"Front Matter". In: Organosilanes in Radical Chemistry - Index of

"Front Matter". In: Organosilanes in Radical Chemistry - Index of "Front Matter". In: Organosilanes in Radical Chemistry - Index of

christopherbae.com
from christopherbae.com More from this publisher
18.12.2012 Views

24 Thermochemistry calculated DH values for the silanes with the following substituents (in parentheses) are 383.3 (H) 387.8 (CH3), 384.4 (Cl), 394.5 (F), 379.3 (NH2), 388.5 (OH) and 376.1 (SH) kJ/mol. It is worth noting that the replacement of H by CH3 or OH increases the bond strength of ca 5 kJ/mol, whereas the replacement of H with NH2 or SH decreases the bond strength by 4 and 7 kJ/mol, respectively. 2.2.4 DERIVED BOND DISSOCIATION ENTHALPIES Due to the importance of homolytic bond dissociation enthalpies for understanding radical chemistry, a set of Me3Si w X bond dissociation enthalpies was derived via the relationship DH(Me3Si w X) ¼ DH f (Me3Si:) þ DH f (X:) DH f (Me3SiX) (2:10) Table 2.3 shows the DH f values for a variety of radicals and their corresponding Me3Si derivatives, together with the calculated like DH(Me3Si w X) from Equation (2.10). The DH(Me3Si w X) varies enormously through the series of compounds in Table 2.3 and strictly depends on the electronegativity of the X group. In general, the trends of DH(Me3Si w X) are the following. (i) For a particular column of the periodic table, the bond strength decreases going from top to bottom, i.e., X: DHf8(X:) a DHf8(Me3SiX) c,e H3C: 146:5 0:5 233:2 3:2 396 H3Si: 200:5 2 112:5 329 Me3Si: 16 6 b H2N: 188:7 1:5 291 f 496 Table 2.3 Derived Me3Si w X bond dissociation enthalpies (kJ/mol) 303:7 5:5 336 h Me2N: 145 c 248 4 409 HO: 39:3 0:2 500 3 555 MeO: 17:2 4 480 8 513 HS: 143:0 3 273 f 432 BuS: 59.5 d 381 3 457 F: 79:4 0:3 568 f 663 Cl: 121:3 0:1 354 3 491 Br: 111:9 0:1 298 4 426 I: 106:8 0:1 222 4 345 DH(Me3Si w X) g a From Reference [7], unless otherwise mentioned. b From Table 2.1. c From Reference [5]. d Calculated assuming DH(BuSwH) equal to DH((MeS H) ¼ 365:6kJ=mol [7]. e w Experimental data, unless otherwise mentioned. f Obtained from enthalpy/electronegativity correlation. g Rounded to the nearest 1 kJ/mol; Uncertainties 10 kJ=mol. h Direct measurement: 332 12 kJ=mol [6].

Ion Thermochemistry 25 Table 2.4 Recommended R w H bond dissociation enthalpies for some selected organic molecules (kJ/mol) a X w H DH(X w H) X w H DH(X w H) H3C H 439 0:5 H2NH 452:5 1:5 w w MeCH2 H 423 1:5 MeNH H 419 w w b Me2CH H 412:5 1:5 PhNH H 368 w w b Me3C H 404 1:5 HO H 499:15 0:20 w w CH2 w CH w H 465 3:5 MeO H 436 4 w C6H5 H 465 3:5 PhO H 371:3 2:3 w w c CH2 w CHCH2 w H 369 9 HS w H 381:5 3 PhCH2 w H 370 6 MeS w H 365:5 2 HC(O)CH2 w H 394:5 9 PhS w H 349:4 4:5 d N w CCH2 w H 396:5 9 H3Ge w H 349 8 HOCH2 w H 402 0:5 Bu3Ge w H 368 e HSCH2 w H 393 8 Ph3Ge w H 356 e MeC(O) w H 374 1:5 Bu3Sn w H 326 e a From Reference [7], unless otherwise mentioned. b The DH(Xw H) in MeNH þ 3 is 447 kJ/mol (i.e., 28 kJ/mol stronger) and in PhNHþ 3 (i.e., 60.5 kJ/mol weaker); see Reference [19]. c From Reference [20]. d From Reference [21]. e Data in solution [8]. is 307.5 kJ/mol Si w F > Si w Cl > Si w Br > Si w I, or Si w O > Si w S, or Si w C > Si w Si. (ii) For a particular row, the bond strength increases going from left to right, i.e., Si w C < Si w N < Si w O < Si w F, or Si w Si < Si w S < Si w Cl. In Table 2.4, we have collected background information for discussion in the following chapters. Recommended C w H bond dissociation enthalpies of selected organic compounds are reported in the first two columns, followed by a variety of heteroatom–hydrogen bond strengths including N w H, O w H, S w H, Ge w H, and Sn w H bonds. 2.3 ION THERMOCHEMISTRY Thermochemical information about neutral species can also be obtained from measurements of ions. Indeed, accurate bond dissociation energies for neutral molecules have been obtained from gas-phase ion chemistry techniques. In this section, we will summarize both the negative-ion and hydride-affinity cycles involving silicon hydrides (R3SiH) which are connected to electron affinity (EA) and ionization potential (IP) of silyl radicals, respectively [22–24]. 2.3.1 NEGATIVE-ION CYCLES Thermodynamic properties related to R3SiH can be obtained from negative-ion gas-phase studies. The following thermochemical cycle (cf. Scheme 2.1):

