determ<strong>in</strong><strong>in</strong>g the operator A from the<br />

half-shell two-nucleon T-matrix. This leads to the l<strong>in</strong>ear equation (2.94), which has<br />

been solved numericaIly. For all selected values of the cut-off A the solutions of the<br />

l<strong>in</strong>ear and nonl<strong>in</strong>ear equations for A agree perfectly with each other.<br />

• We have exam<strong>in</strong>ed a low-momentum expansion of the potential. For that we have<br />

expanded the heavy meson exchange term <strong>in</strong> a str<strong>in</strong>g of local operators with <strong>in</strong>creas<strong>in</strong>g<br />

dimension but kept the light meson exchange unchanged, see eqs. (2.115), (2.116).<br />

<strong>The</strong> correspond<strong>in</strong>g coupl<strong>in</strong>g constants accompany<strong>in</strong>g these local operators, which are<br />

monomials of even power <strong>in</strong> the momenta, can be determ<strong>in</strong>ed precisely from the exact<br />

solution. For A =300 (400) MeV their values are given <strong>in</strong> table 2.1. We have<br />

shown that they are of "natural" size, i.e. of order one, with respect to the mass scale<br />

Ascale = 600 MeV. We have also discussed the relation of this scale to the mass of the<br />

heavy meson, which is <strong>in</strong>tegrated out, and the convergence properties of such type of<br />

expansion. In particular, to recover the b<strong>in</strong>d<strong>in</strong>g energy with<strong>in</strong> a few percent, one has<br />

to reta<strong>in</strong> terms of rather high order <strong>in</strong> this expansion, cf. eq. (2.116). This is to be<br />

expected due to the unnatural smallness of this energy on any hadronic mass scale. <strong>The</strong><br />

3 SI scatter<strong>in</strong>g phase shift can be weIl reproduced up to k<strong>in</strong>etic energies llab ':::' 120 Me V<br />

with the first three terms <strong>in</strong> the contact term expansion.<br />

• Based on the expanded heavy meson exchange term, we have also determ<strong>in</strong>ed the<br />

constants Ci directly from a fit to the phase shifts. This is equivalent to the procedure<br />

performed <strong>in</strong> an effective field theory approach. We could show that as long as one does<br />

not <strong>in</strong>clude polynomials of order six (or higher), the result<strong>in</strong>g values of these constants<br />

are close to their exact ones. Furthermore, the b<strong>in</strong>d<strong>in</strong>g energy is reproduced with<strong>in</strong><br />

2%. Includ<strong>in</strong>g dimension six terms, the fits become unstable. This can be traced back<br />

to the fact that the contribution of such terms to the phase shifts are very small (at<br />

low and moderate energies) and thus can not really be p<strong>in</strong>ned down.<br />

• We have also studied the quantum averages of the expanded potential <strong>in</strong> the bound and<br />

scatter<strong>in</strong>g states. For A = 300 MeV, the expansion parameter is of the order of 1/2 and<br />

we f<strong>in</strong>d fast convergence for the bound and the low-Iy<strong>in</strong>g scatter<strong>in</strong>g states, as shown<br />

<strong>in</strong> table (2.3). As expected, for scatter<strong>in</strong>g states with higher energy, the convergence<br />

becomes slower.<br />

• We have determ<strong>in</strong>ed the effective range parameters us<strong>in</strong>g the expansion (2.116) for<br />

the potential and demonstrated the predictive power of such an effective theory. In<br />

particular, hav<strong>in</strong>g fixed the free parameters <strong>in</strong> the potential from the first n terms <strong>in</strong><br />

the effective range expansion one obta<strong>in</strong>s a prediction for the next coefficient, which has<br />

not been used <strong>in</strong> the fit. This is different from the pionless effective theory considered<br />

<strong>in</strong> the seetion 2.2, where no predictions are possible.<br />

• In the model space of small momenta only, one can also study the non-Iocalities <strong>in</strong><br />

the coord<strong>in</strong>ate space representation. We have shown that for typical cut-off values, the<br />

effective potential V(x, x') is highly non-Iocal and looks very different from the orig<strong>in</strong>al<br />

one. For very large values of the cut-off, one recovers the orig<strong>in</strong>al local potential.<br />

While this thesis was be<strong>in</strong>g written down, a similar work done by Bogner et al. [214] has<br />

been reported, show<strong>in</strong>g a considerable research activity <strong>in</strong> this field. In this work, effective<br />

low-momentum potentials def<strong>in</strong>ed below a given moment um space cut-off A are obta<strong>in</strong>ed<br />

from the Bonn-A and Paris potentials us<strong>in</strong>g the folded-diagram method of Kuo, Lee and<br />

Ratcliff [215]. <strong>The</strong> method leads to non-hermitian potentials and preserves the half-shell<br />

NN T-matrix.


2. Secondly, we considered the realistic case of the nuclear <strong>in</strong>teraction and presented a novel<br />

approach, the projection formalism, to the problem of deriv<strong>in</strong>g the forces between few (two,<br />

three, ... ) nucleons from effective chiral Lagrangians. For the case at hand, we first had to<br />

modify the power count<strong>in</strong>g rules proposed orig<strong>in</strong>ally by We<strong>in</strong>berg [73], s<strong>in</strong>ce <strong>in</strong> the projection<br />

formalism one decomposes the Fock space of nucleons and pions <strong>in</strong>to subspaces with def<strong>in</strong>ite<br />

nucleon and pion numbers. While <strong>in</strong> old-fashioned time-ordered perturbation theory the<br />

result<strong>in</strong>g wave functions are only orthonormal to a certa<strong>in</strong> order <strong>in</strong> the chiral expansion,<br />

this problem does not occur <strong>in</strong> the projection formalism. Furthermore, <strong>in</strong> the previous<br />

calculations based on time-ordered perturbation theory, the two-nucleon potentials turn<br />

out to be energy-dependent, which is a severe complication for apply<strong>in</strong>g these <strong>in</strong> systems<br />

with three or more nucleons (although to lead<strong>in</strong>g order, these recoil corrections are cancelled<br />

by certa<strong>in</strong> N-body <strong>in</strong>teractions). We now summarize the results obta<strong>in</strong>ed <strong>in</strong> chapter 3.<br />

• We start from the most general chiral <strong>in</strong>variant Hamiltonian for nonrelativistic nucleons<br />

and pions and divide the full Fock space <strong>in</strong>to the two subspaces T} and )... <strong>The</strong> first one<br />

conta<strong>in</strong>s only purely nucleonic states, whereas the second one <strong>in</strong>volves all rema<strong>in</strong><strong>in</strong>g<br />

states with nucleons and pions. To obta<strong>in</strong> an effective Hamiltonian act<strong>in</strong>g on the T}space<br />

we perform an appropriate unitary transformation, parametrized <strong>in</strong> terms of<br />

the operator )"AT} via eq. (3.190). After project<strong>in</strong>g onto the states )..i with i pions,<br />

the decoupl<strong>in</strong>g equation (3.192) turns <strong>in</strong>to an <strong>in</strong>f<strong>in</strong>ite system of coupled equations<br />

(3.205). We have proved that this system of equations can be solved perturbatively <strong>in</strong><br />

powers of the small momentum scale Q. For that we have developed an appropriate<br />

power count<strong>in</strong>g rule and analyzed the power of Q for all terms <strong>in</strong> eq. (3.206). We<br />

have worked out the recursive prescription for solv<strong>in</strong>g the system of equations (3.205),<br />

which allows to determ<strong>in</strong>e the operators )..i AT} for any f<strong>in</strong>ite i to any required order<br />

<strong>in</strong> the Q-expansion. <strong>The</strong> effective Hamiltonian Heff act<strong>in</strong>g on the T}-subspace can be<br />

obta<strong>in</strong>ed via eq. (3.197) us<strong>in</strong>g the power count<strong>in</strong>g rules (3.223)-(3.229).<br />

• We have applied the projection formalism and have given the explicit expressions of<br />

the two-nucleon potential to next-to-lead<strong>in</strong>g order (<strong>The</strong> lowest order potential comprises<br />

the lead<strong>in</strong>g one-pion exchange and contact terms). In particular, we have also<br />

calculated self-energy type corrections and one-loop corrections to these four-fermion<br />

operators not considered before.<br />

• We have discussed <strong>in</strong> detail the similarities and differences of the result<strong>in</strong>g potential<br />

with those obta<strong>in</strong>ed from time-ordered perturbation theory. In particular, it turns<br />

out that <strong>in</strong> our approach the isoscalar sp<strong>in</strong> <strong>in</strong>dependent central and the isovector sp<strong>in</strong><br />

dependent parts of the two-nucleon potential correspond<strong>in</strong>g to the two-pion exchange<br />

add up to zero. This was first noted <strong>in</strong> ref. [108] us<strong>in</strong>g a different scheme. Note that<br />

<strong>in</strong> the energy dependent potential of the time-ordered perturbation theory there is no<br />

such cancellation. However, the most salient features of the potential <strong>in</strong> the projection<br />

formalism is its energy--<strong>in</strong>dependence and the orthonormality of the correspond<strong>in</strong>g wave<br />

functions.<br />

• We have performed renormalization of the two-nucleon potential at NLO. In particular,<br />

we have shown that all ultraviolet divergences can be removed by an appropriate<br />

redef<strong>in</strong>ition of the axial coupl<strong>in</strong>g constant gA and various coupl<strong>in</strong>gs of the contact <strong>in</strong>teractions.<br />

<strong>The</strong> renormalized expressions for the N N potential at NLO agree with the<br />

ones given by the Munich group which were obta<strong>in</strong>ed us<strong>in</strong>g the Feynmann diagram<br />

technique.<br />

167


168 5. Summary and outlook<br />

• In sec. 3.8.1 we have also discussed the structure of the NNLO potential <strong>in</strong> the method<br />

of unitary transformation. It turns out that <strong>in</strong> that case one obta<strong>in</strong>s the same result<br />

<strong>in</strong> both the projection formalism and time-ordered perturbation theory. <strong>The</strong> NNLO<br />

potential has been calculated with<strong>in</strong> a different (but lead<strong>in</strong>g to the same result) scheme<br />

by the Munich group [108].<br />

• In sec. 3.8.3 we have generalized the projection formalism to <strong>in</strong>clude effects of the<br />

virtual Ll-isobar excitation with<strong>in</strong> the "small scale expansion" and discussed the lead<strong>in</strong>g<br />

contribution to the N N potential from the <strong>in</strong>termediate Ll 'so In that case, both the<br />

method of unitary transformation and time-ordered perturbation theory lead to the<br />

same result.<br />

• Furthermore, we have considered the lead<strong>in</strong>g contributions to the three-nucleon potential.<br />

As <strong>in</strong> time-ordered perturbation theory, we f<strong>in</strong>d that these sum up to zero.<br />

However, the mechanism for the cancelation between so me of the graphs is dist<strong>in</strong>ctively<br />

different <strong>in</strong> the projection formalism s<strong>in</strong>ce it is not related to an <strong>in</strong>tricate cancelation<br />

of terms generated by the iteration of the energy-dependent two-nucleon potential <strong>in</strong><br />

old-fashioned time-ordered perturbation theory. Rather, <strong>in</strong> the approach here, these<br />

cancelations can be traced back to the appearance of "reducible" graphs whose precise<br />

mean<strong>in</strong>g is expla<strong>in</strong>ed <strong>in</strong> section 3.8.1. <strong>The</strong>se diagrams are <strong>in</strong> fact responsible for the<br />

orthonormality of the wave functions and are thus sometimes called "wave function<br />

re-orthonormalization" graphs.<br />

• We have also constructed the most general reparametrization <strong>in</strong>variant effective Lagrangian<br />

for the contact <strong>in</strong>teractions with four nucleon legs up to order Lli = 3, L}J;;5�3)<br />

(reparametrization <strong>in</strong>variance is a consequence of Lorentz <strong>in</strong>variance of the underly<strong>in</strong>g<br />

theory, see ref. [182]). <strong>The</strong> Lagrangian used <strong>in</strong> previous calculations, see e.g. [74], [76],<br />

[78], [127], conta<strong>in</strong>s fourteen free parameters Ci,...,14 and leads to two-nucleon forces,<br />

which depend on the total moment um P of two nucleons. Whereas such P-dependent<br />

forces do not affect calculations of the two-nucleon system <strong>in</strong> the c.m.s., they would be<br />

very important for processes <strong>in</strong>clud<strong>in</strong>g other particles and for three and more nucleons.<br />

We have shown that requir<strong>in</strong>g the reparametrization <strong>in</strong>variance for the contact terms<br />

<strong>in</strong> the effective Lagrangian yields several constra<strong>in</strong>ts on the parameters Ci. Only seven<br />

of these fourteen parameters are really <strong>in</strong>dependent. <strong>The</strong> result<strong>in</strong>g NLO and NNLO<br />

two-nucleon potentials do not depend on the total moment um P.<br />

3. Thirdly, <strong>in</strong> chapter 4 we have calculated nuclear forces and properties of the two-nucleon<br />

system based on a chiral effective field theory and the projection formalism. <strong>The</strong> results of<br />

this <strong>in</strong>vestigation can be summarized as follows:<br />

• We considered the two-nucleon potential at NNLO result<strong>in</strong>g from the projection formalism.<br />

It consists of one- and two-pion exchange diagrams, <strong>in</strong>clud<strong>in</strong>g dimension two<br />

(Lli = 2) <strong>in</strong>sertions from the pion-nucleon Hamiltonian. <strong>The</strong> correspond<strong>in</strong>g LEes have<br />

been taken from an <strong>in</strong>vestigation of rrN scatter<strong>in</strong>g [195]. In addition, there are two and<br />

seven contact <strong>in</strong>teractions without and with two derivatives, respectively. <strong>The</strong> coupl<strong>in</strong>g<br />

constants of these terms must be fixed by a fit to data.<br />

• For large momenta, the potential becomes unphysical and has to be regularized. We<br />

performed this regularization on the level of the Lippmann-Schw<strong>in</strong>ger equation, as<br />

expla<strong>in</strong>ed <strong>in</strong> sec. 4.1 us<strong>in</strong>g either a sharp or an exponential regulator function. At<br />

