06.02.2020 Views

STEEL + TECHNOLOGY 01/2020 EXTRACT

STEEL + TECHNOLOGY 01/2020 EXTRACT

STEEL + TECHNOLOGY 01/2020 EXTRACT

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>STEEL</strong> <strong>TECHNOLOGY</strong> | 41<br />

Table 2. Semiquantitative chemical analyses via EDX (wt.-% rounded))<br />

0 1 2 3<br />

MgO 10% 11% 4% --<br />

Al 2 O 3 13% 14% 16% --<br />

SiO 2 -- -- 66% --<br />

TiO 2 1% 2% 1% --<br />

Cr 2 O 3 44% 59% 10% --<br />

Fe x O y 32% 14% 3% --<br />

Remark<br />

Chromite from<br />

the ladle well<br />

filler<br />

Boundary of<br />

chromite grain<br />

with reduced<br />

Fe x O y content<br />

Siliceous<br />

phase containing<br />

oxides<br />

from the ladle<br />

well filler<br />

Table 3. Semiquantitative chemical analyses via EDX (wt.-% rounded)<br />

Steel 1 after<br />

crucible test<br />

96 wt.-% Fe,<br />

4 wt.-% Cr<br />

Figure 8. Crucible test 2 with conventional<br />

ladle well filler and Steel 2 (Picture:<br />

Purmetall)<br />

0 1 2<br />

MgO -- 9% --<br />

Al 2 O 3 >99% 67% --<br />

SiO 2 -- -- --<br />

TiO 2 -- -- --<br />

Cr 2 O 3 -- 3% --<br />

MnO -- 21% --<br />

Fe x O y -- -- --<br />

Remark Alumina crucible MnO-rich phase<br />

including oxides<br />

from the ladle well<br />

filler (Mg,Mn)O<br />

(Al,Cr) 2 O 3<br />

Steel 2 after crucible<br />

test<br />

85 At.-% Fe, 10<br />

At.-% Cr, 3 At.-%<br />

Mn, 1 At.-% Si<br />

Table 4. Semiquantitative chemical analyses via EDX (wt.-% rounded)<br />

0 1 2<br />

MgO -- 3% --<br />

Al 2 O 3 -- 37% --<br />

SiO 2 -- 57% --<br />

TiO 2 -- -- --<br />

Cr 2 O 3 -- -- --<br />

MnO -- -- --<br />

Fe x O y -- -- --<br />

Remark<br />

Steel 2 after crucible<br />

test<br />

78.8 At.-% Fe,<br />

16.5 At.-% Mn,<br />

2.5 At.-% Si,<br />

2.3 At.-% Al<br />

ventional ladle well filler and steel 1 of crucible-test<br />

1.<br />

Conventional ladle well filler consists in its<br />

initial state of chrome ore and silica sand.<br />

Siliceaous phase<br />

3 wt.-%<br />

Na 2 O<br />

Manganese steel<br />

78.8 wt.-% Fe,<br />

16.5 wt.-% Mn,<br />

2.5 wt.-% Si,<br />

2.3 wt.-% Al<br />

After the thermal treatment at 1,600°C the<br />

conventional ladle well filler forms a dense<br />

texture of dense chrome ore particles (light<br />

grey) and a secondary phase which is of low<br />

Figure 9. Crucible test 3 - new type of<br />

ladle well filler and Steel 2 (Picture:<br />

Purmetall)<br />

viscosity at 1,600°C (dark grey). The outer rim<br />

of the chrome ore particles are reduced in<br />

their Fe x O y amount. The secondary formed<br />

phase consists of SiO 2 from the silica sand<br />

and the oxides of the chrome ore. This means<br />

a diffusion of the oxides MgO, Al 2 O 3 , Cr 2 O 3<br />

and Fe x O y from the chrome ore to the siliceous<br />

secondary phase took place.<br />

Additionally, redox reactions between the<br />

conventional ladle well filler and the ball bearing<br />

steel take place. Small amounts of manganese<br />

and silicon from the steel diffuse into<br />

the ladle well filler and get oxidized (MnO- and<br />

SiO 2 -pickup into the ladle well filler). On the<br />

other hand, Cr 2 O 3 of the ladle well filler diffuses<br />

into the steel and is reduced to metallic<br />

chrome (Cr-pickup into the steel).<br />

In comparison figure 11 shows a SEM<br />

picture of the texture formed at the contact<br />

area of conventional ladle well filler<br />

<strong>STEEL</strong> + <strong>TECHNOLOGY</strong> 2 (<strong>2020</strong>) No. 1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!