17.12.2012 Views

Advanced Natural Gas Fuel Tank Project - EERE

Advanced Natural Gas Fuel Tank Project - EERE

Advanced Natural Gas Fuel Tank Project - EERE

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Advanced</strong> <strong>Natural</strong> <strong>Gas</strong> <strong>Fuel</strong> <strong>Tank</strong> <strong>Project</strong><br />

California Energy Commission Contract #500-08-022<br />

Peter Pfeifer<br />

University of Missouri, Columbia<br />

<strong>Natural</strong> <strong>Gas</strong> Vehicle Technology Forum<br />

San Francisco<br />

October 25, 2011<br />

© The University of Missouri


• <strong>Project</strong> Objectives:<br />

– Adsorbed <strong>Natural</strong> <strong>Gas</strong> (ANG) <strong>Tank</strong><br />

– Storage capacity 200 V/V at 500 psi<br />

– Conformable, lightweight<br />

• Earlier Work<br />

Presentation Outline<br />

• Technical Accomplishments: Storage Capacity<br />

• Technical Accomplishments: <strong>Tank</strong> Hardware<br />

• Market <strong>Project</strong>ions<br />

© The University of Missouri<br />

2


<strong>Project</strong> Overview I<br />

© The University of Missouri<br />

3


<strong>Project</strong> Overview II<br />

© The University of Missouri<br />

4


Timeline<br />

• <strong>Project</strong> start date:<br />

May 28, 2009, nominally<br />

January 1, 2011, effectively<br />

• <strong>Project</strong> end date:<br />

December 31, 2012<br />

• Percent complete: 40%<br />

Subcontractors<br />

DBHORNE, LLC, Atlanta<br />

MRIGlobal, Kansas City<br />

Buckley Engineering, LLC, Kansas City<br />

Budget<br />

CEC: $1,000,000<br />

SoCal<strong>Gas</strong>: $310,068<br />

U. Missouri (MU): $307,584<br />

<strong>Project</strong> Overview III<br />

<strong>Project</strong> Personnel, U. Missouri, Alliance for<br />

Collaborative Research in Alternative <strong>Fuel</strong><br />

Technology (ALL-CRAFT, http://allcraft.missouri.edu):<br />

Physics: P. Pfeifer, C. Wexler, J. Romanos,<br />

N. Chada, E. Dohnke, T. Rash, Y. Soo<br />

Chemical Engineering: G. Suppes, A. Tekeei<br />

Mechanical Engineering: Y. Lin, H. Xu<br />

Office of Technology Management & Industry<br />

Relations: B. Maland<br />

<strong>Project</strong> Advisory Committee:<br />

Christian Bach – EMPA, Zurich<br />

Michael Eaves – Clean Energy, CA<br />

Doug Horne – DBHORNE LLC, GA<br />

Diane Lewis – The Lewis Chemical Co., GA<br />

Henry Mak – Southern California <strong>Gas</strong> Co., CA<br />

Steven Ragan – Jacobi Carbon Co., LA<br />

Tom Sewell – Tulsa <strong>Gas</strong> Technologies, OK<br />

Mike Veenstra – Ford, Dearborn, MI<br />

© The University of Missouri<br />

5


<strong>Project</strong> Overview IV<br />

<strong>Project</strong> Objectives:<br />

• Develop low-pressure storage technology for NG, based on high-performance<br />

adsorbent materials discovered at MU (1st generation carbons): carbon made from waste<br />

corncob, “sponge for NG”<br />

• Adsorbed <strong>Natural</strong> <strong>Gas</strong> (ANG) <strong>Tank</strong><br />

• Storage capacity 200 V/V at 500 psi<br />

• Low pressure (500 psi) � conformable, lightweight tank; reduced fueling costs<br />

Tasks:<br />

• Develop 2nd generation carbon adsorbents, with target capacity of 200 V/V<br />

• Design/build “<strong>Advanced</strong> Flat-Panel <strong>Tank</strong> Assembly”<br />

– Assembly = computer-controlled test bed in laboratory (not on vehicle), filled<br />

with best monolithic carbon, operating at ambient temperature<br />

– Specs: capacity for light-duty NGV with 300-mile driving range @ 30 miles/gge;<br />

operation over full range of fuel delivery parameters of current light-duty NGVs<br />