NLO, physics does not depend on the cut-off <strong>in</strong> the range between 400 and 650 Me V. At


NNLO, this range is larger and extends from 650 to 1000 MeV. This can be understood<br />

from the chiral TPEP, which at NNLO <strong>in</strong>cludes 1f1f correlations. <strong>The</strong>se <strong>in</strong>troduce a<br />

new mass scale well above twice the pion mass.<br />

• We have shown that the NLO coupl<strong>in</strong>gs can be comb<strong>in</strong>ed <strong>in</strong> such a way that each<br />

comb<strong>in</strong>ation feeds <strong>in</strong>to one partial wave, see eqs. (4.16)-(4.23).1 More precisely, the<br />

n<strong>in</strong>e coupl<strong>in</strong>gs with four nucleon legs can be determ<strong>in</strong>ed uniquely by a fit to the two Swaves,<br />

four P-waves and the mix<strong>in</strong>g parameter E1 for nucleon laboratory energies below<br />

100 MeV. This simplifies the fitt<strong>in</strong>g procedure enormously as compared to ref. [78],<br />

where a global fit <strong>in</strong> all low partial waves has been performed. As expected from the<br />

power count<strong>in</strong>g underly<strong>in</strong>g the EFT, the fits improve when go<strong>in</strong>g from LO to NLO to<br />

NNLO, compare fig. 4.l.<br />

• At NNLO, the result<strong>in</strong>g S-waves are of very high precision (for nucleon laboratory<br />

energies below 300 MeV), see e.g. tables 4.2,4.3 and fig. 4.4. <strong>The</strong> so-called range<br />

parameters collected <strong>in</strong> table 4.4 agree with what is found <strong>in</strong> the phase shift analysis.<br />

<strong>The</strong> P-waves are mostly well described, <strong>in</strong> particular the mix<strong>in</strong>g parameter E1 is <strong>in</strong><br />

good agreement with the phase shift analysis. We also note that above nucleon cms<br />

momenta of about 150 MeV, our NLO and NNLO results are far better than the ones<br />

obta<strong>in</strong>ed <strong>in</strong> the KSW scheme at NLO and NNLO.<br />

• All other partial waves are free of parameters. <strong>The</strong> D-waves, <strong>in</strong> particular 3 D1 and 3 D 3<br />

are very well described. We have also discussed the cut-off sensitivity of these results.<br />

<strong>The</strong> NNLO TPEP is too strong <strong>in</strong> the trip let F-waves. For the peripheral waves, we<br />

recover the results of the Munich group [108], namely that <strong>in</strong> most cases OPE works<br />

well but chiral NNLO TPEP clearly improves the description of some partial waves like<br />

e.g. 3G5, 3 H5 or 3 h.<br />

• <strong>The</strong> deuteron properties are mostly well described, at NLO and NNLO, compare table<br />

4.7. At NNLO, the deuteron wave functions show some <strong>in</strong>terest<strong>in</strong>g structure due<br />

to the appearance of two very deeply bound states. <strong>The</strong>se are an artifact of the NNLO<br />

approximation. <strong>The</strong>y have no <strong>in</strong>fluence on low energy properties and can be projected<br />

out completely from the theory. Our precise deuteron wavefunctions can be used for<br />

pion photoproduction, pion-deuteron scatter<strong>in</strong>g or Compton scatter<strong>in</strong>g off deuterium<br />

(still, the hybrid approach proposed by We<strong>in</strong>berg [114] rema<strong>in</strong>s a useful tool).<br />

• We have also considered an approach with explicit D.. degrees of freedom <strong>in</strong> the TPEP.<br />

This NNLO-D.. approach leads to results very similar to the ones at NNLO <strong>in</strong> the<br />

theory without isobars, with the exception of the partial waves that are sensitive to<br />

pionic scalar-isoscalar correlations like e.g. 3 D 3 • We conclude that the <strong>in</strong>clusion of the<br />

D.. via resonance saturation of dimension two 1f N LECs capture the essential physics of<br />

the isobar <strong>in</strong> the two-nucleon system. We note, however, that a more systematic study<br />

of pion-nucleon scatter<strong>in</strong>g <strong>in</strong> an EFT <strong>in</strong>clud<strong>in</strong>g the D.. is needed to further quantify<br />

these statements.<br />

4. F<strong>in</strong>ally, we have considered electromagnetic and strong isosp<strong>in</strong> violation <strong>in</strong> low-energy<br />

nucleon-nucleon scatter<strong>in</strong>g <strong>in</strong> the effective field theory formalism developed <strong>in</strong> ref. [91].<br />

We now summarize the results of this <strong>in</strong>vestigation.<br />

• We first considered isosp<strong>in</strong> violat<strong>in</strong>g parts of the effective Lagrangian. <strong>The</strong> terms<br />

related to the pion and the pion-nucleon system were discussed <strong>in</strong> [199], [222]-[224].<br />

lThis was also noted by Kaplan et al. [91].<br />

169


170 5. Summary and outlook<br />

<strong>The</strong> isosp<strong>in</strong> violat<strong>in</strong>g Lagrangian <strong>in</strong> the two-nucleon sector has been worked out by<br />

van Kolck <strong>in</strong> ref. [75]. We have reconsidered the correspond<strong>in</strong>g terms us<strong>in</strong>g a different<br />

approach, namely the method of external fields .<br />

• After a brief <strong>in</strong>troduction <strong>in</strong>to the KSW formalism, we have discussed the lead<strong>in</strong>g<br />

isosp<strong>in</strong> violat<strong>in</strong>g effects <strong>in</strong> the 1 So channel. In particular, the lead<strong>in</strong>g charge <strong>in</strong>dependence<br />

break<strong>in</strong>g effect is due to a comb<strong>in</strong>ation of the neutral to charged pion mass<br />

difference <strong>in</strong> one-pion exchange diagrams together with an electromagnetic N N contact<br />

term. Its correspond<strong>in</strong>g coupl<strong>in</strong>g constant scales as Q-2 but is numerically suppressed<br />

by the explicit appearance of the f<strong>in</strong>e structure constant a rv 1/137. We have shown<br />

how the KSW power count<strong>in</strong>g has to be modified <strong>in</strong> the presence of isosp<strong>in</strong> violat<strong>in</strong>g<br />

operators .<br />

• We explicitely evaluated the 1 So phase shifts for the np, nn and Coulomb-subtracted<br />

pp systems at next-to-Iead<strong>in</strong>g order. In addition, we have given a general classification<br />

of the various CIB and CSB corrections. This allows to understand so me phenomenologically<br />

found results.<br />

To the best of our knowledge the exact moment um space projection of the nucleon-nucleon <strong>in</strong>teraction<br />

discussed and performed <strong>in</strong> sec. 2.3 has never been done before. In this thesis we have<br />

applied this formalism to some problems aris<strong>in</strong>g <strong>in</strong> the context of an effective field theory for the<br />

N N system. <strong>The</strong> method, however, might also provide new <strong>in</strong>sights <strong>in</strong>to many other <strong>in</strong>terest<strong>in</strong>g<br />

quest ions <strong>in</strong> nuclear physics. In particular, it opens the possibility of study<strong>in</strong>g relativistic effects<br />

<strong>in</strong> a consistent and convergent manner, s<strong>in</strong>ce the moment um components of the order or higher<br />

than the nucleon mass can be <strong>in</strong>tegrated out. Furthermore, it would be <strong>in</strong>terest<strong>in</strong>g to generalize<br />

the above formalism to three- and more-nucleon system.<br />

Further, the method of unitary transformation (projection formalism) has never been applied<br />

<strong>in</strong> the context of the chiral effective field theory. Previous calculations of the 2N <strong>in</strong>teraction<br />

[73], [74], [76], [78] from chiral effective Lagrangians are based on time-ordered perturbation<br />

theory and lead to an energy-dependent potential. As already stressed above, the most important<br />

advantages of our formalism aga<strong>in</strong>st time-ordered perturbation theory is energy-<strong>in</strong>dependence of<br />

the correspond<strong>in</strong>g potential and the orthonormality of the related wave functions. Appropriate<br />

power count<strong>in</strong>g rules, which allow to perform calculations with<strong>in</strong> the projection formalism to any<br />

required order <strong>in</strong> the low-momentum expansion, have been worked out <strong>in</strong> sec. 3.6 and appendices<br />

A, B and C.<br />

Our results for nucleon-nucleon <strong>in</strong>teractions derived from the most general chiral <strong>in</strong>variant Hamiltonian<br />

do not only show that the scheme orig<strong>in</strong>ally proposed by We<strong>in</strong>berg works qualitatively, it<br />

even works much better than it was expected, namely quantitatively. It extends the successful<br />

applications of effective field theory (chiral perturbation theory) <strong>in</strong> the pion and pion-nucleon<br />

sectors to systems with more than one nucleon. Clearly, one should now reconsider processes,<br />

which have been evaluated us<strong>in</strong>g We<strong>in</strong>berg's hybrid approach [114] (?f - d scatter<strong>in</strong>g [114], [217],<br />

"(d -+ ?f o d [115], "(d -+ "(d [116]) and extend these considerations to systems with more than two<br />

nucleons. In addition, a fresh look at charge symmetry and charge <strong>in</strong>dependence break<strong>in</strong>g <strong>in</strong> the<br />

Hamiltonian formalism is called for (for earlier studies, see e.g. refs. [218], [99]).<br />

A very important and actual research field comprises the application of CHPT to 3N <strong>in</strong>teractions.<br />

Whereas the first results <strong>in</strong> the KSW scheme and <strong>in</strong> the pionless effective theory were already<br />

presented for the three-body system, see e.g. refs. [119], [120], [121], [122], no calculations with<strong>in</strong><br />

the potential approach <strong>in</strong>clud<strong>in</strong>g the complete lead<strong>in</strong>g 3N force predicted by CHPT have yet been<br />

performed. It would be <strong>in</strong>terest<strong>in</strong>g to see whether the <strong>in</strong>clusion of the 3N forces of such type


might be responsible for solv<strong>in</strong>g the Ay problem <strong>in</strong> the elastic nd scatter<strong>in</strong>g at low energies. For<br />

more discussion on that see ref. [196J.<br />

We also po<strong>in</strong>t out that problems related to renormalization of the effective Hamiltonian after<br />

elim<strong>in</strong>at<strong>in</strong>g the pionic degrees of freedom have to be <strong>in</strong>vestigated more carefully than it has been<br />

done <strong>in</strong> sec. 3.8.2. In particular, one should <strong>in</strong>clude also the zero- and one-body operators <strong>in</strong> order<br />

to perform a complete renormalization at NLO and NNLO. Furthermore, it would be <strong>in</strong>terest<strong>in</strong>g<br />

to study the problem of carry<strong>in</strong>g out the renormalization at an arbitrary order <strong>in</strong> the moment um<br />

expansion. As far as we know, the problem of renormalization with<strong>in</strong> the Hamiltonian approach<br />

has never been worked out <strong>in</strong> detail (also <strong>in</strong> the context of an effective field theory).<br />

Last not least we have shown that isosp<strong>in</strong> violation can be systematically <strong>in</strong>cluded <strong>in</strong> the effective<br />

field theory approach to the two-nucleon system <strong>in</strong> the KSW formulation. For that, one has to<br />

construct the most general isosp<strong>in</strong> violat<strong>in</strong>g effective Lagrangian and extend the power count<strong>in</strong>g<br />

sehe me accord<strong>in</strong>gly. We have shown that this framework allows one to syste�atically classify<br />

the various contributions to charge <strong>in</strong>depedence and charge symmetry break<strong>in</strong>g (CIB and CSB).<br />

In particular, the power count<strong>in</strong>g comb<strong>in</strong>ed with dimensional analysis allows one to understand<br />

the suppression of contributions from a possible charge-dependence <strong>in</strong> the pion-nucleon coupl<strong>in</strong>g<br />

constants. It would be <strong>in</strong>terest<strong>in</strong>g to extend this formalism to other partial waves and to higher<br />

energies so as to <strong>in</strong>vestigate e.g. isosp<strong>in</strong> violation <strong>in</strong> pion production.<br />

171


Appendix A<br />

Dimensional analysis of the projected<br />

decoupl<strong>in</strong>g equation (3.206)<br />

In this appendix, we work out the chiral power of various terms appear<strong>in</strong>g <strong>in</strong> eq. (3.206). Any<br />

one of these can be characterized by a count<strong>in</strong>g <strong>in</strong>dex v, i.e. it is proportional to QV. This <strong>in</strong>dex<br />

should not be confused with the one giv<strong>in</strong>g the chiral dimension of the matrix-elements (w i IAI


derivative. Further helpful equalities are<br />

1);2:1 ,<br />

1);2:-2+p<br />

173<br />

(A.5)<br />

(A.6)<br />

Whereas (A.5) is generally valid s<strong>in</strong>ce no renormalizable <strong>in</strong>teractions are allowed by chiral symmetry,<br />

(A.6) follows from simple <strong>in</strong>spection of eq. (3.211): for n = 0 there are at least two derivatives<br />

and for n 2: 2 it is immediately apparent.<br />

Below we will exam<strong>in</strong>e the chiral power v for all terms enter<strong>in</strong>g the left-hand side of eq. (3.206).<br />

• )..4k +iHK'fl<br />

v = 4 - 3N - 4k - i + I); • (A.7)<br />

This follows from eq. (3.210) if one notes, that now there is one energy denom<strong>in</strong>ator less.<br />

We then obta<strong>in</strong> from eqs. (A.3), (A.4), (A.6):<br />

v 2: 4 - 3N, when k = 0 ,<br />

v 2: 2 - 3N, when k > 0<br />

• )..4k +i HK)..4Q+ j Az'fl<br />

v = 4 - 3N - 4k - i + 2q + j + I); + l .<br />

<strong>The</strong> follow<strong>in</strong>g possibilities are to be considered:<br />

(A.8)<br />

1. q::;k-l<br />

In this case the number of pions at the vertex is restricted by p 2: 4k + i - 4q - j.<br />

<strong>The</strong>refore, the <strong>in</strong>equality (A.6) takes the form<br />

It then follows from eq. (A.8), that<br />

2. q = k<br />

Here we have:<br />

I); 2: -2 + 4k + i - 4q - j<br />

v 2: 4 - 3N - 2k<br />

p 2: Ij - il<br />

(A.9)<br />

(A.I0)<br />

(A.11)<br />

Apply<strong>in</strong>g eq. (A.4) and us<strong>in</strong>g the (obvious) <strong>in</strong>equality j - i 2: -Ij - il one can justify<br />

eq. (A.I0) also for that case.<br />

3. q 2: k + 1<br />

One can easily prove eq. (A.I0) far this case us<strong>in</strong>g eq. (A.5) and not<strong>in</strong>g, that j -i 2: -3.<br />

• E()..4k +i ) .. 4k+i Az'fl<br />

v 2: 4 - 3N - 2k + l 2: 4 - 3N - 2k . (A.12)<br />

This follows immediately from eq. (3.214). Here, the first <strong>in</strong>equality becomes the exact<br />

equality when only the pion k<strong>in</strong>etic energy is taken <strong>in</strong>to account <strong>in</strong> E()..4k +i ).<br />

• )..4k +iAZ'flHK'fl<br />

v = 4 - 3N - 2k + l + I); • (A.13)<br />

<strong>The</strong>re is no non-vanish<strong>in</strong>g operator 'flHK'fl with I); < O. That is why the <strong>in</strong>equality (A.I0) is<br />

aga<strong>in</strong> valid.


