03.12.2018 Views

Energy_slides

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

M. Vable Intermediate Mechanics of Materials: Chapter 7<br />

<strong>Energy</strong> Methods<br />

• Minimum-energy principles are an alternative to statement of equilibrium<br />

equations.<br />

Displacements<br />

1<br />

Kinematics<br />

External<br />

Forces<br />

and<br />

Moments<br />

Strains<br />

4<br />

<strong>Energy</strong> Methods<br />

Equilibrium<br />

Material Models<br />

2<br />

Internal<br />

Forces<br />

and<br />

Moments<br />

Static Equivalency<br />

3<br />

Stresses<br />

The learning objectives in this chapter is:<br />

• Understand the perspective and concepts in energy methods.<br />

7-1


M. Vable Intermediate Mechanics of Materials: Chapter 7<br />

Strain <strong>Energy</strong><br />

• The energy stored in a body due to deformation is called the strain<br />

energy.<br />

• The strain energy per unit volume is called the strain energy density<br />

and is the area underneath the stress-strain curve up to the point of<br />

deformation.<br />

σ<br />

U o = Complimentary strain energy den<br />

dU o = ε dσ<br />

A<br />

dσ<br />

U o = Strain energy density<br />

O<br />

dε<br />

Strain <strong>Energy</strong>: U = U o dV<br />

[<br />

V<br />

ε<br />

Strain <strong>Energy</strong> Density: U o<br />

= ∫σdε<br />

0<br />

Units: N-m / m 3 , Joules / m 3 , in-lbs / in 3 , or ft-lb/ft. 3<br />

Complimentary Strain <strong>Energy</strong> Density:<br />

dU o = σ dε<br />

∫<br />

U o<br />

=<br />

σ<br />

∫<br />

0<br />

εdσ<br />

ε<br />

7-2


M. Vable Intermediate Mechanics of Materials: Chapter 7<br />

Uniaxial tension test:<br />

Linear Strain <strong>Energy</strong> Density<br />

U o<br />

ε ε<br />

Eε 2<br />

= ∫σdε<br />

= ∫( Eε) dε<br />

= -------- =<br />

2<br />

0 0<br />

1<br />

--σε<br />

2<br />

1<br />

U o<br />

= --τγ<br />

2<br />

• Strain energy and strain energy density is a scaler quantity.<br />

1<br />

U o<br />

= -- [ σ<br />

2 xx<br />

ε xx<br />

+ σ yy<br />

ε yy<br />

+ σ zz<br />

ε zz<br />

+ τ xy<br />

γ xy<br />

+ τ yz<br />

γ yz<br />

+ τ zx<br />

γ zx<br />

]<br />

1-D Structural Elements<br />

y<br />

A<br />

z<br />

x<br />

dx<br />

dV=Adx<br />

Axial strain energy<br />

• All stress components except σ xx are zero.<br />

σ xx<br />

du ( x)<br />

= Eε xx<br />

ε xx =<br />

dx<br />

1 2 1<br />

U A ∫<br />

--Eε<br />

2 xx dV --E ⎛du⎞ 2 = = ∫ ∫ dA<br />

dx<br />

=<br />

2 ⎝ dx<br />

⎠<br />

V<br />

• U a is the strain energy per unit length.<br />

L<br />

A<br />

1<br />

U A<br />

= ∫U a<br />

dx<br />

U a<br />

--EA⎛du⎞ 2<br />

=<br />

2 ⎝ dx<br />

⎠<br />

L<br />

∫<br />

L<br />

1 du<br />

--<br />

2⎝<br />

⎛ dx⎠<br />

⎞ 2 ∫ E d A<br />

A<br />

dx<br />

1<br />

U A = ∫U a dx<br />

U a = ---------<br />

N2<br />

2EA<br />

L<br />

7-3


M. Vable Intermediate Mechanics of Materials: Chapter 7<br />

Torsional strain energy<br />

• All stress components except τ xθ in polar coordinate are zero<br />

τ xθ<br />

= Gγ xθ<br />

γ xθ = ρ x<br />

dφ ( x)<br />

d<br />

1 2 1<br />

U T ∫<br />

--Gγ<br />

2 xθ<br />

dV<br />

2<br />

--G ⎛ ρ dφ⎞ 2 = = ∫ ∫ dA<br />

dx<br />

=<br />

⎝ d x ⎠<br />

V<br />

• U t is the strain energy per unit length.<br />

L<br />

A<br />

1<br />

U T<br />

= ∫U t<br />

dx<br />

U t<br />

--GJ⎛dφ⎞ 2<br />

=<br />

2 ⎝dx⎠<br />

L<br />

∫<br />

L<br />

1 dφ<br />

--<br />

2⎝<br />

⎛ dx⎠<br />

⎞ 2 ∫ Gρ 2 d A<br />

A<br />

dx<br />

1<br />

U T = ∫U t dx<br />

U t = -- -------<br />

T2<br />