– Offer to tank/automobile manufacturers for testing and demonstration<br />

• Evaluate performance of, and market, flat-panel tank assembly<br />

Q1: Is high volumetric or high gravimetric capacity more attractive? Different carbons for<br />

two targets!<br />

Q2: Can we reach LNG density? In nanopores, yes!<br />

• Develop cost estimates for flat-panel ANG tank for passenger cars,<br />

and ANG tanks for fueling stations<br />

© The University of Missouri<br />

6


Why ANG?<br />

� Current light-duty NGVs: NG stored as<br />

compressed natural gas (CNG) in steel or<br />

composite cylinders.<br />

� Barrier (consumer acceptance):<br />

• Heavy, non-conformable tanks due to high<br />

pressure (3600 psi)<br />

• Loss of passenger or trunk space<br />

• Limited driving range<br />

ANG seeks to offer alternative, consumerattractive<br />

technology for storage and<br />

transport of NG<br />

Low pressure (500 psi) enables thin tank<br />

walls and conformable tank geometry<br />

CNG tank: Honda Civic GX<br />

CNG tank in trunk<br />

© The University of Missouri<br />

7


Earlier Work<br />

© The University of Missouri<br />

8


Atlanta <strong>Gas</strong> Light Adsorbent Research<br />

Group (AGLARG), 1997:<br />

AGLARG <strong>Project</strong><br />

Adsorbent: monolithic activated carbon<br />

(briquettes) from peach pit;<br />

included extensive demonstration project<br />

© AGLARG 1997<br />

© AGLARG 1997<br />

4 tanks in bed of<br />

NG Dodge Dakota<br />

© The University of Missouri<br />

9


NREL: “Missouri<br />

Hockey Puck”<br />

Monolith has surface<br />

area that could cover<br />

much of MU campus<br />

ALL-CRAFT ANG <strong>Tank</strong> 2007<br />

U. Missouri (ALL-CRAFT):<br />

• Carbon monoliths from<br />

corncob; NSF <strong>Project</strong><br />

PFI-0438469, 2004-07<br />

http://www.nsf.gov/news<br />

/news_summ.jsp?cntn_i<br />

d=108390&org=NSF&fr<br />

om=news<br />

• <strong>Tank</strong> field-tested in<br />

Kansas City, 2007-09<br />

© The University of Missouri<br />

10


Performance of AGLARG and ALL-CRAFT tank<br />

• Target pressure for flat tank: 35 bar (35 atm, 500 psig *); without adsorbent,<br />

pressure would have to be 150 bar, much more than what a flat tank can bear<br />

• ANG, DOE target: 118 g/liter (vol. CH 4 at 25 o C & 1 bar, per vol. of tank: 180 V/V)<br />

• CNG at 25 o C & 250 bar (3600 psig): 190 g/liter<br />

• LNG at –161 o C &1 bar: 423 g/liter<br />

• DOE target<br />

achieved!<br />

*) 500 psi:<br />

pressure in NG<br />

pipelines<br />

DOE target; best ALL-CRAFT carbon<br />

AGLARG capacity<br />

Adsorbent Filled <strong>Tank</strong> (ANG)<br />

Empty <strong>Tank</strong> (CNG)<br />

11<br />

© ALL-CRAFT 2007<br />

© The University of Missouri<br />

11


ANG <strong>Project</strong>s<br />

Y. Ginzburg, Proceedings of the 23 rd World <strong>Gas</strong> Conference, Amsterdam, 2006:<br />

PROJECT AGLARG<br />

(Atlanta<br />

<strong>Gas</strong> Light<br />

Adsorbent<br />

Research<br />

Group)<br />

EU FP5<br />

LEVINGS<br />

program<br />

(FIAT)<br />

OAK<br />

RIDGE<br />

NATIONAL<br />

LAB.<br />

(ORNL)<br />

HONDA<br />

MOTORS<br />

UNIVERSITY OF<br />

PETROLEUM<br />

CHINA (UPC)<br />

Brazilian<br />

<strong>Gas</strong><br />

Technology<br />

Center<br />

(CTGÁS)<br />

ALL-CRAFT (U. Missouri)<br />

Years 1990-1999 1997-2000 ? -2000 From 2000 1994-95 From 2000 Current (since 2007)<br />