174<br />

• ).. 4k+i AI''lE( Tl)<br />

A. Dimensional analysis of the projected decoupl<strong>in</strong>g equation (3.206)<br />

We will count the nucleon mass <strong>in</strong> the same way as it has been done by We<strong>in</strong>berg [73]:<br />

(A.14)<br />

<strong>The</strong> nucleon k<strong>in</strong>etic energy must then be counted as Q3 and we obta<strong>in</strong> the follow<strong>in</strong>g result:<br />

v ;::: 6 - 3N - 2k + l ;::: 6 - 3N - 2k (A.15)<br />

v = 4 - 3N - 2k + 2q + j + h + l2 + K, ;::: 6 - 3N - 2k (A.16)


Appendix B<br />

Operators contribut<strong>in</strong>g to eq. (3.206)<br />

at order r<br />

In this appendix, we work out <strong>in</strong> detail which operators ).a Ar" actually appear <strong>in</strong> eq. (3.206) at<br />

order r, which is def<strong>in</strong>ed <strong>in</strong> eq. (3.216). For that we will exam<strong>in</strong>e below all terms that enter this<br />

equation. We f<strong>in</strong>d<br />

• ).4k+iHK,).4 q + j A/1]<br />

One obta<strong>in</strong>s from (A.8) and (3.216) the follow<strong>in</strong>g identity:<br />

Let us first consider the case i # 0:<br />

1. q :::; k-1<br />

Us<strong>in</strong>g eqs. (A.9), (B.1) one gets<br />

2. q = k<br />

l = r + 2(k - q) + i - j - K,<br />

l :::; r - 2k + 2q + 2 :::; r .<br />

(a) j < i<br />

It follows from eqs. (A.ll), (B.1), that<br />

(b) J = Z<br />

In this case eq. (B.1) takes the form<br />

l :::; r - Ij - i 1 + i - j :::; r .<br />

due to the <strong>in</strong>equalities (A.3), (A.4) and (A.6).<br />

(c) j 2:: i + 1<br />

<strong>The</strong> first <strong>in</strong>equality of eq. (B.3) leads to<br />

3. q = k + 1<br />

l :::; r - 2j + 2i :::; r - 2 .<br />

175<br />

(B.1)<br />

(B.2)<br />

(B.3)<br />

(B.4)<br />

(B.5)


176 B. Operators contribut<strong>in</strong>g to eq. (3.206) at order r<br />

(a) i = 1,2<br />

It can be seen from the <strong>in</strong>equalities (AA), (A.6) that <strong>in</strong> this case K, � 2. Us<strong>in</strong>g the<br />

<strong>in</strong>equality i - j :S 2 we get from eq. (B.I)<br />

l:Sr-2 .<br />

(b) i = 3<br />

<strong>The</strong> general <strong>in</strong>equality (A.5) leads immediately to<br />

4. q � k + 2<br />

1. j=O : l:Sr ,<br />

11. j � 1 : l:S r - 1<br />

(B.6)<br />

(B.7)<br />

Us<strong>in</strong>g eq. (A.6) with the number of pions p given by p = 4q + j - 4k - i we obta<strong>in</strong> from<br />

eq. (B.I)<br />

l :S r - 6(q - k) + 2 + 2i - 2j :S r - 6(q - k) + 8 :S r - 4 . (B.8)<br />

<strong>The</strong> case i = 0 can be considered analogously:<br />

1. q:Sk-2=?l:Sr-2,<br />

2. q = k - 1 .<br />

(a) j � 1<br />

Putt<strong>in</strong>g p = 4 - j <strong>in</strong> eq. (AA) we see from eq. (B.I), that<br />

l:Sr-2.<br />

(b) j = 0<br />

In this case we have K, � 2, as it follows from eq. (A.6). We obta<strong>in</strong><br />

3. q = k<br />

It follows from eqs. (A.3) and (AA), that<br />

l :S r .<br />

l


Appendix C<br />

Small scale expansion with<strong>in</strong> the<br />

projection formalism<br />

In this appendix we would like to generalize the consideration of appendices A and B to <strong>in</strong>clude<br />

the (<strong>in</strong>termediate) Ll-isobar excitations. As discussed <strong>in</strong> the text, the Ll is treated <strong>in</strong> a similar<br />

way as the nucleons, i.e. as the light particle (but not massless as N) with the mass Ll = mf:l. - m1<br />

and with both sp<strong>in</strong> and isosp<strong>in</strong> quantum numbers equal 3/2. Now we will generalize the results<br />

obta<strong>in</strong>ed <strong>in</strong> appendices A and B to <strong>in</strong>clude also the states related to >.0.<br />

We start with the dimensional analysis of the decoupl<strong>in</strong>g equation (3.206) projected by >.0 and<br />

exam<strong>in</strong>e the chiral power v for all terms enter<strong>in</strong>g the left-hand side of this equation .<br />

• >.0 HK,Tj<br />

v = 4 - 3N + r;, 2: 6 - 3N . (C.1)<br />

Note that here and <strong>in</strong> what follows, N corresponds to the number of baryons (also Ll's).<br />

This <strong>in</strong>equality follows because the transition between purely baryonic states requires contact<br />

vertices with four baryon legs or relativistic correction terms. <strong>The</strong> m<strong>in</strong>imal possible value<br />

of r;, for such <strong>in</strong>teractions is 2.<br />

<strong>The</strong> follow<strong>in</strong>g possibilities are to be considered:<br />

v = 4 - 3N + 2q + j + r;, . (C.2)<br />

1. q = 0, j = 0<br />

In that case we have r;, 2: 2, l 2: 2. Consequently, one obta<strong>in</strong>s:<br />

v 2: 8 - 3N . (C.3)<br />

2. 4q + j # 0<br />

In that case 2q + j 2: 1. Prom the <strong>in</strong>equality (A.5) we obta<strong>in</strong><br />

v 2: 6 - 3N . (C.4)<br />

v 2: 6 - 3N . (C.5)<br />

I This is because a trivial momentum dependence of the f:l.-field due to the nucleon mass is factored out, see<br />

eq. (3.160).<br />

177


178 C. Small scale expansion with<strong>in</strong> the projection formalism<br />

• )..0 Al TJHt;, TJ<br />

Equation (A.13) leads to the follow<strong>in</strong>g <strong>in</strong>equality:<br />

v 2 8 - 3N , (C.6)<br />

where we have used the facts that m<strong>in</strong> (l) = 2 for )..0 A1TJ and m<strong>in</strong> (I\;) = 2 for TJHt;,TJ.<br />

v 2 8 - 3N . (C.7)<br />

v = 4 - 3N + 2q + j + h + l 2 + I\; 2 8 - 3N . (C.8)<br />

To complete the modifications of the appendix A, we also need to consider ).. O -<strong>in</strong>termediate states.<br />

Only two terms <strong>in</strong> eq. (3.206) may have such <strong>in</strong>termediate states:<br />

• )..4k+iHt;,)"oA1TJ<br />

We consider two different cases:<br />

v = 4 - 3N - 4k - i + I\; + 1 . (C.9)<br />

1. k = 0, i f. 0<br />

Us<strong>in</strong>g the <strong>in</strong>equality (A.4) and the fact that 1 2 2 we obta<strong>in</strong><br />

2. k f. 0<br />

In that case eq. (A.6) leads to<br />

v 2 6 - 3N . (C.10)<br />

v 2 4 - 3N . (C.ll)<br />

v = 4 - 3N - 2k + h + l 2 + I\; 2:: 8 - 3N - 2k . (C.12)<br />

We now switch to appendix B and consider which operators )..a A1TJ enter the decoupl<strong>in</strong>g equation<br />

(3.206) at order r projected onto the state )..0•<br />

• )..0 Ht;,)..4 q +j A1TJ<br />

Aga<strong>in</strong>, we have to consider two cases:<br />

1. q=O<br />

One can use eq. (A.4) if j f. 0 and the fact that I\; 2 2 if j = 0 to obta<strong>in</strong><br />

l


179<br />

(C.16)<br />

l�r-2. (C.17)<br />

h + l2 = r - /'i, - 2q - j � r - 2 . (C.18)<br />

In the last <strong>in</strong>equality we have used the same arguments as for the case ,\0 HK,,\4 q +j Al'r), from<br />

w hich follows that 2q + j + /'i, 2': 2 for all q, j.<br />

We also exam<strong>in</strong>e the cases with ,\ o -<strong>in</strong>termediate cases:<br />

1. k = 0, i # 0<br />

<strong>The</strong> <strong>in</strong>equality (A.4) leads to<br />

2. k> 1<br />

From eq. (A.6) we obta<strong>in</strong><br />

l = r + 2k + i - /'i, • (C.19)<br />

l � r . (C.20)<br />

l � r. (C.21)<br />

h + l2 = r - /'i, � r - 2 .<br />

(C.22)


Appendix D<br />

Divergent loop <strong>in</strong>tegrals<br />

In this appendix we give the divergent loop <strong>in</strong>tegrals that enter the expressions for the NLO<br />

potential <strong>in</strong> terms of divergent <strong>in</strong>tegrals Jo , J 2 and J4 def<strong>in</strong>ed <strong>in</strong> eq. (3.284).<br />

h ==<br />

J d3[ [2 1 { 2 M;<br />

2 2 }<br />

(27r)3 wr = 87r2 3Mn: In 4JL2 + 5Mn: + 4J 2 - 6Mn: Jo , (D.l)<br />

(D.2)<br />

(D.3)<br />

(D.4)<br />

(D.5)<br />

with s = J4M; + q2 and w± given <strong>in</strong> eq. (3.273). All other <strong>in</strong>tegrals appear<strong>in</strong>g <strong>in</strong> the 1�loop<br />

NLO TPEP can be deduced from these expressions by tak<strong>in</strong>g proper l<strong>in</strong>ear comb<strong>in</strong>ations or<br />

differentiation with respect to M;, as expla<strong>in</strong>ed <strong>in</strong> the text. Note that both left� and right�hand<br />

sides of these equations do not depend on JL. <strong>The</strong> explicit logarithmic dependence of the terms on<br />

the right�hand side is compensated by the JL�dependence of Jo .<br />

180


Appendix E<br />

Anti-symmetrization of the contact<br />

<strong>in</strong>teractions<br />

In this appendix we will entirely concentrate on contact <strong>in</strong>teractions and their contributions to<br />

the efIective N N potential. Let us start with the simplest case of the contact <strong>in</strong>teractions without<br />

derivatives. Only two such terms enter the Hamiltonian (3.234). In pr<strong>in</strong>ciple, one can construct<br />

two additional <strong>in</strong>teractions that satisfy all required symmetry pr<strong>in</strong>ciples by <strong>in</strong>sert ions of the isosp<strong>in</strong><br />

matrices T'S. We<strong>in</strong>berg po<strong>in</strong>ted out [73] that only two of these four contact terms are <strong>in</strong>dependent.<br />

<strong>The</strong> rema<strong>in</strong><strong>in</strong>g ones can be elim<strong>in</strong>ated from the Hamiltonian apply<strong>in</strong>g the Fierz transformation,<br />

see, for <strong>in</strong>stance, [132]. Another way to see that is to perform anti-symmetrization ofthe potential.<br />

We will now expla<strong>in</strong> this <strong>in</strong> detail follow<strong>in</strong>g the logic of the reference [108].<br />

<strong>The</strong> contribution of all four contact <strong>in</strong>teractions to the efIective potential is<br />

