18.12.2012 Views

"Front Matter". In: Organosilanes in Radical Chemistry - Index of

"Front Matter". In: Organosilanes in Radical Chemistry - Index of

"Front Matter". In: Organosilanes in Radical Chemistry - Index of

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

28 Thermochemistry<br />

Table 2.6 Gas-phase basicities <strong>of</strong> silanes and adiabatic ionization<br />

potential <strong>of</strong> silyl radicals a<br />

Silane (R3SiH) DHbase(R3Si w H) b<br />

(kJ/mol)<br />

IP(R3Si:) c<br />

(eV)<br />

H3Si w H 1094 8:11 d<br />

MeSiH2 w H 1029 7.40<br />

Me2SiH w H 963 6.67<br />

Me3Si w H 923 6.20<br />

PhSiH2 w H 962 6.81<br />

a From References [30,31].<br />

b Estimated errors 4kJ=mol.<br />

c Calculated us<strong>in</strong>g Equation (2.16).<br />

d A value <strong>of</strong> 8:14 0:01 eV is obta<strong>in</strong>ed from the photoelectron spectrum [32].<br />

Ion cyclotron resonance (ICR) spectroscopy has been used to determ<strong>in</strong>e the<br />

reaction enthalphy (DHr) <strong>of</strong> hydride-transfer reaction <strong>of</strong> silanes with various<br />

hydrocarbons hav<strong>in</strong>g known hydride aff<strong>in</strong>ities (Reaction 2.19). The hydride<br />

aff<strong>in</strong>ities <strong>of</strong> R3Siþ , DH(X3Siþ w H ) ¼ DHbase, were obta<strong>in</strong>ed from Equation<br />

(2.20) and are summarized <strong>in</strong> Table 2.6 [30,31].<br />

R3SiH þ X3C þ Ð R3Si þ þ X3CH (2:19)<br />

DH(R3Si þ<br />

þ<br />

H ) ¼ DH(X3C H ) þ DHr<br />

(2:20)<br />

w w<br />

The adiabatic ionization potentials <strong>of</strong> substituted silyl radicals, shown <strong>in</strong><br />

Table 2.6, were recalculated from Equation (2.18) by us<strong>in</strong>g the appropriate<br />

DHbase and DH(R3Si H) values together with the EA(H:) ¼ 0:754 eV. Re-<br />

w<br />

placement <strong>of</strong> hydrogen by a methyl or phenyl group decreases the IP by 0:7<br />

and 1:3 eV, respectively. Moreover, the first and second methyl substitutions<br />

decrease the IP by an equal amount, the third be<strong>in</strong>g significantly less.<br />

Other positive-ion cycles can afford complementary data related to the two<br />

dissociation paths <strong>of</strong> radical cation R3Siþ: (Scheme 2.1). Consider<strong>in</strong>g the<br />

Si H bond dissociation <strong>of</strong> PhSiH<br />

w þ: 3 as an example (Reaction 2.21), the<br />

thermochemical cycle <strong>in</strong> Equation (2.22) l<strong>in</strong>ks the gas-phase basicity <strong>of</strong> silane<br />

(DHbase) to the DH(PhSiH þ:<br />

3 ). Tak<strong>in</strong>g IP(PhSiH3) ¼ 9:09 eV [31], a bond<br />

strength <strong>of</strong> 159 kJ/mol is calculated.<br />

PhSiH þ:<br />

3 !PhSiHþ 2 þ H: (2:21)<br />

DH(PhSiH þ:<br />

3 ) ¼ DHbase(PhSiH3) þ EA(H:) IP(PhSiH3) (2:22)<br />

2.4 REFERENCES<br />

1. Chatgilialoglu, C., Chem. Rev., 1995, 95, 1229.<br />

2. Seetula, J.A., Feng, Y., Gutman, D., Seak<strong>in</strong>s, P.W., and Pill<strong>in</strong>g, M.J., J. Chem.<br />

Phys., 1991, 95, 1658.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!