Investigation<br />

method<br />

Chrysler<br />

B-van,<br />

Dodge<br />

Dakota<br />

Truck<br />

FIAT Marea,<br />

On-board,<br />

field testing<br />

Laboratory<br />

Investigations<br />

<strong>Tank</strong><br />

development<br />

Adsorbent<br />

laboratory<br />

tests<br />

Car XIALI<br />

713IU<br />

On-board, field<br />

testing<br />

Laboratory<br />

investigation<br />

on full-size<br />

prototype<br />

Laboratory investigation , Adsorbent<br />

optimization , field testing.<br />

Pressure (bar) 35-40 35-40 35 35 50 125 35-40 35 250<br />

<strong>Tank</strong> uptake<br />

V/V<br />

<strong>Tank</strong> delivery<br />

V/V<br />

to engine<br />

Adsorbent<br />

price<br />

Vessel (tank)<br />

design<br />

features<br />

150 in<br />

laboratory<br />

condition<br />

123 150 155 100­<br />

110<br />

170­<br />

180<br />

130-150 Intragran. cap.:<br />

202V/V<br />

Monolith. cap.:<br />

161 V/V<br />

142 107 -­ -­ -­ -­ -­ -­ -­<br />

Prohibitive High, but<br />

about 10<br />

times less<br />

than<br />

AGLARG<br />

Multicell<br />

of<br />

extruded<br />

aluminum<br />

Multicell of<br />

steel tubes<br />

Supposedly<br />

very high<br />

Small<br />

laboratory<br />

vessel of<br />

volume<br />

0,05 L.<br />

Supposedly<br />

similar to<br />

AGLAG<br />

-­ -­ TBD<br />

Multicell -­ Cylindrical<br />

form with<br />

volume 30<br />

liters<br />

Intragran. cap.:<br />

337 V/V<br />

Monolith. cap.:<br />

TBD<br />

Cylindrical tank (2007)<br />

Flat tank (2012)<br />

3 rd generation ANG tank (201x)<br />

© The University of Missouri<br />

12


Technical Accomplishments<br />

Storage Capacity<br />

© The University of Missouri 13


Corncob<br />

MU Carbons<br />

H3PO4 activation KOH activation<br />

High-surface-<br />

Binder Monolith<br />

Char<br />

(briquette,<br />

area carbon pellet)<br />

� Abundant and inexpensive raw<br />

material: corncob<br />

� Large scale production is<br />

economic and feasible<br />

� No special handling under inert<br />

atmosphere is needed<br />

© The University of Missouri<br />

14


MU Carbons: Nanospace Engineering<br />

Width: 2 nm Width: 1 nm Width: 0.75 nm<br />

In narrow, sub-nm pores, van der Waals potentials overlap; create deep potential wells and high<br />

storage density<br />

Activation<br />

mechanism<br />

Oxidation of carbon with KOH/H 2O<br />

produces CO and CO 2<br />

• Intercalation of metallic potassium into<br />

the graphitic lattice<br />

• Expansion of the lattice by<br />

intercalated potassium<br />

• Rapid removal of intercalate from the<br />

carbon sheet<br />

High specific surface areas (up to 3,000 m 2 /g), porosities,<br />

sub-nm (


Best Performers to Date<br />

4.0K-790C<br />

Best gravimetric storage<br />

capacity, at 35 bar<br />

• At 35 bar and 22 °C, ANG volumetric storage<br />

capacity is 5 times higher than CNG<br />

• Even at 250 bar and 22 °C, ANG volumetric<br />

storage capacity is 20% better than CNG.<br />

• Additional improvement from carbon<br />

densification (see below)<br />

4.0K-790C<br />

Amount delivered<br />

22 o C 2.5K-700C<br />

Best volumetric storage<br />

capacity, at 35 bar<br />

x 5<br />

© The University of Missouri<br />

16


Carbon densification: powders, pellets, and briquettes<br />

Controllable carbon density<br />

� At constant excess adsorption, volumetric storage capacity increases, and gravimetric<br />

storage capacity decreases, with increasing carbon density (decreasing porosity)<br />