Vo = Ü1 + Ü2 0\ .<br />

<strong>The</strong> anti-symmetrized potential v� is given by<br />

where the exchange operator A is def<strong>in</strong>ed via<br />

eh + Ü3 Tl ' T2 + Ü4 (0\ . (2) (Tl ' T2) .<br />

Vo - A[vo]<br />

2<br />

and where m i (mD denotes symbolically sp<strong>in</strong>, isosp<strong>in</strong> and momentum quantum numbers of the<br />

nucleon. Accord<strong>in</strong>g to [108], <strong>in</strong> the two nucleon center-of-mass system the exchange operator A <strong>in</strong>volves<br />

a left-multiplication with the isosp<strong>in</strong> exchange operator (1 + Tl ' T2) /2, a left-multiplication<br />

with the sp<strong>in</strong> exchange operator (1 + 51 . (2)/2 and a substitution p' -+ _p'.1 Us<strong>in</strong>g these rules<br />

one obta<strong>in</strong>s the follow<strong>in</strong>g identities:<br />

A[l] 1 (1 + (51 . 52) + (Tl ' T2) + (51 ' (2)(T1 ' T2)) ,<br />

1 (3 - (51 . 52) + 3(T1 ' T2) - (51 ' (2)(T1 ' T2)) ,<br />

1 (3 + 3(51 . 52) - (Tl ' T2) - (51 ' (2)(T1 ' T2)) ,<br />

1 (9 - 3(51 . 52) - 3(T1 . T2) + (51 ' (2) (T1 . T2)) .<br />

I p and pi are the nucleon <strong>in</strong>itial and f<strong>in</strong>al ems momenta, respeetively.<br />

181<br />

(E.1)<br />

(E.2)<br />

(E.3)<br />

(E.4)


182 E. Anti-symmetrization of the contact <strong>in</strong>teractions<br />

Now it is easy to perform anti-symmetrization of eq. (E.1):<br />

where<br />

1<br />

4 (a1 - a2 - a3 - 3(4) ,<br />

1<br />

4( -al - 3a2 + 5a3 + 3(4) . (E.6)<br />

Note that only two <strong>in</strong>dependent constants ß1 and ß2 enter the expression (E.5) for the antisymmetrized<br />

contribution. <strong>The</strong>refore, we can choose only two operators of the four contact terms<br />

<strong>in</strong> eq. (E.1) as the basis. For example,<br />

Vo = C s + Cr eh . eh . (E.7)<br />

Requir<strong>in</strong>g that the anti-symmetrized contributions of eqs. (E.1) and (E.7) are the same we obta<strong>in</strong><br />

us<strong>in</strong>g eqs. (E.5), (E.6)<br />

Cr (E.8)<br />

One can proceed <strong>in</strong> the same way to consider the contact <strong>in</strong>teractions with two derivatives. Altogether<br />

fourteen such <strong>in</strong>teractions contribute <strong>in</strong> the two-nucleon cms system (seven terms <strong>in</strong><br />

eq. (3.270) plus the the correspond<strong>in</strong>g ones with <strong>in</strong>sert ions of the isosp<strong>in</strong> matrices). For our purpose<br />

it is sufficient to consider a subclass of these <strong>in</strong>teractions, namely those depend<strong>in</strong>g on q 2, k2<br />

(s<strong>in</strong>ce the other contact terms requir<strong>in</strong>g anti-symmetrization enter eq. (3.296)):<br />

V2 =<br />

,1<br />

q 2 + ,2 ih . eh q 2 + ,3 Tl . T2 q 2 + ,4 (0\ . eh) (T 1 . T2) q 2<br />

+ ,1 k 2 + ,2 ih . ih k 2 + '3 Tl ' T2 k 2 + '4 (51 . (2) (Tl ' T2) k 2 .<br />

Note that A[g] = -2k, A[k] = -g/2. <strong>The</strong>refore, we obta<strong>in</strong> us<strong>in</strong>g eq. (E.4):<br />

v2 W1 q - 12 W1 + W3 + W4 0"1 ' 0"2 q + W2 Tl . T2 q .<br />

(E.9)<br />

A 2 1 ( 4 3 ) - - 2 2 (E 10)<br />

1<br />

-<br />

12<br />

( 4W2 + W3 - W4) (51 . (2) (Tl ' T2) q2 + W3 k2 -1 ( W3 + 4W1 + 12w2 ) 51 . 52 k2 ( W4 + 4W1 - 4W2 ) (51 . 52 ) (Tl . T2) k2 ,<br />

+ W4 Tl . T2 k2 -1<br />

where W1,2,3,4 are given by<br />

1 1<br />

2'1 - 32 (,5 + 3,6 + 3'7 + 9,8 ) ,<br />

1 1<br />

2'3 - 32 (,5 + 3,6 - ,7 - 3'8 ) ,<br />

1<br />

2(,5 - ,1 - 3'2 - 3'3 - 9'4 ) ,<br />

1<br />

2(,7 - ,1 - 3'2 + '3 + 3'4) .<br />

(E.ll)


Consequently, only four of the eight contact terms <strong>in</strong> eq. (E.9) are <strong>in</strong>dependent. Choos<strong>in</strong>g those<br />

terms to be<br />

(E.12)<br />

and requir<strong>in</strong>g that the anti-symmetrized contributions of eqs. (E.9) and (E.12) are the same, we<br />

end up with the follow<strong>in</strong>g result us<strong>in</strong>g eqs. (E.10), (E.ll):<br />

3"(8<br />

"(7<br />

"(1 - "(3 - 4 - 4 '<br />

-4"(3 - 12"(4 + "(5 - "(7 ,<br />

"(7 "(8<br />

"(2 - "(4 - 4 + 4 '<br />

-4"(3 + 4"(4 + "(6 - "(8 .<br />

183<br />

(E.13)


Appendix F<br />

<strong>The</strong> complete set of N N contact<br />

<strong>in</strong>teractions with two derivatives<br />

<strong>The</strong> most general effective Lagrangian for nucleons given <strong>in</strong> refs. [76], [78] conta<strong>in</strong>s 14 contact<br />

<strong>in</strong>teractions with two derivatives, which are multiplied by the coefficients C 1 , ... 14. In this appendix<br />

we would like to show that 7 of these 14 terms are not <strong>in</strong>dependent from the others and have fixed<br />

coefficients. Moreover, consider<strong>in</strong>g the coupl<strong>in</strong>gs accompany<strong>in</strong>g these terms as apriori unknown<br />

and non-vanish<strong>in</strong>g quantities would violate general symmetry pr<strong>in</strong>ciples of the theory.1 <strong>The</strong><br />

situation he re is similar to the familiar case of the nucleon k<strong>in</strong>etic energy term Nt\l 2 j(2m)N <strong>in</strong><br />

the Lagrangian correspond<strong>in</strong>g to the Hamiltonian (3.199). <strong>The</strong> Lorentz <strong>in</strong>variance of the theory<br />

would be broken if one allows an arbitrary coefficient for the term Nt\l 2 N.<br />

As expla<strong>in</strong>ed <strong>in</strong> the text, the nucleons <strong>in</strong> the effective theory can be described by velocity dependent<br />

fields Hv and hv, see eq. (3.160). 2 <strong>The</strong> total momentum Pp. of the nucleon is then parametrized<br />

by a pair (Vp., Ip.) via eq. (3.158). <strong>The</strong> small component field hv can be elim<strong>in</strong>ated from the<br />

theory, which leads to 1jm-corrections <strong>in</strong> the effective Lagrangian. Clearly, such correction terms<br />

have fixed coefficients, def<strong>in</strong>ed by the structure of the orig<strong>in</strong>al relativistic Lagrangian. Explicitly<br />

<strong>in</strong>tegrat<strong>in</strong>g out the small component field hv has not yet been worked out for nucleon <strong>in</strong>teractions<br />

with four and more legs. Instead of explicitly <strong>in</strong>tegrat<strong>in</strong>g out hv, it is easier <strong>in</strong> such a case to write<br />

down all possible terms consist<strong>in</strong>g of Hv , vp. and Sp., which is def<strong>in</strong>ed by<br />

and of covariant derivatives of the nucleon and pion fields.3 Note that the sp<strong>in</strong> operator Sp. obeys<br />

the follow<strong>in</strong>g relations (<strong>in</strong> four dimensions):<br />

2 3 1<br />

S· v = 0, S = -4' {Sp., Sv} = 2 (vP.vv - 9p.v) , [Sp., Sv] = ifp.vpuV P S u , (F.2)<br />

where we have used the convention f0 1 2 3 = 1. One can require the reparametrization <strong>in</strong>variance<br />

[182] of the effective Lagrangian to fix the coefficients for the 1jm-corrections and to elim<strong>in</strong>ate<br />

the terms violat<strong>in</strong>g Lorentz symmetry. <strong>The</strong> effective Lagrangian expressed <strong>in</strong> terms of velo city<br />

dependent fields is reparametrization <strong>in</strong>variant if it preserves its form under the reparametrization<br />

(F.1)<br />

(Vp., Ip.) +-t (Wp., kp.) = (Vp. + qp. , Ip. - q p.) , (F.3)<br />

m<br />

1 In particular, the Galilean <strong>in</strong>varianee would be broken.<br />

2 In sec. 3.4 we have suppressed the label v for those fields.<br />

3 AH Dirae bil<strong>in</strong>ears fIv rHv (r = {I, 'Y5 , 'YI" 'Y5'YI" O"l' v }) ean be expressed <strong>in</strong> terms of (fIvHv), (fIvSI' Hv ), v!'<br />

and of the anti-symmetrie Levi-Civita tensor El'vpu , see e.g. [72].<br />

184


where qJ-! is chosen to satisfy (v + q/m)2 = 1, and, consequently, v . q = O(q2/m). As po<strong>in</strong>ted<br />

out <strong>in</strong> section 3.4, it is more convenient to work with the fields Hv def<strong>in</strong>ed <strong>in</strong> eq. (3.170) 4 <strong>in</strong>stead<br />

of Hv , s<strong>in</strong>ce the first ones transform covariantly, via eq. (3.172), und er the reparametrization<br />

transformation (F.3), see ref. [182]:<br />

Hw = eiq.x Hv . (F.4)<br />

At order l/m the two fields Hv and Hv are connected via:<br />

- ( i Hv = 1 +<br />

2m {J ) Hv · (F.5)<br />

In what follows, we will not be <strong>in</strong>terested <strong>in</strong> the explicit calculation of the l/m-corrections to<br />

the contact <strong>in</strong>teractions. This is because <strong>in</strong> our power count<strong>in</strong>g scheme one has: Q / m '" Q2 / A�.<br />

Consequently, all l/m-terms are suppressed aga<strong>in</strong>st the correspond<strong>in</strong>g ones, whose coefficients<br />

scale by <strong>in</strong>verse powers ofAx' As will be shown below, such l/m-corrections to contact <strong>in</strong>teractions<br />

with four and more nucleon legs contribute at higher order and are irrelevant for our calculations.<br />

<strong>The</strong>refore, we can set<br />

Further, we will need various properties for the build<strong>in</strong>g blocks of the effective Lagrangian, which<br />

are listed <strong>in</strong> table F.1.<br />

I Operator 11 H C x --+ x ' = Ax<br />

vp + - AJ-!v V v<br />

Hv Hv + + HvHv<br />

HvSJ-!Hv + + det(A)AJ-!v HvSvHv<br />

Table F.l: Transformation properties for the build<strong>in</strong>g blocks of the effective Lagrangian<br />

under hermitian (H) and charge (C) conjugations and homogeneous Lorentz transformation<br />

(x --+ x ' = Ax).<br />

Consider first the contact <strong>in</strong>teractions without derivatives and pion fields. Here and <strong>in</strong> what<br />

follows, we will not consider the contact <strong>in</strong>teractions with <strong>in</strong>sert ions of the isosp<strong>in</strong> matrices, s<strong>in</strong>ce<br />

those ones can be elim<strong>in</strong>ated via Fierz reshuffi<strong>in</strong>g or anti-symmetrization of the correspond<strong>in</strong>g<br />

N N potential, as detailed <strong>in</strong> appendix E. <strong>The</strong> two possible terms are<br />

where CS,T are some constants. All other terms can be reduced to those two us<strong>in</strong>g the first<br />

equality <strong>in</strong> (F.2) and the fact that v2 = 1. <strong>The</strong> terms <strong>in</strong> eq. (F.7) are, clearly, reparametrization<br />

<strong>in</strong>variant.5<br />

4 In the general case of nucleons <strong>in</strong>teract<strong>in</strong>g with pions and/or external fields one has to replace the derivative<br />

8" <strong>in</strong> eq. (3.170) by the covariant one. In this appendix we will, however, not consider such a general situation.<br />

5 As is obvious from eq. (F.4), only terms with derivatives of Hv can break the reparametrization <strong>in</strong>variance if<br />

no l/m corrections are considered.<br />

185<br />

(F.6)<br />

(F.7)


186 F. <strong>The</strong> complete set of the N N contact <strong>in</strong>teractions with two derivatives<br />

<strong>The</strong>re are also two terms with one derivative:<br />

Note that the terms with just one <strong>in</strong>sertion of the sp<strong>in</strong>-operators S/1 like, for <strong>in</strong>stance,<br />

are not parity and charge conjugation <strong>in</strong>variant, see table F.l. <strong>The</strong> same holds true for the term<br />

