19.09.2019 Views

fluid_mechanics

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

622 Chapter 11 ■ Compressible Flow<br />

s s p T<br />

3000<br />

(psia) ( R) 1<br />

[( ft lb) ( lbm R)]<br />

2500<br />

13.5 969 9.32<br />

12.5 1459 202<br />

11.5 1859 251<br />

10.5 2168 285<br />

9.0 2464 317<br />

8.0 2549 330<br />

7.6 2558 333<br />

7.5 2558 334<br />

7.0 2544 336<br />

6.3 2488 338<br />

6.0 2450 338<br />

5.5 2369 336<br />

5.0 2266 333<br />

4.5 2140 328<br />

4.0 1992 321<br />

2.0 1175 259<br />

1.0 633 181<br />

<br />

T, °R<br />

2000<br />

1500<br />

1000<br />

500<br />

100 200 300<br />

(ft<br />

s – s 1 , ________<br />

• lb)<br />

(lbm•°R)<br />

F I G U R E E11.15<br />

COMMENT Depending on whether the flow is being heated or<br />

cooled, it can proceed in either direction along the curve.<br />

At point a on the Rayleigh line of Fig. 11.22, dsdT 0. To determine the physical importance<br />

of point a, we analyze further some of the governing equations. By differentiating the linear<br />

momentum equation for Rayleigh flow 1Eq. 11.1102 we obtain<br />

or<br />

dp rV dV<br />

dp<br />

r<br />

V dV<br />

(11.112)<br />

The maximum<br />

entropy state on the<br />

Rayleigh line corresponds<br />

to sonic<br />

conditions.<br />

Combining Eq. 11.112 with the second T ds equation 1Eq. 11.182 leads to<br />

T ds dȟ V dV<br />

For an ideal gas 1Eq. 11.72 dȟ c p dT. Thus, substituting Eq. 11.7 into Eq. 11.113 gives<br />

(11.113)<br />

T ds c p dT V dV<br />

or<br />

ds<br />

(11.114)<br />

dT c p<br />

T V dV<br />

T dT<br />

Consolidation of Eqs. 11.114, 11.112 1linear momentum2, 11.1, 11.77 1differentiated equation of<br />

state2, and 11.79 1continuity2 leads to<br />

ds<br />

dT c p<br />

T V T<br />

1<br />

31TV2 1VR24<br />

Hence, at state a where dsdT 0, Eq. 11.115 reveals that<br />

V a 1RT a k<br />

Comparison of Eqs. 11.116 and 11.36 tells us that the Mach number at state a is equal to 1,<br />

(11.115)<br />

(11.116)<br />

Ma a 1<br />

(11.117)<br />

At point b on the Rayleigh line of Fig. 11.22, dTds 0. From Eq. 11.115 we get<br />

dT<br />

ds 1<br />

dsdT 1<br />

1c pT2 1VT231TV2 1VR24 1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!