� Densification can increase volumetric storage capacity by a factor of two<br />

© The University of Missouri<br />

17


Manual methane test<br />

fixture<br />

Adsorption Measurements in Laboratory<br />

Methane detector<br />

Dosing volume<br />

Vacuum gauge indicator<br />

Test tank (inside glove box)<br />

Oxygen and moisture indicator<br />

Automated methane test fixture, 2011<br />

Methane test fixture (Sievert apparatus)<br />

� Large samples: (~30 to 500g: Briquettes)<br />

� Temperature: 297 K<br />

� Pressure: 0-300 bar<br />

© The University of Missouri<br />

18


Technical Accomplishments<br />

<strong>Tank</strong> Hardware<br />

© The University of Missouri<br />

19


ALL-CRAFT ANG <strong>Tank</strong> 2012 (under construction)<br />

Next generation ANG tank:<br />

- Optimal design for low pressure NG<br />

storage<br />

- Flexibility to investigate higher<br />

pressure and lower temperature<br />

storage<br />

- Several 40-liter (internal volume) tanks<br />

will be fabricated<br />

- Thermal management<br />

© The University of Missouri<br />

20


ALL-CRAFT ANG <strong>Tank</strong> 2012: Finite-Element Analysis<br />

Optimal design: almost all the stress on chambers and end<br />

caps in range 40-300 MPa<br />

© The University of Missouri<br />

21


ALL-CRAFT ANG <strong>Tank</strong> 2012: Filled with Carbon<br />

<strong>Tank</strong> cross section<br />

Carbon pellets<br />

Carbon powder<br />

40-liter flat-panel tank<br />

4 of these: 250 mi driving range<br />

0.405 m<br />

0.171 m<br />

© The University of Missouri<br />

22


Market <strong>Project</strong>ions<br />

© The University of Missouri 23


ANG vs. CNG: <strong>Tank</strong> Volume and Mass I<br />

Carbon with best volumetric storage capacity (0.70 g/cm 3 , 200 V/V):<br />

Outside volume: ANG tank ≈ CNG tank; mass 20% lower<br />

ANG 500<br />

Driving Range = 200 miles @ 30 mpg<br />

NG Capacity = 6.7 GGE<br />

Aluminum <strong>Tank</strong> (16,000 psi allowable stress)<br />

Volume Occupied by <strong>Tank</strong> = 37 gal<br />

Inside Volume of <strong>Tank</strong> = 34 gal<br />

Mass of <strong>Tank</strong> + Carbon = 250 lbs<br />

Carbon Steel <strong>Tank</strong> (30,000 psi allowable stress)<br />

Volume Occupied by <strong>Tank</strong> = 36 gal<br />

Inside Volume of <strong>Tank</strong> = 34 gal<br />

Mass of <strong>Tank</strong> + Carbon = 350 lbs<br />

CNG 3,600<br />

Driving Range = 200 miles @ 30 mpg<br />

NG Capacity = 6.7 GGE<br />

Aluminum <strong>Tank</strong> (16,000 psi allowable stress)<br />

Volume Occupied by <strong>Tank</strong> = 38 gal<br />

Inside Volume of <strong>Tank</strong> = 24 gal<br />

Mass of <strong>Tank</strong> = 320 lbs<br />

Carbon Steel <strong>Tank</strong> (30,000 psi allowable stress)<br />

Volume Occupied by <strong>Tank</strong> = 31 gal<br />

Inside Volume of <strong>Tank</strong> = 24 gal<br />

Mass of <strong>Tank</strong> = 480 lbs<br />

© The University of Missouri 24


ANG vs. CNG: <strong>Tank</strong> Volume and Mass II<br />

Carbon with best gravimetric storage capacity (0.34 g/cm 3 , 148 V/V)<br />

Outside volume: ANG 30% larger than CNG; mass 30% lower<br />

ANG 500<br />

Driving Range = 200 miles @ 30 mpg<br />

NG Capacity = 6.7 GGE<br />

Aluminum <strong>Tank</strong> (16,000 psi allowable stress)<br />

Volume Occupied by <strong>Tank</strong> = 50 gal<br />

Inside Volume of <strong>Tank</strong> = 46 gal<br />

Mass of <strong>Tank</strong> + Carbon = 230 lbs<br />