(F.8)<br />

(F.9)<br />

(F.10)<br />

Both terms <strong>in</strong> eq. (F.8) are redundant and can be elim<strong>in</strong>ated from the effective Lagrangian apply<strong>in</strong>g<br />

the lead<strong>in</strong>g order equation of motion (EOM) (3.165) of the field Hv : (v · ö)H = 0. 6 Note, however,<br />

that the terms <strong>in</strong> (F.8) are reparametrization <strong>in</strong>variant. This can easily be checked us<strong>in</strong>g eqs. (F.4)<br />

and (F.6).<br />

Let us now consider the contact <strong>in</strong>teractions with two derivatives. <strong>The</strong> follow<strong>in</strong>g terms appear <strong>in</strong><br />

the effective Lagrangian:<br />

.c�� = �Ü1 [ (Hv 7J /1 Hv)(Hv 7J/1 Hv) + (Hv 8 /1Hv)(Hv 8/1 Hv )]<br />

+ ü 2 (Hv 7J /1 Hv )(Hv 8/1 Hv )<br />

+ ü3(HvHv)(Hv( 82 + 7J2 )Hv)<br />

+ ü4(HvHv)(Hv 8 /1 7J/1 Hv)<br />

1 [ - ---itv - ,="p - ,="v - ---itp ]<br />

+ 2i Ü5 E/1VpuV /1 (Hv iJ Hv )(Hv 'ä SU Hv ) - (Hv 'ä Hv)(Hv SU iJ Hv)<br />

+ i Ü6 E/1vpuv /1 (HvHv)(Hv 8v s p7Ju Hv)<br />

- - '="P---itu<br />

+ i Ü7 E/1vpuv/1(HvSV Hv)(Hv 'ä iJ Hv)<br />

+ �i ÜS E/1VpuV /1 [(Hv 7Jv Hv )(HvS p7Ju Hv) - (Hv 8v Hv )(Hv 8u S P Hv)]<br />

1<br />

+ 2 (ügg/1Pgvu + ü10g/1ugvP + üllg/1vgpu)<br />

X [(HvS pa/1 Hv)(Hvs u7Jv Hv) + (Hv 8/1 S P Hv)(Hv 8V sU Hv)]<br />

+(Ü1 2 g/1pgvu + Ü13g/1ugvp + Ü14g/1vgpu ) (HvS p7J/1 Hv )(Hv 8v s u Hv )<br />

+ � (�Ü15 (9/1Pgvu + g/1ugvp) + Ü169/1V9pu)<br />

x [(Hv 8/1<br />

s<br />

p7JV<br />

Hv)(HvSU Hv) + (Hv 8v<br />

sP7J/1 Hv )(HvSU Hv)]<br />

1 1 ( ) - '="/1'="V ---it/1---itv P ---itv -<br />

(F.ll)<br />

+ 2 2Ü17(9/1Pgvu + g/1ugvp) + Ü1Sg/1vgpu (Hv( 'ä 'ä + iJ iJ )S iJ Hv)(HvS Hv)<br />

where Ü1, ... ,lS are constant coefficients. Here we have not shown terms which <strong>in</strong>clude the operator<br />

v . Ö, s<strong>in</strong>ce they can be elim<strong>in</strong>ated apply<strong>in</strong>g the equation of motion (3.165) for the field Hv .<br />

6<strong>The</strong> EOM (3.165) is only valid modulo higher order terms. If no pion fields are considered, such higher order<br />

terms may be divided <strong>in</strong>to two classes: the on es with just one field operator Hv and those ones <strong>in</strong>volv<strong>in</strong>g more field<br />

operators (like, for <strong>in</strong>stance, the term (HvHv)Hv). <strong>The</strong> lead<strong>in</strong>g correction of the first k<strong>in</strong>d is given by the term<br />

-iß2/(2m). <strong>The</strong> higher order corrections to eq. (3.165) of the second k<strong>in</strong>d would lead to contact <strong>in</strong>teractions with six<br />

and more nucleon legs and are irrelevant for our discussion. Thus, elim<strong>in</strong>at<strong>in</strong>g the terms (F.8) us<strong>in</strong>g the EOM for Hv<br />

would modify the contact <strong>in</strong>teractions with four nucleon legs at order .6.i = 3 (terms like l/m(Hv 7J. a Hv )(HvHv)).<br />

For further discussion on such redundant terms see e.g. refs. [133], [71].<br />

U


To keep the presentation self-conta<strong>in</strong>ed, we also show the contact <strong>in</strong>teractions written <strong>in</strong> ref. [78]:<br />

-�CS(NtN)(NtN) - �CT(NtaN) . (Nt aN) ,<br />

- C� [(Nt V N)2 + (V Nt N)2] - C�(NtV N) . (V Nt N)<br />

- C�(NtN) [NtV2N + V2NtN]<br />

- iC� [(NtVN) ' (VNt x aN) + (VNtN) . (Nta x VN)]<br />

- iC�(NtN)(VNt . a x VN) - iC�(NtaN) . (VNt x VN)<br />

- (C�OikOjl + C�OilOkj + C�OijOkz)<br />

x [(NtO"kOiN)(NtO"IOjN) + (OiNtO"kN)(OjNtO"IN)]<br />

- (C�OOikOjl + C�10ilOkj + C�<br />

2<br />

0ijOkl) (NtO"kOiN)(ojNtO"IN)<br />

( 1 I<br />

- 2"C13 (OikOjl + OilOkj) + C140ijOki<br />

, )<br />

x [(OiNtO"kOjN) + (OjNtO"kOiN)] (NtO"IN) .<br />

187<br />

(F.12)<br />

(F.13)<br />

To be able to compare the Lagrangian (F.11), which is expressed <strong>in</strong> terms ofthe velo city dependent<br />

field Hv , with eq. (F.13), one has to go <strong>in</strong> eq. (F.11) <strong>in</strong>to the rest-frame system of the nucleon by<br />

choos<strong>in</strong>g<br />

= (1,0,0,0) . (F.14)<br />

<strong>The</strong>n, the sp<strong>in</strong> operator takes the form SJ.t = (0, 8)7, where Si is given by8<br />

vJ.t<br />

(F.15)<br />

Note furt her that the four-derivative öJ.t (oJ.t) reads öJ.t = (öD, -V) (ö J.t = (ÖD, V)) . It is easy to<br />

demonstrate that the zeroth component of the derivative operator does not appear <strong>in</strong> such contact<br />

<strong>in</strong>teractions. For that we express öJ.t us<strong>in</strong>g the third equality <strong>in</strong> eq. (F.2) as:<br />

(F.16)<br />

Now, all terms that <strong>in</strong>volve the operator v . 0 act<strong>in</strong>g onto the nucleon field Hv are redundant and<br />

can be dropped <strong>in</strong> the effective Lagrangian. Further, contract<strong>in</strong>g Öv with the second term <strong>in</strong> the<br />

parenthesis <strong>in</strong> eq. (F.16) yields only the spatial derivative, s<strong>in</strong>ce SO = ° <strong>in</strong> the rest-frame system.<br />

F<strong>in</strong>ally, we po<strong>in</strong>t out that the large (small) component field Hv (hv) def<strong>in</strong>ed <strong>in</strong> eq. (3.160), which<br />

is, <strong>in</strong> general, a four component Dirac sp<strong>in</strong>or, turns <strong>in</strong>to the two component Pauli sp<strong>in</strong>or N (N):<br />

(F.17)<br />

With these rules it is easy to rewrite the Lagrangian (F.11) <strong>in</strong> the same notation as <strong>in</strong> eq. (F.13)<br />

and to establish the connection between the constants CL.,14 and CY1, ... ,18' Concretely, one obta<strong>in</strong>s:<br />

7 <strong>The</strong> zeroth component of SJl. vanishes because of its def<strong>in</strong>ition (F.l) and eq. (F.14).<br />

8 We use here Lat<strong>in</strong> letters to denote the components of various three-vectors. Clearly, we do not dist<strong>in</strong>guish<br />

between co- and contravariant quantities <strong>in</strong> such cases.


188 F. <strong>The</strong> complete set of the N N contact <strong>in</strong>teractions with two derivatives<br />

For the terms without derivatives enter<strong>in</strong>g eqs. (F.7) and (F.12) one obta<strong>in</strong>s:<br />

G�O = -la12 '<br />

(F.18)<br />

Gs = -2Gs, (F.19)<br />

Let us now take a closer look at the terms <strong>in</strong> eq. (F.ll). All <strong>in</strong>teractions enter<strong>in</strong>g this equation<br />

can be divided <strong>in</strong>to three different classes: the terms al, 2 , 3 ,4 do not conta<strong>in</strong> Sft, the terms a5,6,7,8<br />

<strong>in</strong>volve just one and the terms ag, ... ,18 two <strong>in</strong>sertions of the sp<strong>in</strong>-operator. One can make use of<br />

partial <strong>in</strong>tegration for each of these classes separately, <strong>in</strong> order to elim<strong>in</strong>ate redundant terms. For<br />

example, the acterm can be expressed as a l<strong>in</strong>ear comb<strong>in</strong>ation of the al, 2 , 3-<strong>in</strong>teractions and, thus,<br />

can be completely omitted. It is a matter of choice which terms are required as basis of <strong>in</strong>dependent<br />

operators. For <strong>in</strong>stance, to end up with the Lagrangian (F.13) one has to drop the a4,8,17,18-terms,<br />

see eq. (F.18). We, however, po<strong>in</strong>t out that not all rema<strong>in</strong><strong>in</strong>g <strong>in</strong>teractions with two <strong>in</strong>sertions of<br />

the sp<strong>in</strong>-operator (ag, ... ,16-terms <strong>in</strong> eq. (F.ll) or G7, ... ,lcterms <strong>in</strong> eq. (F.ll)) are <strong>in</strong>dependent.<br />

Only 7 and not 8 such <strong>in</strong>teractions are <strong>in</strong>dependent from each other, s<strong>in</strong>ce one can express e.g. the<br />

terms a9 ,lO,ll as l<strong>in</strong>ear comb<strong>in</strong>ations of the other a12 , ... ,16-coupl<strong>in</strong>gs. To keep only <strong>in</strong>dependent<br />

contact <strong>in</strong>teractions <strong>in</strong> the effective Lagrangian we will use an operator basis, which is different<br />

from eq. (F.13). More precisely, we choose the a = {I, 2, 3, 5, 6, 7, 12, 13, 14, 15, 16, 17, 18} -terms<br />

(altogether 13 <strong>in</strong>teractions <strong>in</strong>stead of 14 enter<strong>in</strong>g eq. (F.13)).<br />

Let us now work out the consequences of the requirement of these terms to be reparametrization<br />

<strong>in</strong>variant. Perform<strong>in</strong>g the (<strong>in</strong>f<strong>in</strong>itesimal) transformation (F.4) and replac<strong>in</strong>g w by v at the end, g<br />

we obta<strong>in</strong> the follow<strong>in</strong>g constra<strong>in</strong>ts on the ai 's:<br />

al - a2 + 2a3 1<br />

'2a5 + a6<br />

1<br />

-a5 - a7 2<br />

a14 + a16 - a18<br />

1 1<br />

a12 + -a15 - -a17<br />

2 2<br />

1 1<br />

a1 3 + -a15 - -a17<br />

2 2<br />

0,<br />

0,<br />

0, (F.20)<br />

0,<br />

Consequently, only seven <strong>in</strong>dependent coupl<strong>in</strong>g constants enter the correspond<strong>in</strong>g Lagrangian.<br />

Denot<strong>in</strong>g such coupl<strong>in</strong>gs by Cl, ... ,7 and switch<strong>in</strong>g to the nucleon rest-frame system, our f<strong>in</strong>al<br />

result for the reparametrization <strong>in</strong>variant set of <strong>in</strong>dependent N N contact <strong>in</strong>teractions at order<br />

L:1i = 2 reads:<br />

.c��<br />

- 1Cl [(NtVN)2 + (VNtN)2] - (Cl + C2)(NtVN) . (VNtN)<br />

- 1C2(NtN) [NtV2N + V2NtN]<br />

9 <strong>The</strong> complete effect of the reparametrization transformation (F.3) is given by the shift (F.4) of the nucleon<br />

field, if no I/rn corrections are taken <strong>in</strong>to account. <strong>The</strong>refore, reparametrization <strong>in</strong>variance <strong>in</strong> that case turns <strong>in</strong>to<br />

Galilean <strong>in</strong>variance.<br />

0,<br />

0.


- i�03{ [(NtVN) . (VNt x ifN) + (VNtN) . (Ntif x VN)]<br />

- (NtN)(VNt . if x VN) + (NtifN) · (VNt x VN)}<br />

1 1 - -<br />

- 2 ( "2 C4 (8ik8jl + 8il8kj) + C58ij8kl )<br />

x [(oiojNtakN) + (NtakOiOjN)] (NtaIN)<br />

- (�06 (8ik8jl + 8il8kj) + (05 - 67)8ij8kl) (NtakOiN)(ojNtaIN)<br />

1 ( 1 - - - )<br />

- 2 2 (C4 - C6) (8ik8jl + 8il8kj) + C78ij8kl<br />

x [(OiNtakOjN) + (OjNtakoiN)] (NtaIN) .<br />

189<br />

(F.21)<br />

<strong>The</strong> effective Lagrangian (F.21) is sufficient for the derivation of the short-range part of the twonucleon<br />

potential at NLO. To obta<strong>in</strong> the NNLO potential one needs the Lagrangian .c�� for<br />

contact <strong>in</strong>teractions with four nucleon legs. Let us first discuss the terms with three derivatives<br />

act<strong>in</strong>g on the nucleon field Hv (Hv) .<br />

• Terms with 0/-t, ov, 0p.<br />

It is, c1early, not possible to construct a Lorentz scalar of the form<br />

(F.22)<br />

if the operators f 1 ,2 conta<strong>in</strong> only three derivatives and no velo city or sp<strong>in</strong> operators (or, <strong>in</strong><br />

general, if an odd number of the operators 0/-t' Vv and S(J enters f1 and f2) .<br />

• Terms with 0/-t, ov, op and S(J.<br />

<strong>The</strong> terms without <strong>in</strong>sert ions of the totally anti-symmetrie tensor f et ß7 (J are not parity<br />

<strong>in</strong>variant. For the terms with f et ß7(J we first note that the derivatives must always act onto<br />

different fields Hv (Hv) beeause of the anti-symmetrie properties of the Levy-Civita tensor.<br />

<strong>The</strong> only two terms one ean build up are:<br />

f /-t VP (J { (Hv *a /-t 8 vHv )(Hv *a pS(JHv) + (Hv *a v 8 /-tHv)(Hv 8 pS(JHv)} , (F.23)<br />

if /-t VP (J { (Hv *a /-t 8 vHv)(Hv *a pS(JHv) - (Hv *a v 8 /-tHv)(Hv 8 pS(JHv)} . (F.24)<br />

<strong>The</strong> seeond term vanishes after apply<strong>in</strong>g partial <strong>in</strong>tegration. We will now show that the<br />

first term ean be elim<strong>in</strong>ated from the Lagrangian us<strong>in</strong>g the EOM for the nucleon field and<br />

eqs. (F.2), (F.16) . Let us eonsider only the first term <strong>in</strong> eq. (F.23) to keep our notation<br />

more eompaet:<br />

f /-t Vp(J (Hv *a /-t 8 vHv)(Hv *a p S(JHv)<br />

= f /-t VP (J ( Hv *a /-t 8 vHv ) ( Hv *aet [vp Vet S(J - 2(Sp Set S(J + Set Sp S(J)] Hv)<br />

