18.12.2012 Views

"Front Matter". In: Organosilanes in Radical Chemistry - Index of

"Front Matter". In: Organosilanes in Radical Chemistry - Index of

"Front Matter". In: Organosilanes in Radical Chemistry - Index of

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

24 Thermochemistry<br />

calculated DH values for the silanes with the follow<strong>in</strong>g substituents (<strong>in</strong> parentheses)<br />

are 383.3 (H) 387.8 (CH3), 384.4 (Cl), 394.5 (F), 379.3 (NH2), 388.5 (OH)<br />

and 376.1 (SH) kJ/mol. It is worth not<strong>in</strong>g that the replacement <strong>of</strong> H by CH3 or<br />

OH <strong>in</strong>creases the bond strength <strong>of</strong> ca 5 kJ/mol, whereas the replacement <strong>of</strong> H<br />

with NH2 or SH decreases the bond strength by 4 and 7 kJ/mol, respectively.<br />

2.2.4 DERIVED BOND DISSOCIATION ENTHALPIES<br />

Due to the importance <strong>of</strong> homolytic bond dissociation enthalpies for understand<strong>in</strong>g<br />

radical chemistry, a set <strong>of</strong> Me3Si w X bond dissociation enthalpies was<br />

derived via the relationship<br />

DH(Me3Si w X) ¼ DH f (Me3Si:) þ DH f (X:) DH f (Me3SiX) (2:10)<br />

Table 2.3 shows the DH f values for a variety <strong>of</strong> radicals and their correspond<strong>in</strong>g<br />

Me3Si derivatives, together with the calculated like DH(Me3Si w X)<br />

from Equation (2.10).<br />

The DH(Me3Si w X) varies enormously through the series <strong>of</strong> compounds <strong>in</strong><br />

Table 2.3 and strictly depends on the electronegativity <strong>of</strong> the X group. <strong>In</strong> general,<br />

the trends <strong>of</strong> DH(Me3Si w X) are the follow<strong>in</strong>g. (i) For a particular column <strong>of</strong> the<br />

periodic table, the bond strength decreases go<strong>in</strong>g from top to bottom, i.e.,<br />

X: DHf8(X:) a<br />

DHf8(Me3SiX) c,e<br />

H3C: 146:5 0:5 233:2 3:2 396<br />

H3Si: 200:5 2 112:5 329<br />

Me3Si: 16 6 b<br />

H2N: 188:7 1:5 291 f<br />

496<br />

Table 2.3 Derived Me3Si w X bond dissociation enthalpies (kJ/mol)<br />

303:7 5:5 336 h<br />

Me2N: 145 c<br />

248 4 409<br />

HO: 39:3 0:2 500 3 555<br />

MeO: 17:2 4 480 8 513<br />

HS: 143:0 3 273 f<br />

432<br />

BuS: 59.5 d<br />

381 3 457<br />

F: 79:4 0:3 568 f 663<br />

Cl: 121:3 0:1 354 3 491<br />

Br: 111:9 0:1 298 4 426<br />

I: 106:8 0:1 222 4 345<br />

DH(Me3Si w X) g<br />

a<br />

From Reference [7], unless otherwise mentioned.<br />

b<br />

From Table 2.1.<br />

c<br />

From Reference [5].<br />

d<br />

Calculated assum<strong>in</strong>g DH(BuSwH) equal to DH((MeS H) ¼ 365:6kJ=mol [7].<br />

e w<br />

Experimental data, unless otherwise mentioned.<br />

f<br />

Obta<strong>in</strong>ed from enthalpy/electronegativity correlation.<br />

g<br />

Rounded to the nearest 1 kJ/mol; Uncerta<strong>in</strong>ties 10 kJ=mol.<br />

h<br />

Direct measurement: 332 12 kJ=mol [6].

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!