17.12.2012 Views

„Contrast Agents in Sonography“ by T - European-Hospital

„Contrast Agents in Sonography“ by T - European-Hospital

„Contrast Agents in Sonography“ by T - European-Hospital

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

T. Albrecht, J. Hohmann<br />

Contrast agents<br />

<strong>in</strong> Sonography


4<br />

Physico-chemical<br />

and pharmacological<br />

properties<br />

Ultrasound contrast agents (USCA) or<br />

echo enhancers consist of m<strong>in</strong>ute gas conta<strong>in</strong><strong>in</strong>g<br />

microbubbles that have a high reflectivity<br />

when exposed to an ultrasound<br />

field. The history of USCA started <strong>in</strong> the mid<br />

of the 1960s. The cardiologist Joyner performed<br />

echo cardiography dur<strong>in</strong>g the <strong>in</strong>jection<br />

of sal<strong>in</strong>e solution <strong>in</strong>to the aortic root<br />

via a catheter. Dur<strong>in</strong>g the <strong>in</strong>jection he observed<br />

bright signals on M-mode imag<strong>in</strong>g.<br />

The first written publication of this phenomenon<br />

was <strong>by</strong> Gramiak and Shah and<br />

appeared <strong>in</strong> 1968 1 . Small highly reflective<br />

air bubbles with<strong>in</strong> the <strong>in</strong>jected fluid where<br />

recognized to be the reason for the observed<br />

signals.<br />

The reason for the high reflectivity of air<br />

bubbles is as follows: The ultrasound image<br />

consists of reflected echoes which occur<br />

when an ultrasound pulse encounters <strong>in</strong>terfaces<br />

of different materials or tissues. The<br />

larger the proportion of sound energy reflected<br />

at the <strong>in</strong>terface, the more <strong>in</strong>tense<br />

are the signals shown on the sonographic<br />

image. Each material has a characteristic<br />

acustic <strong>in</strong> impedance (Z). Z is def<strong>in</strong>ed as the<br />

product of the speed of sound <strong>in</strong> a specific<br />

material and its physical density. Table 1<br />

shows the density, speed of sound and<br />

acustic impedance of some typical substances<br />

relevant to cl<strong>in</strong>ical sonography. The<br />

degree of reflection at <strong>in</strong> <strong>in</strong>terface and thus<br />

the <strong>in</strong>tensity of the echoes displayed <strong>in</strong> the<br />

sonographic image depends on the difference<br />

<strong>in</strong> impedance between the two adjacent<br />

materials: The higher the difference <strong>in</strong><br />

impedance, the stronger the reflected<br />

echoes. Conversely the amplitude of the<br />

sound wave travell<strong>in</strong>g beyond the <strong>in</strong>terface<br />

decreases with higher impedances. As<br />

shown <strong>in</strong> table 1, the difference <strong>in</strong> acuostic<br />

impedance between air (and other gases) on<br />

the one hand and water or soft tissue on the<br />

other hand is very high, this leads to high reflectivity<br />

of gas <strong>in</strong> sonography. The reflectivity<br />

of air is so high that m<strong>in</strong>ute amounts of<br />

gas bubbles are sufficient to produce considerable<br />

signal enhancement <strong>in</strong> the entire<br />

blood pool (less than 1 ml of gas are <strong>in</strong>jected<br />

with a typical dose of USCA).<br />

In the 1970s cardiologists started to<br />

use agitated sal<strong>in</strong>e solutions as the first<br />

contrast agents for echocardiography.<br />

When <strong>in</strong>jected <strong>in</strong>travenously small air bubbles<br />