Ion Thermochemistry 25<br />

Table 2.4 Recommended R w H bond dissociation enthalpies for some selected organic<br />

molecules (kJ/mol) a<br />

X w H DH(X w H) X w H DH(X w H)<br />

H3C H 439 0:5 H2NH 452:5 1:5<br />

w w<br />

MeCH2 H 423 1:5 MeNH H 419<br />

w w b<br />

Me2CH H 412:5 1:5 PhNH H 368<br />

w w b<br />

Me3C H 404 1:5 HO H 499:15 0:20<br />

w w<br />

CH2<br />

w CH w H 465 3:5 MeO H 436 4<br />

w<br />

C6H5 H 465 3:5 PhO H 371:3 2:3<br />

w w c<br />

CH2 w CHCH2 w H 369 9 HS w H 381:5 3<br />

PhCH2 w H 370 6 MeS w H 365:5 2<br />

HC(O)CH2 w H 394:5 9 PhS w H 349:4 4:5 d<br />

N w CCH2 w H 396:5 9 H3Ge w H 349 8<br />

HOCH2 w H 402 0:5 Bu3Ge w H 368 e<br />

HSCH2 w H 393 8 Ph3Ge w H 356 e<br />

MeC(O) w H 374 1:5 Bu3Sn w H 326 e<br />

a From Reference [7], unless otherwise mentioned.<br />

b The DH(Xw H) <strong>in</strong> MeNH þ 3 is 447 kJ/mol (i.e., 28 kJ/mol stronger) and <strong>in</strong> PhNHþ 3<br />

(i.e., 60.5 kJ/mol weaker); see Reference [19].<br />

c From Reference [20].<br />

d From Reference [21].<br />

e Data <strong>in</strong> solution [8].<br />

is 307.5 kJ/mol<br />

Si w F > Si w Cl > Si w Br > Si w I, or Si w O > Si w S, or Si w C > Si w Si. (ii)<br />

For a particular row, the bond strength <strong>in</strong>creases go<strong>in</strong>g from left to right, i.e.,<br />

Si w C < Si w N < Si w O < Si w F, or Si w Si < Si w S < Si w Cl.<br />

<strong>In</strong> Table 2.4, we have collected background <strong>in</strong>formation for discussion <strong>in</strong> the<br />

follow<strong>in</strong>g chapters. Recommended C w H bond dissociation enthalpies <strong>of</strong><br />

selected organic compounds are reported <strong>in</strong> the first two columns, followed<br />

by a variety <strong>of</strong> heteroatom–hydrogen bond strengths <strong>in</strong>clud<strong>in</strong>g N w H, O w H,<br />

S w H, Ge w H, and Sn w H bonds.<br />

2.3 ION THERMOCHEMISTRY<br />

Thermochemical <strong>in</strong>formation about neutral species can also be obta<strong>in</strong>ed from<br />

measurements <strong>of</strong> ions. <strong>In</strong>deed, accurate bond dissociation energies for neutral<br />

molecules have been obta<strong>in</strong>ed from gas-phase ion chemistry techniques. <strong>In</strong> this<br />

section, we will summarize both the negative-ion and hydride-aff<strong>in</strong>ity cycles<br />

<strong>in</strong>volv<strong>in</strong>g silicon hydrides (R3SiH) which are connected to electron aff<strong>in</strong>ity<br />

(EA) and ionization potential (IP) <strong>of</strong> silyl radicals, respectively [22–24].<br />

2.3.1 NEGATIVE-ION CYCLES<br />

Thermodynamic properties related to R3SiH can be obta<strong>in</strong>ed from negative-ion<br />

gas-phase studies. The follow<strong>in</strong>g thermochemical cycle (cf. Scheme 2.1):

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!