(F.25)<br />

= -2 f /-tv<br />

P (J ( Hv *a /-t 8 vHv) ( Hv *aet (i fpetß7 vß S7 S(J + Set {Sp, S(J}) Hv) + . ..<br />

. - � ---ct ( ) ( - �et = 2 z det(R) Hv a /-t (j vHv Hv 0 v ß S 7 S(JHv ) + ... ,


190 F. <strong>The</strong> complete set of the N N contact <strong>in</strong>teractions with two derivatives<br />

where the matrix R is given by<br />

(F.26)<br />

We have used eq. (F.16) to obta<strong>in</strong> the seeond l<strong>in</strong>e of eq. (F.25). <strong>The</strong> term vp vQSrr <strong>in</strong> the<br />

squared braekets <strong>in</strong> the seeond l<strong>in</strong>e of this equation vanishes modulo higher order terms after<br />

apply<strong>in</strong>g the EOM for Hv . Sueh higher order terms are denoted <strong>in</strong> eq. (F.25) by the dots.<br />

To end up with the third l<strong>in</strong>e of eq. (F.25) we have used the last equality <strong>in</strong> eq. (F.2). <strong>The</strong><br />

seeond term <strong>in</strong> the parenthesis (SQ {Sp, Srr}) vanishes beeause of the third equality <strong>in</strong> (F.2)<br />

and the anti-symmetrie property of the f/lyprr . F<strong>in</strong>ally, the rema<strong>in</strong><strong>in</strong>g term <strong>in</strong> the last l<strong>in</strong>e<br />

of eq. (F.25) <strong>in</strong>volves the operator v . 1J or v . 71, as is obvious from eq. (F.26), and henee<br />

vanishes modulo higher order terms.<br />

• Terms with 8/l' 8y, 8p and Vrr.<br />

<strong>The</strong> terms <strong>in</strong>volv<strong>in</strong>g the Levy-Civita tensor f /lyprr violate parity <strong>in</strong>varianee, whereas the<br />

rema<strong>in</strong><strong>in</strong>g terms ean be elim<strong>in</strong>ated us<strong>in</strong>g the EOM for the nucleon field.<br />

• Terms with 8/l' 8y, 8p and Vrr , VQ or Vrr, SQ or Srr, SQ are not Lorentz <strong>in</strong>variant.<br />

• Terms with 8/l' 8y, 8p, Srr, SQ and vß .<br />

Sueh terms <strong>in</strong>volv<strong>in</strong>g f/l ' Y 'p'rr' are not parity <strong>in</strong>variant, whereas the rema<strong>in</strong><strong>in</strong>g terms eontribute<br />

at higher orders .<br />

• All rema<strong>in</strong><strong>in</strong>g terms with more than one <strong>in</strong>sertion of the velo city operator ean be elim<strong>in</strong>ated<br />

us<strong>in</strong>g the EOM for the nucleon field.<br />

Thus, there are no eontaet terms with three derivatives at order ßi = 3.<br />

Another possible k<strong>in</strong>d of eontributions at this order with<strong>in</strong> our power eount<strong>in</strong>g seheme is from the<br />

terms with two derivatives suppressed by one power ofthe <strong>in</strong>verse nucleon mass (ljm-eorrections).<br />

Let us now take a closer look at sueh terms, whieh ean be written as<br />

(F.27)<br />

where the eonstants Bi are expressed <strong>in</strong> terms of the eoupl<strong>in</strong>g eonstants of the lower order Lagrangian.<br />

Note that s<strong>in</strong>ee we do not eonsider the terms with six and more nucleon legs <strong>in</strong> the<br />

effeetive Lagrangian, whieh do not affeet the <strong>in</strong>teraction between two nucleons, the only eonstants<br />

enter<strong>in</strong>g the B's are from LN and L�/v


Consequently, it is not possible to construct Bi <strong>in</strong> terms of CS,T and of Ci 1 0 and, therefore, there<br />

are no l/m-corrections to contact terms with two derivativesY F<strong>in</strong>ally, we conclude that there<br />

are no terms <strong>in</strong> L�N=3).<br />

IOIf we would not elim<strong>in</strong>ate the terms <strong>in</strong> eq. (F.8) us<strong>in</strong>g the EOM for the nucleon field, then we would have l/m<br />

corrections to the contact <strong>in</strong>teractions with two derivatives.<br />

llNote that one can have l/m 2 -corrections with two derivatives, which, however, would contribute at order<br />

ßi = 4.<br />

191


Appendix G<br />

Partial wave decomposition of the<br />

N N potential<br />

In this appendix we would like to deseribe the partial wave deeomposition of the two-nucleon<br />

potential. For that we first rewrite the potential V <strong>in</strong> the form<br />

V =<br />

Vc<br />

+ Va- ih · ih + VSL i �(o\ + 5 2 ) · Cf x ifJ + Va-L 51 · (ifx k) 5 2 · (if x k)<br />

+ Va-q (51 · ifJ (5 2 · ifJ + Va-k (51 . k) (5 2 · k) (G.l)<br />

with six functions Vc (p,p',z), ... , Va-k (P,P',z) depend<strong>in</strong>g on p == Ipl, p' == Ip'l and the eos<strong>in</strong>e<br />

of the angle between the two momenta is ealled z. <strong>The</strong>se functions may depend on the isosp<strong>in</strong><br />

matriees T as weIl. To perform the partial wave deeomposition of V, i. e. to express it <strong>in</strong> the<br />

standard lsj representation, we have followed the steps of ref. [193]. In particular, we start from<br />

the helicity state representation Iß A1A<br />

2 ), where ß = vip and Al and A<br />

2 are the helicity quantum<br />

numbers eorrespond<strong>in</strong>g to nucleons 1 and 2, respeetively. We then expressed the potential <strong>in</strong><br />

the IjmA1A<br />

2 ) representation us<strong>in</strong>g the transformation matrix (ß A1A2IjmA1A2 ), given <strong>in</strong> ref. [193].<br />

<strong>The</strong> f<strong>in</strong>al step is to switeh to the Ilsj) representation. <strong>The</strong> eorrespond<strong>in</strong>g transformation matrix<br />

(lsjmlJmA1A<br />

2 ) is given <strong>in</strong> refs. [194], [193].<br />

For j > 0, we obta<strong>in</strong>ed the follow<strong>in</strong>g expressions for the non-vanish<strong>in</strong>g matrix elements <strong>in</strong> the<br />

Ilsj) representation:<br />

(jOj I V IjOj)<br />

(jljlVljlj)<br />

27r [ 1<br />

1 dz {Vc - 3Va- + p,2 p2(z2 - 1)Va-L - q2Va-q - k2Va- k} Pj (z) ,<br />

27r [ 1<br />

1 dz {[Vc + Va- + 2P'PZVSL - p,2 p2(1 + 3z2)Va-L + 4k2Va-q + lq2Va-k]<br />

X Pj (z) + [-p'p VSL + 2p, 2 p2zVa-L - 2p'p (Va-q - l Va- k)]<br />

x (Pj-1(z) + Pj +1(Z)) } ,<br />

(j ± 1, IjlVlj ± 1, Ij) 27r [ 1<br />

1 dz {p'p [ -VSL ± 2j � 1 ( -p'PZVa-L + Va-q - l Va-k)]<br />

x Pj(z) + [Vc + Va- + p'pzVsL + p, 2 p2(1 _ z2)Va-L (G.2)<br />

192


(j ± 1, 1jIVIJ =f 1, 1j)<br />

Here, Pj (z) are the conventional Legendre polynomials. For j = 0 the two non�vanish<strong>in</strong>g matrix<br />

elements are<br />

(OOOIV IOOO)<br />

(1l01V 11l0)<br />

211" [ 1 1 dz {Vc - 3Va + p ,2 p 2 (z 2 - l)VaL<br />

211" [ 1 1 dz { ZVC + zVa + p ' p(z 2 - l)VSL<br />

- ((p ,2 + p 2 )z _ 2p ' p) Vaq -<br />

�<br />

- q 2 Vaq - k<br />

2 Va k} ,<br />

+ p ,2 2<br />

p z(1 - z2)VaL<br />

((p ,2 + p 2 )z + 2p ' p) Va k} .<br />

193<br />

(G.3)<br />

Note that sometimes another notation is used <strong>in</strong> which an additional overall "-" sign enters the<br />

expressions for the off�diagonal matrix elements with l = j + 1, l' = j - 1 and l = j - 1, l' = j + 1.<br />

Our results (G.2), (G.3) agree with the correspond<strong>in</strong>g ones of ref. [193] apart from the off�diagonal<br />

matrix elements (j ± 1, 1jIVaL a1 . (if x k) a2 . (if x k)1J =f 1, 1j) and with those ones for the on�<br />

energy�shell matrix elements given <strong>in</strong> ref. [108] (up to an overall factor).<br />

By deriv<strong>in</strong>g the effective N N potential we assume exact isosp<strong>in</strong> <strong>in</strong>variance. In that case one can<br />

express the operators Vcn a = {C, (T, SL, (TL, (Tq, (Tk} as<br />

<strong>The</strong>refore, the contribution to a state with total isosp<strong>in</strong> I = 0, 1 is given by<br />

(G.4)<br />

(G.5)<br />

<strong>The</strong> expressions (G.2), (G.3) can be brought <strong>in</strong>to a different but equivalent form us<strong>in</strong>g the follow<strong>in</strong>g<br />

recurrence relation for the Legendre polynomials:<br />

(G.6)


Appendix H<br />

Formulae for the deuteron properties<br />

Here, we collect the formulae needed to calculate the deuteron properties. We denote by u( r)<br />

and w(r) the S- and D-wave coord<strong>in</strong>ate space wave functions, further, the momentum space<br />

representations of u(r)/r and w(r)/r by ü(p) and w(p), respectively. We have<br />

N ormalization<br />

D - state probability<br />

Quadrupole moment<br />

Asymptotic S - state<br />

Asymptotic D /S - ratio T}<br />

RMS (matter) radius :<br />

1000 dpp2 [ü(p)2 + w(p)2] = 1000<br />

1000 dpp2 w(p)2 = 1000 dr w(r)2 ,<br />

Qd = � (oo drr2 w(r) [VSu(r) -w(r)]<br />

20 Jo<br />

dr [u(r)2 + w(r)2] = 1 , (H.1)<br />

= _� (oo dP{VS[p2dÜ(P) dw(p) + 3pw(p) dü(P)]<br />

20 Jo dp dp dp<br />

(H.2)<br />

+p2 (d��)) 2 + 6w(p)2 } , (H.3)<br />

u(r) ----7 As e - ,,( T for r ----7 00 , (H.4)<br />

w(r) ----7 T} As (1 + ;r + h : )2) e- ,,(T for r ----7 00 , (H.5)<br />

rd = l [1000 drr2 [u(r)2 + w(r)2] f/2 , (H.6)<br />

with r = Jm IEdl = 45.7MeV (us<strong>in</strong>g m = (mp + mn)/2). Note that the momentum-space representation<br />

of Qd given <strong>in</strong> eq. (H.3) shows why one cannot use a sharp momentum-space regulator<br />

to calculate this quantity. We also remark that the D-state prob ability is not an observable.<br />

Meson-exchange current corrections to Qd are not given.<br />

194


Bibliography<br />

[1] E. Rutherford, Phil. Mag. 21 (1911) 669.<br />

[2] N. Bohr, Phil. Mag. 26 (1913) l.<br />

[3] W. Heisenberg, Zeits. f. Phys. 33 (1925) 879.<br />

[4] E. Schröd<strong>in</strong>ger, Ann. der Phys. 79 (1926) 36l.<br />

[5] J. Chadwick, Nature 129 (1932) 312.<br />

[6] W. Heisenberg, Zeits. f. Phys. 77 (1932) l.<br />

[7] B. Cassen and E.U. Condon, Phys. Rev. 50 (1936) 846.<br />

[8] H. Yukawa, Proc. Phys. Math. Soc. (Japan) 17 (1935) 48.<br />

[9] C.M.C. Lattes, H. Muirhead, G.P.S. Occhial<strong>in</strong>i and C.F. Powell, Nature, 159 (1947) 694.<br />

[10] R. Machleidt, <strong>The</strong> meson <strong>The</strong>ory of Nuclear Forces and Nuclear Matter, <strong>in</strong>: Relativistic<br />

Dynamics and Quark-Nuclear Physics: Proc. Los Alamos Workshop, eds. M.B. Johnson and<br />

A. Picklesimer (Wiley, New York, 1986) p. 71.<br />

[11] R. Machleidt, K Hol<strong>in</strong>de and Ch. Elster, Phys. Rep. 149 (1987) l.<br />

[12] A. Proca, J. Phys. Radium 7 (1936) 347.<br />

[13] N. Kemmer, Proc. Roy. Soc. (London) A166 (1938) 127.<br />

[14] C. M9>ller and L. Rosenfeld, Kgl. Danske Vid. Selskab, Math.-Fys. Medd. 17 (1940) No. 8.<br />

[15] J. Schw<strong>in</strong>ger, Phys. Rev. 61 (1942) 387.<br />

[16] W. Pauli, Meson <strong>The</strong>ory of Nuclear Forces (Interscience, New York, 1946).<br />

[17] J. Kellog, 1. Rabi. N.F. Ramsey and J. Zacharias, Phys. Rev. 56 (1939) 728; 57 (1940) 677.<br />

[18] M. Taketani, S. Nakamura and M. Sasaki, Prog. <strong>The</strong>or. Phys. (Kyoto) 6 (1951) 58l.<br />

[19] M. Taketani, S. Machida and S. Onuma, Prog. <strong>The</strong>or. Phys. (Kyoto) 7 (1952) 45.<br />