2GJ<br />

Strain energy in symmetric bending about z-axis<br />

There are two non-zero stress components, σ xx and τ xy.<br />

σ xx<br />

L<br />

d v<br />

= Eε xx ε xx = – y<br />

dx 2<br />

2<br />

1 2 1 ⎛ d v ⎞ 2<br />

U B = ∫<br />

--Eε<br />

2 xx dV = ∫ ∫<br />

--E⎜y<br />

2 ⎝ dx 2 ⎟ dA<br />

dx<br />

=<br />

⎠<br />

V<br />

L<br />

A<br />

• where U b is the bending strain energy per unit length.<br />

2<br />

2<br />

1 ⎛d v ⎞ 2<br />

U B = ∫U b dx<br />

U b = --EI<br />

2 zz ⎜<br />

⎝dx 2 ⎟<br />

⎠<br />

L<br />

∫<br />

L<br />

2<br />

1⎛d v ⎞ 2<br />

-- ⎜<br />

2⎝dx 2 ⎟ ∫ Ey 2 dA<br />

⎠<br />

A<br />

dx<br />

The strain energy due to shear in bending is:<br />

As<br />

τ max<br />

2<br />

1<br />

M z<br />

U B = ∫U b dx<br />

U b = -- ----------<br />

2<br />

L<br />

EI zz<br />

« σ max<br />

U s<br />

« U B<br />

1<br />

U S =<br />

∫<br />

--τ<br />

2 xy γ xy dV<br />

=<br />

V<br />

1<br />

-- τ 2<br />

xy<br />

∫<br />

------ dV<br />

2 E<br />

V<br />

7-4


M. Vable Intermediate Mechanics of Materials: Chapter 7<br />

Table 7.1 <strong>Energy</strong> densities<br />

Axial<br />

Torsion of circular<br />

shafts<br />

Symmetric<br />

bending of<br />

beams<br />

Strain energy density per<br />

unit length<br />

Complimentary strain<br />

energy density per unit<br />

length<br />

1 du<br />

U a = --EA⎛ ⎞ 2<br />

1<br />

2 ⎝ dx<br />

⎠ U a = ---------<br />

N2<br />

2EA<br />

1 dφ<br />

U t<br />

= --GJ⎛ ⎞ 2<br />

1<br />

2 ⎝dx⎠<br />

U t = -- -------<br />

T2<br />

2GJ<br />

2<br />

1 ⎛d v ⎞ 2<br />

1<br />

U b<br />

= --EI<br />

2 zz ⎜<br />

⎝dx 2 ⎟ U b -- M 2<br />

z<br />

= ----------<br />

⎠<br />

2EI zz<br />

7-5


M. Vable Intermediate Mechanics of Materials: Chapter 7<br />

Work<br />

• If a force moves through a distance, then work has been done by the<br />

force.<br />

• Work done by a force is conservative if it is path independent.<br />

• Non-linear systems and non-conservative systems are two independent<br />

description of a system.<br />

Loading Mode<br />

P<br />

dW<br />

=<br />

Fdu<br />

δW<br />

Work<br />

=<br />

Pδu L<br />

p(x)<br />

u(x)<br />

u L<br />

δW<br />

=<br />

L<br />

∫<br />

0<br />

p( x)δux<br />

( ) dx<br />

T<br />

δW<br />

=<br />

Tδφ L<br />

t (x)<br />

φ( x)<br />

φ L<br />

δW<br />

=<br />

L<br />

∫<br />

0<br />

t( x)δφ( x) dx<br />

δW<br />

=<br />

Pδv L<br />

P<br />

M<br />

v L<br />

θ<br />

=<br />

dv<br />

dx<br />

δW<br />

=<br />

Mδθ L<br />

v(x)<br />

δW<br />

=<br />

L<br />

∫<br />

0<br />

p( x)δvx<br />

( ) dx<br />

p(x)<br />

• Any variable that can be used for describing deformation is called the<br />

generalized displacement.<br />

• Any variable that can be used for describing the cause that produces<br />

deformation is called the generalized force.<br />

7-6


M. Vable Intermediate Mechanics of Materials: Chapter 7<br />

Virtual Work<br />

• Virtual work methods are applicable to linear and non-linear systems,<br />

to conservative as well as non-conservative systems.<br />

The principle of virtual work:<br />

The total virtual work done on a body at equilibrium is zero.<br />

δW = 0<br />

• Symbol δ will be used to designate a virtual quantity<br />

δW ext = δW int<br />

Types of boundary conditions<br />

y Displacement and rotation specified<br />

at this end<br />

T<br />

x<br />

P x<br />

Internal forces and moment specified<br />

at this end to meet equilibrium<br />

T<br />

N<br />

V y<br />

T<br />

P x<br />

z<br />

M<br />

ε<br />

P y M<br />