<strong>in</strong>cluded <strong>in</strong> the fluid produced signal<br />

enhancement <strong>in</strong> the right heart. These<br />

bubbles where however not able to withstand<br />

pulmonary passage so that there was<br />

no signal enhancement <strong>in</strong> the left heart.<br />

They were therefore used for detection of<br />

right to left shunts <strong>by</strong> demonstration of micro<br />

bubbles with<strong>in</strong> the left heart. Due to<br />

their lack of transpulmonary stability, such<br />

agitated fluids could neither be used for<br />

echocardiography of the left heart nor for<br />

extra-cardiac applications.<br />

Table 1: Acoustic Impedance (Z) of some<br />

materials relevant to cl<strong>in</strong>ical US.<br />

Material Density Speed of sound Acoustic Impedance<br />

(kg/m3) (m/s) (kg/m 2 s)<br />

Air 1,2 330 400<br />

Water 1000 1480 1 488 000<br />

Soft tissue 1100 1540 1 630 000<br />

Bone 1900 4080 7 800 000


Contrast agents<br />

<strong>in</strong> Sonography<br />

Abstract<br />

Ultrasound contrast agents<br />

consist of t<strong>in</strong>y gas bubbles encapsulated<br />

<strong>by</strong> a stabilis<strong>in</strong>g membrane<br />

or shell. When comb<strong>in</strong>ed<br />

with recent contrast-specific ultrasound<br />

techniques, they provide substantial enhancement<br />

of vessels and solid organs.<br />

The cl<strong>in</strong>ical use and the diagnostic value of<br />

ultrasound contrast agents are <strong>in</strong> pr<strong>in</strong>ciple<br />

comparable to contrast agents for CT and<br />

MRI. They add an additional dimension of<br />

<strong>in</strong>formation to sonography, which results<br />

<strong>in</strong> considerable improvement of diagnostic<br />

accuracy <strong>in</strong> many cases. They can also<br />

be used for functional imag<strong>in</strong>g studies of<br />

Albrecht, T.<br />

Hohmann, J.<br />

haemodynamics. This paper<br />

reviews the physico-chemical<br />

properties of various<br />

microbubble contrast agents,<br />

discusses non-l<strong>in</strong>ear bubble behaviour<br />

and contrast-specific imag<strong>in</strong>g techniques.<br />

An overview of the most important radiological<br />

cl<strong>in</strong>ical applications <strong>in</strong> the liver,<br />

kidney and spleen is given.<br />

Key words<br />

Contrast media – microbubbles - ultrasound,<br />

technology – liver, US – spleen, US – functional<br />

imag<strong>in</strong>g<br />

PD Dr. med. Thomas Albrecht<br />

Kl<strong>in</strong>ik und Polikl<strong>in</strong>ik für<br />

Radiologie und Nuklearmediz<strong>in</strong><br />

Campus Benjam<strong>in</strong> Frankl<strong>in</strong><br />

Charité – Universitätsmediz<strong>in</strong> Berl<strong>in</strong><br />

H<strong>in</strong>denburgdamm 30<br />

D-12200 Berl<strong>in</strong><br />

3


S<strong>in</strong>ce the mid 1990s<br />

transpulmonary microbubble<br />

contrast agents have become<br />

available. They distribute<br />

evenly throughout the<br />

entire blood pool and can be<br />

used for echocardiography of<br />

the left heart as well as for extracardiac<br />

ultrasound. Transpulmonary<br />

stability is<br />

achieved <strong>by</strong> the addition of a<br />

shell surround<strong>in</strong>g and thus<br />

stabilis<strong>in</strong>g the microbubble.<br />

Different materials are used<br />

for these shells: Soft shells<br />

consists of th<strong>in</strong> membranes<br />

or layers of phosphor lipids or<br />

surfactants. Other agents employ harder<br />

and more stable shells made of album<strong>in</strong> or<br />

polymers. The average diameter of the micro<br />

bubbles of all dedicated USCA ranges<br />

between approximately 2 and 7 µ, they are<br />

thus smaller then red cells and there is<br />

therefore no risk of capillary embolization.<br />

Contrast agent microbubbles consist of<br />

various types of gases. There are two ma<strong>in</strong><br />

groups: High solubility gas agents us<strong>in</strong>g air<br />

(e.g. Levovist, Scher<strong>in</strong>g AG, Berl<strong>in</strong>, Germany)<br />