[20] KA. Brueckner and KM. Watson, Phys. Rev. 90 (1953) 699, 92 (1953) 1023.<br />

[21] R. de Tourreil, B. Rouben and D.W.L. Sprung, Nucl. Phys. A242 (1975) 445.<br />

[22] M.M. Nagels, T.A. Rijken and J.D. de Swart, Phys. Rev. D17 (1978) 768; D20 (1979) 1633.<br />

[23] K Hol<strong>in</strong>de and R. Machleidt, Nucl. Phys. A256 (1976) 479, 497.<br />

[24] A.D. Jackson, D.O. Riska and b. Verwest, Nucl. Phys. A249 (1975) 397.<br />

[25] G.E. Brown and A.D. Jackson, <strong>The</strong> <strong>Nucleon</strong>-<strong>Nucleon</strong> <strong>Interaction</strong> (North-Holland, Amsterdam,<br />

1976).<br />

[26] R. V<strong>in</strong>h Mau, <strong>in</strong>: Mesons <strong>in</strong> Nuclei, Vol. I, eds. M. Rho and D.H. Wilk<strong>in</strong>son (North-Holland,<br />

Amsterdam, 1979) p.15l.<br />

[27] M. Lacombe et al., Phys. Rev. C21 (1980) 86l.<br />

[28] E.L. Lomon, Phys. Rev. D14 (1976) 2402; D22 (1980)229.<br />

195


196 Bibliography<br />

[29] R Machleidt, F. Sammarruca and Y. Song, Phys. Rev. C53 (1996) R 1483.<br />

[30] H.-C. Kim, J.W. Durso and K. Hol<strong>in</strong>de, Phys. Rev. C49 (1994) 2355.<br />

[31] G. Janssen, K. Hol<strong>in</strong>de and J. Speth, Phys. Rev. C54 (1996) 2218.<br />

[32] A. Reuber, K. Hol<strong>in</strong>de, H.-C. Kim and J. Speth, Nucl. Phys. A608 (1996) 243.<br />

[33] V.G.J. Stoks, RA.M. Klomp, C.P.F. Terheggen and J.J. de Swart, Phys. Rev. C49 (1994)<br />

2950.<br />

[34] RA. Arndt, L.D. Roper, RL. Workman and M.W. McNaughton, Phys. Rev. D45 (1992)<br />

3995.<br />

[35] SAm onl<strong>in</strong>e-program (Virg<strong>in</strong>ia Tech Partial-Wave Analysis Facility), RA. Arndt et al. ,<br />

htpp:j jsaid.phys.vt.edu.<br />

[36] V.G.J. Stoks, RA.M. Klomp, M.C.M. Rentmeester and J.J. de Swart, Phys. Rev. C48 (1993)<br />

792.<br />

[37] RB. Wir<strong>in</strong>ga, V.G.J. Stoks and R Schiavilla, Phys. Rev. C51 (1995) 38.<br />

[38] H. Witala, W. Glöckle and Th. Cornelius, Few-Body Systems, Suppl. 2(1987) 555,<br />

H. Witala, Th. Cornelius and W. Glöckle, Few-Body Systems 3(1988) 123.<br />

[39] W. Glöckle, <strong>The</strong> Quantum Mechanical Few-Body Problem, Spr<strong>in</strong>ger Verlag, Heidelberg, 1983.<br />

[40] A. Nogga, D. Hüber, H. Kamada and W. Glöckle, Phys. Lett. B409 (1997) 19.<br />

[41] W. Glöckle, H. Witala, D. Hüber, H. Kamada and J. Golak, Phys. Rep. 274 (1996) 109.<br />

[42] J. Fujita, H. Miyazawa, Prog. <strong>The</strong>or. Phys. 17 (1957) 360.<br />

[43] S.A. Coon, M.D. Scadron, P.C. McNamee, B.R Barrett, D.W.E. Blatt, B.H.J. McKellar,<br />

Nucl. Phys. A 317 (1979) 242.<br />

[44] M.R. Robilotta, M.P. Isidro Filjo, Nucl. Phys. A451 (1986) 581.<br />

[45] R Schiavilla, V.R Pandharipande, RB. Wir<strong>in</strong>ga, Nucl. Phys. A 449 (1986) 219.<br />

[46] S.A. Coon, Few-Body Systems, Suppl. 1 (1986) 41.<br />

[47] S.A. Coon, M.T. Peiia, Phys. Rev. C48 (1993) 1559.<br />

[48] Ulf-G. Meißner, Comments Nucl. Part. Phys. 20 (1991) 119.<br />

[49] M.R Penn<strong>in</strong>gton, hep-ph/9905241.<br />

[50] D. Plümper, J. Flender and M.F. Gari, Phys. Rev. C49 (1994) 2370.<br />

[51] S. Okubo, Prog. <strong>The</strong>or. Phys. 12 (1954) 603.<br />

[52] K. Suzuki and R Okamoto, Prog. <strong>The</strong>or. Phys. 70 (1983) 439; Prog. <strong>The</strong>or. Phys. 92 (1994)<br />

1045.<br />

[53] N. Fukuda, K. Sawada and M. Taketani, Prog. <strong>The</strong>or. Phys. 12 (1954) 156.<br />

[54] RF. Lebed, nucl-th/9809093.<br />

[55] N. Isgur and K. Maltman, Phys. Rev. Lett. 50 (1983) 1827, Phys. Rev. D29 (1984) 952.<br />

[56] V.I. Kukul<strong>in</strong>, V.N. Pomerantsev, A. Faessler, A.J. Buchmann and E.M. Tursunov, Phys. Rev.<br />

C57 (1998) 535.<br />

[57] A. Faesler, F. Fernandez, G. Lübeck and K. Shimizu, Phys. Lett. B112 (1983) 201.<br />

[58] A. Faesler, F. Fernandez, G. Lübeck and K. Shimizu, Nucl. Phys. A402 (1983) 555.<br />

[59] M. Harvey, Nucl. Phys. A352 (1980) 301, Nucl. Phys. A352 (1980) 326.<br />

[60] S. We<strong>in</strong>berg, Physica A96 (1979) 327.<br />

[61] J. Goldstone, Nuovo Cim. 19 (1961) 154.


[62] J. Goldstone, A. Salam and S. We<strong>in</strong>berg, Phys. Rev. 127 (1962) 965.<br />

[63] J. Gasser, H. Leutwyler, Ann. Phys. 158 (1984) 142.<br />

[64] J. Gasser, H. Leutwyler, Nucl. Phys. B250 (1985) 465.<br />

[65] Ulf-G. Meißner, Rep. Prog. Phys. 56 (1993) 903.<br />

[66] J. Bijnens, G. Colangelo, G. Ecker, J. Gasser and M.E. Sa<strong>in</strong>io, Phys. Lett. B374 (1996) 210.<br />

[67] S. Coleman, J. Wess and B. Zum<strong>in</strong>o, Phys. Rev. 177 (1969) 2239,<br />

C. Callan, S. Coleman, J. Wess and B. Zum<strong>in</strong>o, Phys. Rev. 177 (1969) 2247.<br />

[68] J. Gasser, M.E. Sa<strong>in</strong>io and A. Svarc, Nucl. Phys. B307 (1988) 779.<br />

[69] E. Jenk<strong>in</strong>s and A.V. Manohar, Phys. Lett. B255 (1991) 558.<br />

[70] V. Bernard, N. Kaiser, J. Kambor and Ulf-G. Meißner, Nucl. Phys. B388 (1992) 315.<br />

[71] N. Fettes, Ulf-G. Meißner and S. Ste<strong>in</strong><strong>in</strong>ger, Nucl. Phys. A640 (1998) 199.<br />

[72] V. Bernard, N. Kaiser and Ulf-G. Meißner, Int. J. Mod. Phys. E4 (1995) 193.<br />

[73] S. We<strong>in</strong>berg, Phys. Lett. B251 (1990) 288, Nucl. Phys. B363 (1991) 3.<br />

[74] C. Ord6iiez and U. van Kolck, Phys. Lett. B291 (1992) 459.<br />

[75] U. van Kolck, <strong>The</strong>sis, University of Texas at Aust<strong>in</strong>, 1992.<br />

[76] C. Ord6iiez, L. Ray and U. van Kolck, Phys. Rev. Lett. 72 (1994) 1982.<br />

[77] U. van Kolck, Phys. Rev. C49 (1994) 2932.<br />

[78] C. Ord6iiez, L. Ray and U. van Kolck, Phys. Rev. C53 (1996) 2086.<br />

[79] D.R Phillips and T.D. Cohen, Phys. Lett. B390 (1997) 7.<br />

[80] K.A. Scaldeferri, D.R Phillips, C.-W- Kao and T.D. Cohen, Phys. Rev. C56 (1997) 679.<br />

[81] D.R Phillips, S.R Beane and T.D. Cohen, Ann. Phys. 263 (1998) 255.<br />

[82] J. Z<strong>in</strong>n-Just<strong>in</strong>, Quantum <strong>Field</strong> <strong>The</strong>ory and Critical Phenomena, Clarendon Press, Oxford,<br />

1989.<br />

[83] S.R Beane, T.D. Cohen and D.R Phillips, Nucl. Phys. A632 (1998) 445.<br />

[84] E.P. Wigner, Phys. Rev. 98, 145 (1955).<br />

[85] D.B. Kaplan, M.J. Savage and M.B. Wise, Nucl. Phys. B478, 692 (1996).<br />

[86] J. Gegelia, J. Phys. G25 (1999) 168l.<br />

[87] T. Mehen and LW. Stewart, Phys. Lett. B445 (1999) 378.<br />

[88] T. Mehen and LW. Stewart, Phys. Rev. C59 (1999) 2365.<br />

[89] M. Lutz, nucl-th/9906028.<br />

[90] D.B. Kaplan, M.J. Savage and M.B. Wise, Phys. Lett. B424 (1998) 390.<br />

[91] D.B. Kaplan, M.J. Savage and M.B. Wise, Nucl. Phys. B534 (1998) 329.<br />

[92] D.B. Kaplan, M.J. Savage and M.B. Wise, Phys. Rev. C59 (1999) 617.<br />

[93] J.-W. Chen, H.W. Griesshammer, M.J. Savage and R.P. Spr<strong>in</strong>ger, Nucl. Phys. A644 (1998)<br />

22l.<br />

[94] M.J. Savage and RP. Spr<strong>in</strong>ger, Nucl. Phys. A644 (1998) 235.<br />

[95] D.B. Kaplan, M.J. Savage, RP. Spr<strong>in</strong>ger and M.B. Wise, Phys. Lett. B449 (1999) l.<br />

[96] J.-W. Chen, H.W. Griesshammer, M.J. Savage and R.P. Spr<strong>in</strong>ger, Nucl. Phys. A644 (1998)<br />

245.<br />

[97] M.J. Savage, K.A. Scaldeferri and M.B. Wise, Nucl. Phys. A652 (1999) 273.<br />

197


198<br />

[98] J.-W. Chen, G. Rupak and M.J. Savage, Nucl, Phys. A653 (1999) 386.<br />

[99] E. Epelbaum, Ulf-G. Meißner, Phys. Lett. B461 (1999) 287.<br />

[100] T.D. Cohen and J.M. Hansen, Phys. Rev. C59 (1999) 13.<br />

[101] T.D. Cohen and J.M. Hansen, Phys. Rev. C59 (1999) 3047.<br />

[102] J.J. de Swart, C.P.F. Terheggen and V.G.J. Stoks, nucl-th/9509032.<br />

[103] J.B. Steele and R.J. Furnstahl, Nucl. Phys. A645 (1999) 439.<br />

Bibliography<br />

[104] T.-S. Park, K. Kubodera, D.-P. M<strong>in</strong> and M. Rho, Phys. Rev. C58 (1998) 637.<br />

[105] T.-S. Park, K. Kubodera, D.-P. M<strong>in</strong> and M. Rho, Nucl. Phys. A646 (1999) 83.<br />

[106] C.H. Hyun, D.-P. M<strong>in</strong> and T.-S- Park, nucl-th/9908073, Phys. Lett. B, <strong>in</strong> pr<strong>in</strong>t ..<br />

[107] T.-S. Park, K. Kubodera, D.-P. M<strong>in</strong> and M. Rho, Astrophys. J. 507 (1998) 443.<br />

[108] N. Kaiser, R. Brockmann and W. Weise, Nucl. Phys. A625 (1997) 758.<br />

[109] N. Kaiser, S. Gerstendörfer, W. Weise, Nucl. Phys. A637 (1998) 395.<br />

[110] N. Kaiser, Phys. Rev. C61 (2000) 014003.<br />

[111] N. Kaiser, nucl-th/9912054.<br />

[112] J.-L. Ballot, M.R. Robilotta and C.A. de Rocha, Phys. Rev. C57 (1998) 1574.<br />

[113] J.C. Pup<strong>in</strong> and M.R. Robilotta, Phys. Rev. C60 (1999) 014003.<br />

[114] S. We<strong>in</strong>berg, Phys. Lett. B295 (1992) 114.<br />

[115] S.R. Beane, V. Bernard, T.-S.H. Lee, Ulf-G. Meißner and U. van Kolck, Nucl. Phys. A618<br />

(1997) 38l.<br />

[116] S.R. Beane, M. Malheiro, D.R. Phillips and U. van Kolck, nucl-th/9905023.<br />

[117] V. Bernard, H. Krebs and U-G. Meißner, nuc l-th/9912033.<br />

[118] J.L. Friar, D. Hüber and U. van Kolck, Phys. Rev. C59 (1999) 53.<br />

[119] P.F. Bedaque, H.-W. Hammer and U. van Kolck, Phys. Rev. C58 (1998) 64l.<br />

[120] P.F. Bedaque, H.-W. Hammer and U. van Kolck, Phys. Rev. Lett. 82 (1999) 463.<br />

[121] P.F. Bedaque, H.-W. Hammer and U. van Kolck, Nucl. Phys. A646 (1999) 444.<br />

[122] P.F. Bedaque and H.W. Griesshammer, nucl-th/9907077.<br />

[123] E. Epelbaoum, W. Glöckle and Ulf-G. Meißner, Phys. Lett. B439 (1998) l.<br />

[124] E. Epelbaoum, W. Glöckle, Ulf-G. Meißner and A. Krüger, Nucl.Phys. A645 (1999) 413.<br />

[125] R.A. Malfiiet and J.A. Tjon, Nucl. Phys. A127, (1969) 16l.<br />

[126] Ch. Elster, J.H. Thomas and W. Glöckle, Few Body Syst. 24 (1998) 55.<br />

[127] E. Epelbaoum, W. Glöckle and Ulf-G. Meißner, Nucl. Phys. A637 (1998) 107.<br />

[128] E. Epelbaum, W. Glöckle and Ulf-G. Meißner, Nucl. Phys. A, <strong>in</strong> pr<strong>in</strong>t.<br />

[129] S. We<strong>in</strong>berg, Phys. Rev. 118 (1959) 838.<br />

[130] Y. Hahn and W. Zimmerman, Commun. Math. Phys. 10 (1968) 330.<br />

[131] J.D. Bjorken and S.D. Drell, Relativistic Quantum <strong>Field</strong>s, McGraw-Hill, New-York, 1965.<br />

[132] C. Itzykson, J.-B. Zuber, Quantum <strong>Field</strong> <strong>The</strong>ory, McGraw-Hill, 1980.<br />

[133] S. We<strong>in</strong>berg, <strong>The</strong> Quantum <strong>The</strong>ory 01 <strong>Field</strong>s, Cambridge University Press, 1995.<br />

[134] H. Euler and B. Kockel, Naturwiss. 23 (1935) 246.<br />

[135] W. Heisenberg and H. Euler, Z. Physik 98 (1936) 714.<br />

[136] J. Schw<strong>in</strong>ger, Phys. Rev. 82 (1951) 664.