Carbon Steel <strong>Tank</strong> (30,000 psi allowable stress)<br />

Volume Occupied by <strong>Tank</strong> = 49 gal<br />

Inside Volume of <strong>Tank</strong> = 46 gal<br />

Mass of <strong>Tank</strong> + Carbon = 330 lbs<br />

CNG 3,600<br />

Driving Range = 200 miles @ 30 mpg<br />

NG Capacity = 6.7 GGE<br />

Aluminum <strong>Tank</strong> (16,000 psi allowable stress)<br />

Volume Occupied by <strong>Tank</strong> = 38 gal<br />

Inside Volume of <strong>Tank</strong> = 24 gal<br />

Mass of <strong>Tank</strong> = 320 lbs<br />

Carbon Steel <strong>Tank</strong> (30,000 psi allowable stress)<br />

Volume Occupied by <strong>Tank</strong> = 31 gal<br />

Inside Volume of <strong>Tank</strong> = 24 gal<br />

Mass of <strong>Tank</strong> = 480 lbs<br />

© The University of Missouri 25


ANG vs. CNG vs. <strong>Gas</strong>oline: <strong>Fuel</strong> Costs<br />

Significance of minimal fueling investment when compared to gasoline<br />

$3.50<br />

$3.00<br />

$2.50<br />

$2.00<br />

$1.50<br />

$1.00<br />

$0.50<br />

$­<br />

Cost Comparison for 1 GGE<br />

ANG CNG <strong>Gas</strong>oline<br />

• Compression costs at refueling stations drop<br />

• Home refueling costs drop because home compressor will be<br />

cheaper and filling is faster<br />

Station Cost<br />

Vehicle Cost<br />

<strong>Fuel</strong> Cost<br />

© The University of Missouri 26


Early Market Applications<br />

Hub and Spoke Fleets Forklifts<br />

• Large Market<br />

– Forklifts are a multi-Billion dollar market<br />

– 200,000 forklifts manufactured each year<br />

– Toshiba, Kawasaki Heavy Industries, Nissan<br />

Motor<br />

• Good Fit for ANG<br />

– No need to deliver gasoline. Instead, just tap<br />

into NG line and add a moderate compressor<br />

– Weight of tank is not an issue (it’s a benefit!!!)<br />

– CNG is NOT a good fit here<br />

© The University of Missouri 27


Conclusions:<br />

Conclusions I<br />

Current best performer for volumetric storage capacity (light-duty vehicles): 132 g CH 4/liter<br />

carbon (2.5K-700C) at 35 bar and 22 o C (200 V/V, 110% of DOE target of 118 g/liter). Is<br />

500% of CNG at 35 bar and 22 o C.<br />

Current best performer for gravimetric storage capacity (heavy-duty vehicles): 256 g CH 4/kg<br />

carbon (4.0K-790C) at 35 bar and 22 o C. Volumetric storage capacity at 250 bar and 22 o C<br />

is 20% higher than CNG.<br />

Total tank volume & mass, best volumetric performer (6.7 GGE): 37 gal, 250 lbs<br />

Total tank volume & mass, best gravimetric performer (6.7 GGE): 50 gal, 230 lbs<br />

Total tank volume & mass, CNG (6.7 GGE): 38 gal, 320 lbs<br />

Thermodynamic analysis of CH 4 excess isotherms at 22 o C gives film thickness (~0.4 nm),<br />

saturated film density (320-440 g/l), comparable to LNG.<br />

Briquetting can increase volumetric storage capacity by factor of 2 if surface area remains<br />

constant.<br />

© The University of Missouri 28


<strong>Natural</strong> gas vehicles over time<br />

First NG vehicle 1910 (USA) with balloon<br />

tank on trailer<br />

Current NG vehicle with highpressure<br />

tank in trunk<br />

Conclusions II<br />

Low-pressure, flat-panel<br />

ANG tank<br />

NG<br />

vehicle<br />

~1930<br />

(France)<br />

with<br />

balloon<br />

tank on<br />

roof<br />

Future NG vehicle with lowpressure<br />

tank in unused space<br />

© The University of Missouri 29

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!