ε<br />

P y<br />

Kinematic variable<br />

Statical variable<br />

(Primary variable)<br />

(Secondary variable)<br />

or<br />

u<br />

N<br />

φ<br />

or<br />

T<br />

v<br />

or<br />

θ<br />

Geometric boundary conditions (Kinematic boundary conditions)<br />

(Essential boundary conditions):<br />

Condition specified on kinematic (primary) variable at the boundary.<br />

Statical boundary conditions<br />

(Natural boundary conditions)<br />

Condition specified on statical (secondary)variable at the boundary.<br />

M z<br />

V y<br />

dv<br />

=<br />

or<br />

M<br />

dx<br />

z<br />

7-7


M. Vable Intermediate Mechanics of Materials: Chapter 7<br />

Kinematically admissible functions<br />

• Functions that are continuous and satisfies all the kinematic boundary<br />

conditions are called kinematically admissible functions.<br />

• actual displacement solution is always a kinematically admissible<br />

function<br />

• Kinematically admissible functions are not required to correspond to<br />

solutions that satisfy equilibrium equations.<br />

Statically admissible functions<br />

• Functions that satisfy satisfies all the static boundary conditions, satisfy<br />

equilibrium equations at all points, and are continuous at all points<br />

except where a concentrated force or moment is applied are called<br />

statically admissible functions.<br />

• Actual internal forces and moments are always statically admissible.<br />

• Statically admissible functions are not required to correspond to solutions<br />

that satisfy compatibility equations.<br />

7.3 Determine a class of kinematically admissible displacement<br />

functions for the beam shown in Fig. P7.3.<br />

A<br />

x<br />

L<br />

Fig. P7.3<br />

7.4 For the beam and loading shown in Fig. P7.3 determine a statically<br />

admissible bending moment.<br />

B<br />

wL 2<br />

w<br />

L<br />

C<br />

7-8


M. Vable Intermediate Mechanics of Materials: Chapter 7<br />

Virtual displacement method<br />

• The virtual displacement is an infinitesimal imaginary kinematically<br />

admissible displacement field imposed on a body.<br />

actual displacement<br />

x<br />

kinematically admissible displacement<br />

δv = virtual displacement<br />

• Of all the virtual displacements the one that satisfies the virtual work<br />

principle is the actual displacement field.<br />

Virtual Force Method<br />

• The virtual force is an infinitesimal imaginary statically admissible<br />

force field imposed on a body.<br />

• Of all the virtual force fields the one that satisfies the virtual work<br />

principle is the actual force field.<br />

7-9


M. Vable Intermediate Mechanics of Materials: Chapter 7<br />

7.7 The roller at P shown in Fig. P7.7 <strong>slides</strong> in the slot due to the<br />

force F = 20kN. Both bars have a cross-sectional area of A = 100 mm 2<br />

and a modulus of elasticity E = 200 GPa. Bar AP and BP have lengths of<br />

L AP = 200 mm and L BP = 250 mm respectively. Determine the axial stress<br />

in the member AP by virtual displacement method.<br />

B<br />

A<br />

110 o F<br />

Fig. P7.7<br />

7.8 A force F = 20kN is appled to pin shown in Fig. P7.8. Both<br />

bars have a cross-sectional area of A = 100 mm 2 and a modulus of elasticity<br />

E = 200 GPa. Bar AP and BP have lengths of L AP = 200 mm and<br />

L BP = 250 mm respectively. Using virtual force method determine the<br />

movement of pin in the direction of force F.<br />

P<br />

B<br />

A<br />

110 o P<br />

F<br />

40 o<br />

Fig. P7.8<br />

7-10

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!