[137] V. Bernard, N. Kaiser and Ulf-G. Meißner, Phys. Lett. B309 (1993) 42l.<br />

[138] J. Halter, Phys. Lett. B316 (1993) 155.<br />

[139] R. Karplus and M. Neuman, Phys. Rev. 80 (1950) 380.<br />

[140] J.F. Donoghue, E. Golowich and B.R. Holste<strong>in</strong>, Dynamics 0/ the Standard Model, Cambridge<br />

University Press, 1992.<br />

[141] G.P. Lepage, How to renormalize the Schröd<strong>in</strong>ger equation, Lectures given at the VIII Jorge<br />

Andre Swieca Summer School (Brazil, Feb. 1997), nuc l-th/9706029.<br />

[142] A. Messiah, Quantenmechanik, Walter de Gruyter, 1976.<br />

[143] P. Roman, Advanced Qunantum <strong>The</strong>ory, Addison-Wesley Publish<strong>in</strong>g Company, 1965.<br />

[144] W. Glöckle, G. Hasberg and A. R. Neghabian, Z. Phys. A305 (1982) 217.<br />

[145] R. Mennicken, A.K Motovilov, Math. Nachr. 201 (1999) 117<br />

[146] T.T.S. Kuo, Lecture Notes <strong>in</strong> Physics, Vol. 144, p. 248 (Spr<strong>in</strong>ger Verlag, 1981).<br />

[147] K Suzuki and R. Okamoto, Prog. <strong>The</strong>or. Phys. 70 (1983) 439; Prog. <strong>The</strong>or. Phys. 92 (1994)<br />

1045.<br />

[148] R.J. Perry and S. Szpigel, to be published <strong>in</strong> Proceed<strong>in</strong>gs of the 1998 YITP-Workshop on<br />

QCD and Hadron Physics, Kyoto, Japan.<br />

[149] S. Szpiegel and R.J. Perry, nucl-th/9906031.<br />

[150] S.D. Glazek and KG. Wilson, Phys. Rev. D48 (1993) 5863.<br />

[151] S.D. Glazek and KG. Wilson, Phys. Rev. D49 (1994) 4214.<br />

[152] F. Wegner, Ann. Physik (Berl<strong>in</strong>) 3 (1994) 77.<br />

[153] S.L. Adler, Phys. Rev. 177 (1969) 2426.<br />

[154] S. We<strong>in</strong>berg, Dynamic and Algebraic Symmetries, Lectures on Elementary Particles and<br />

Quantum <strong>Field</strong> <strong>The</strong>ory, ed. S. Deser et al., MIT 1970.<br />

[155] G.S. Guralnik, C.R. Hagen and T.W. Kibble <strong>in</strong> Advances <strong>in</strong> Particle Physics, edited by<br />

R.C. Cool and R.E. Marshak, Interscience, New York, 1968.<br />

[156] R.F. Streater, Proc. Roy. Soc. (London) A287 (1965) 510.<br />

[157] D. Kastler, D. Rob<strong>in</strong>son and A. Swieca, Commun. Math. Phys. 2 (1966) 108.<br />

[158] G. Ecker, hep-ph/9805500, To appear <strong>in</strong> Proc. of 37. Internationale Universitaetswochen<br />

fuer Kern- und Teilchenphysik, Schladm<strong>in</strong>g, Austria, Feb. 28 - March 7, 1998.<br />

[159] C. Vafa and E. Witten, Nucl. Phys. B234 (1984) 173.<br />

[160] S. We<strong>in</strong>berg, Phys. Rev. 166 (1968) 1568.<br />

[161] E. Epelbaoum, Diploma thesis, Bochum 1997, unpublished.<br />

[162] R. Haag, Phys. Rev. 112 (1958) 669.<br />

[163] M. Gell-Mann, R.J. Oakes and B. Renner, Phys. Rev. 175 (1968) 2195.<br />

[164] H. Lehmann, Phys. Lett. 41B (1972) 529.<br />

[165] H. Lehmann and H. Trute, Nucl. Phys. B52(1973) 280.<br />

[166] A. Manohar, H. Georgi, Nucl. Phys. B234 (1984) 189.<br />

[167] S. We<strong>in</strong>berg, Phys. Rev. Lett. 17 (1966) 616.<br />

[168] J. Bijnens, G. Colangelo, G. Echer, J. Gasser, M.E. Sa<strong>in</strong>io, Nucl.Phys. B508 (1997) 263-310;<br />

Erratum-ibid. B517 (1998) 639<br />

[169] J. Wess and B. Zum<strong>in</strong>o, Phys. Lett. 37B (1971) 95.<br />

199


200<br />

[170] E. Witten, Nucl. Phys. B223 (1983) 422.<br />

[171] E.D'Hoker and S. We<strong>in</strong>berg, Phys. Rev. D50 (1994) 6050.<br />

[172] H. Georgi, Phys. Lett. B240 (1990) 447.<br />

[173] T. Mannei, W. Roberts and Z. Ryzak, Nucl. Phys. B368 (1992) 264.<br />

[174] R Dashen and M. We<strong>in</strong>ste<strong>in</strong>, Phys. Rev. 183 (1969) 1261.<br />

[175] A. Krause, Helv. Phys. Acta 63 (1990) 3.<br />

[176] G. Källen, Helv. Phys. Acta 25 (1952) 417.<br />

[177] H. Lehmann, Nuovo Cimento 11 (1954)342.<br />

[178] A. Pais and G.E. Uhlenbeck, Phys. Rev. 79 (1950) 145.<br />

[179] A.A. Slavnov, Nucl. Phys. B31 (1971) 301.<br />

[180] M. Ostrogradski, Mem. Ac. St. Petersbourg, VI 4 (1850) 385.<br />

Bibliography<br />

[181] E.T. Whittaker, Analytical Dynamies, Cambridge University Press, London, 1937.<br />

[182] M.E. Luke and A.V. Manohar, Phys. Lett. B286 (1992) 348.<br />

[183] C. Bloch and J. Horowitz, Nucl. Phys. 8, 91 (1958).<br />

[184] 1. Tamm, J. Phys. (USSR) 9, 449 (1945);<br />

S.M. Dancoff, Phys. Rev. 78, 382 (1950).<br />

[185] J.A. Eden and M.F. Gari, Phys. Rev. C53, 1510 (1986).<br />

[186] M.F. Gari and H. Hyuga, Nucl. Phys. A278, 372 (1977);<br />

W. Glöckle and L. Müller, Phys. Rev. C23, 1183 (1980);<br />

S. Deister et al., Few Body Syst. 10, 1 (1991).<br />

[187] S. Schweber, Relativistic Quantum <strong>Field</strong> <strong>The</strong>ory, Harper & Row, 1961.<br />

[188] A. Krüger and W. Glöckle, nucl-th/9712043.<br />

[189] T. Ericson and W. Weise, Pions and Nuclei, Clarendon, Oxford, 1988.<br />

[190] N. Fettes, T.R Hemmert and Ulf-G. Meißner, <strong>in</strong> preparation.<br />

[191] S.N. Yang and W. Glöckle, Phys. Rev. C33 (1986) 1774.<br />

[192] J. Polch<strong>in</strong>ski, "<strong>Effective</strong> <strong>Field</strong> <strong>The</strong>ories and the Fermi Surface" , Lectures presented at TASI<br />

1992.<br />

[193] K. Erkelenz, R Alzetta and K. Hol<strong>in</strong>de, Nucl. Phys. A176 (1971) 413.<br />

[194] M. Jacob and G. Wiek, Ann. of Phys. 7 (1959) 404 .<br />

[195] P. Büttiker and Ulf-G. Meißner, hep-ph/9908247.<br />

[196] D. Hüber, J.L. Friar, A. Nogga, H. Witala and U. van Kolck, nucl-th/9910034, Few-Body<br />

Systems, <strong>in</strong> pr<strong>in</strong>t.<br />

[197] J. Carlson, V.R Pandharipande and RB. Wir<strong>in</strong>ga, Nucl. Phys. A401 (1983) 59.<br />

[198] M.C.M. Rentmeester et al. , Phys. Rev. Lett. 82 (1999) 4992.<br />

[199] G. Ecker, J. Gasser, A. Pich and E. de Rafael, Nucl. Phys. B321 (1989) 311.<br />

[200] V. Bernard, N. Kaiser and Ulf-G. Meißner, Nucl. Phys. A615 (1997) 483.<br />

[201] T.R Hemmert, B.R Holste<strong>in</strong> and J. Kambor, Phys. Lett. B395 ( 1997) 89, J. Phys. G24<br />

(1998) 1831.<br />

[202] W. Rarita and J. Schw<strong>in</strong>ger, Phys. Rev. 60 (1941) 61.<br />

[203] H.P. Stapp, T.J. Ypsilantis and N. Metropolis, Phys. Rev. 105 (1957) 302.


[204] J.M. Blatt and L.C. Biedenharn, Phys. Rev. 86 (1952) 399, Rev. Mod, Phys. 24 (1952) 258.<br />

[205] M. Mojiis, Eur. Phys. J. C2 (1998) 181.<br />

[206] SAID onl<strong>in</strong>e-program (Virg<strong>in</strong>ia Tech Partial-Wave Analysis Facility), RA. Arndt et al. ,<br />

htpp:j jsaid.phys.vt.edu.<br />

[207] G. Rupak and N. Shoresh, nucl-th/9902077; nucl-th/9906077.<br />

[208] T.D. Cohen and J.M. Hansen, Phys. Rev. C59 (1999) 13.<br />

[209] M.C.M. Rentmeester, private communication.<br />

[210] S. Flem<strong>in</strong>g, T. Mehen and LW. Stewart, nucl-th/9906056.<br />

[211] S. Flem<strong>in</strong>g, T. Mehen and LW. Stewart, nucl-th/9911001.<br />

[212] A.J. Buchmann, H. Henn<strong>in</strong>g and P.U. Sauer, Few-body Systems, 21 (1996) 149.<br />

[213] R. Machleidt, private communication.<br />

[214] S. Bogner, T.T.S. Kuo and L. Coraggio, nucl-th/9912056<br />

[215] T.T.S. Kuo, S.Y. Lee and K.F. Ratcliff, Nucl. Phys. A176 (1971) 65.<br />

[216] G. Miller, B.M.K. Nefkens and I. Slaus, Phys. Rep. 194 (1990) 1.<br />

[217] S.R Beane, V. Bernard, T.-S.H. Lee and Ulf-G. Meißner, Phys. Rev. C57 (1998) 424.<br />

[218] U. van Kolck, M.C.M. Rentmeester, J.L. Friar, T. Goldman, J.J. de Swart, Phys. Rev. Lett.<br />

80 (1998) 4386.<br />

[219] X. Kong and F. Ravndal, Phys. Lett. B450 (1999) 320.<br />

[220] X. Kong and F. Ravndal, Nucl. Phys. A656 (1999) 421.<br />

[221] B.R Holste<strong>in</strong>, Phys. Rev. D60 (1999) 114030.<br />

[222] R. Urech, Nucl. Phys. B433 (1995) 234.<br />

[223] H. Neufeld and H. Rupertsberger, Z. Phys. C68 (195) 91.<br />

[224] Ulf-G. Meißner, G. Müller and S. Ste<strong>in</strong><strong>in</strong>ger, Phys. Lett. B406 (1997) 154,<br />

(E) ibid B407 (1997) 434.<br />

[225] M. Knecht and R Urech, Nucl. Phys. B519 (1998) 329.<br />

[226] Ulf-G. Meißner and S. Ste<strong>in</strong><strong>in</strong>ger, Phys. Lett. B419 (1998) 403.<br />

[227] G. Müller and Ulf-G. Meißner, Nucl.Phys. B556 (1999) 265.<br />

[228] E. Epelbaum and Ulf-G. Meißner, nucl-th/9903046, to appear <strong>in</strong> Proceed<strong>in</strong>gs of the Workshop<br />

on Nuclear Physics with <strong>Effective</strong> <strong>Field</strong> <strong>The</strong>ory: 1999, INT Seattle.<br />

201

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!