19.09.2019 Views

fluid_mechanics

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

11.6 Analogy between Compressible and Open-Channel Flows 633<br />

Ma x 2.82. A considerable amount of available energy is lost<br />

across the shock.<br />

For a normal shock at x 0.3 m, we note from the table of<br />

Example 11.8 that Ma x 2.14 and<br />

From Fig. D.4 for Ma x 2.14 we obtain p yp x 5.2, Ma y 0.56,<br />

and<br />

From Fig. D.1 for Ma y 0.56 we get<br />

For x 0.3 m, the ratio of duct exit area to local area 1A 2A y 2<br />

is, using the area equation from Example 11.8,<br />

A 2 0.1 10.522<br />

(4)<br />

A y 0.1 10.32 1.842 2<br />

Using Eqs. 3 and 4 we get<br />

p x<br />

p 0, x<br />

0.10<br />

p 0,y<br />

p 0, x<br />

0.66<br />

A y<br />

A* 1.24<br />

A 2<br />

A* a A y<br />

A* b aA 2<br />

A y<br />

b 11.24211.8422 2.28<br />

(1)<br />

(2)<br />

(3)<br />

Note that for the isentropic flow upstream of the shock, A* <br />

0.10 m 2 1the actual throat area2, while for the isentropic flow downstream<br />

of the shock, A* A 22.28 0.35 m 2 2.280.15 m 2 . With<br />

A 2A* 2.28 we use Fig. D.1 and find Ma 2 0.26 and<br />

p 2<br />

p 0,y<br />

0.95<br />

Combining Eqs. 2 and 5 we obtain<br />

p 2<br />

p 0, x<br />

a p 2<br />

p 0,y<br />

b a p 0,y<br />

p 0, x<br />

b 10.95210.662 0.63<br />

(5)<br />

(Ans)<br />

When the back pressure, p 2 , is set equal to 0.63 times the inlet<br />

stagnation pressure, p 0,x , the normal shock will be positioned at<br />

x 0.3 m. The corresponding T–s diagrams are shown in<br />

Figs. E11.19a and E11.19b.<br />

COMMENT Note that p 2p 0,x 0.63 is less than the value of<br />

this ratio for subsonic isentropic flow through the converging–<br />

diverging duct, p 2p 0 0.98 1from Example 11.82 and is larger<br />

than p IIIp 0,x 0.36, for duct flow with a normal shock at the exit<br />

1see Fig. 11.132. Also the stagnation pressure ratio with the shock<br />

at x 0.3 m, p 0,yp 0, x 0.66, is much greater than the stagnation<br />

pressure ratio, 0.38, when the shock occurs at the exit<br />

1x 0.5 m2 of the duct.<br />

T, K<br />

340<br />

300<br />

260<br />

220<br />

180<br />

p 0, x = 101 kPa (abs)<br />

0, x<br />

T y = 275 K<br />

Normal shock<br />

p 0, y = 38 kPa (abs)<br />

p y =<br />

36 kPa (abs)<br />

0, y<br />

= p III<br />

y, III<br />

T 0, x =<br />

T 0,y = 288 K<br />

T, K<br />

340<br />

300<br />

260<br />

220<br />

180<br />

p 0, x =<br />

101 kPa (abs)<br />

0, x<br />

Normal shock<br />

0, y<br />

2<br />

y<br />

T 2 = 284 K<br />

T y = 271 K<br />

p x = 10 kPa (abs)<br />

p y = 52 kPa (abs)<br />

p 0, y = 67 kPa (abs)<br />

p 2 = 64 kPa (abs)<br />

T 0, x = T 0,y =<br />

288 K<br />

140<br />

p x = 4 kPa (abs)<br />

140<br />

x<br />

T x = 150 K<br />

100<br />

x<br />

T x = 112 K<br />

100<br />

Shock within nozzle (x = 0.3 m)<br />

Shock at nozzle exit plane (x = 0.5 m)<br />

0 80 160 240 320 400 480 0 80 160 240 320 400 480<br />

s – s x , ______ J<br />

s – s<br />

(kg•K)<br />

x , ______ J<br />

(kg•K)<br />

(a)<br />

(b)<br />

F I G U R E E11.19<br />

11.6 Analogy between Compressible and Open-Channel Flows<br />

During a first course in <strong>fluid</strong> <strong>mechanics</strong>, students rarely study both open-channel flows 1Chapter<br />

102 and compressible flows. This is unfortunate because these two kinds of flows are strikingly<br />

similar in several ways. Furthermore, the analogy between open-channel and compressible<br />

flows is useful because important two-dimensional compressible flow phenomena can be simply

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!