and low solubility gas USCA us<strong>in</strong>g<br />

more stable perfluor gases (e.g. SonoVue,<br />

Bracco SPA, Milan, Italy). The much lower<br />

solubility of perfluor gases <strong>in</strong> plasma leads<br />

to a higher stability of these agents with<br />

stronger and longer last<strong>in</strong>g signal enhancement.<br />

Table 2 summarizes the most<br />

important USCA currently licenced or <strong>in</strong><br />

cl<strong>in</strong>ical development.<br />

USCA are blood pool agents, <strong>in</strong> contrast<br />

to conventional agents for CT or MRI<br />

they do not diffuse <strong>in</strong>to the extra cellular<br />

fluid compartment. Follow<strong>in</strong>g <strong>in</strong>tra venous<br />

<strong>in</strong>jection they rema<strong>in</strong> <strong>in</strong> the blood pool for<br />

several m<strong>in</strong>utes. The gas is gradually elim<strong>in</strong>ation<br />

from the blood <strong>by</strong> exhalation via the<br />

lungs, the shells are metabolized. All licensed<br />

USCA are well tolerated with few<br />

adverse reactions reported 2 . They are not<br />

nephrotoxic and allergic reactions are very<br />

rare and considerably less frequent then<br />

Figure 1: In vivo m<strong>in</strong>croscopie of a capillary<br />

with fluorescend microbubbles<br />

(bright green) und red cells (arrows).<br />

Courtesy of Dr. Jonathan L<strong>in</strong>dner, University<br />

of Virg<strong>in</strong>ia; from: Handbook of Contrast<br />

Echocardiography, Becher H und Burns PN,<br />

Spr<strong>in</strong>ger, Berl<strong>in</strong> 2000.<br />

with iod<strong>in</strong>ated X-ray contrast agents. Two<br />

USCM for radiological applications are currently<br />

available for cl<strong>in</strong>ical use <strong>in</strong> the <strong>European</strong><br />

Union: Levovist (Scher<strong>in</strong>g AG, Berl<strong>in</strong>,<br />

Germany) s<strong>in</strong>ce 1995 and SonoVue (Bracco<br />

SPA, Milan, Italy) s<strong>in</strong>ce 2001. Levovist<br />

consists of a galctose matrix, galactosaemia<br />

is thus a contra<strong>in</strong>dication.<br />

Non-l<strong>in</strong>ear properties of microbubbles<br />

and contrast-specific imag<strong>in</strong>g techniques<br />

USCA were orig<strong>in</strong>ally developed to enhance<br />

signals from flow<strong>in</strong>g blood <strong>in</strong> technically<br />

difficult spectral or colour Doppler<br />

studies. Due the rapid improvements <strong>in</strong><br />

equipment technology and particularly <strong>in</strong><br />

Doppler sensitivity, this application has become<br />

virtually obsolete.<br />

Outside the heart the agents do not<br />

provide sufficient signal enhancement on<br />

conventional B-mode imag<strong>in</strong>g. In order to<br />

5


6<br />

achieve cl<strong>in</strong>ically useful and Doppler <strong>in</strong>dependent<br />

extra-cardiac enhancement, contrast-specific<br />

imag<strong>in</strong>g techniques are required.<br />

Several such techniques have been<br />

developed <strong>in</strong> recent years. They all exploit<br />

the so called non-l<strong>in</strong>ear acoustic properties<br />

of microbubbles.<br />

When exposed to ultrasound ultrasound<br />

waves, microbubbles occilate. This<br />

occurs even at very low amplitude (energy)<br />

of the <strong>in</strong>sonat<strong>in</strong>g pulse. The occilations of<br />

the bubbles have a strong tendency to be<br />

resonant. The resonance frequency of a<br />

typical contrast agent microbubble measur<strong>in</strong>g<br />

3m <strong>in</strong> diameter is close to 3 Mhz and<br />

this frequency happens to be well with<strong>in</strong><br />

the typical frequency range used <strong>in</strong> abdom<strong>in</strong>al<br />

and some other medical ultrasound.<br />

This “lucky co<strong>in</strong>cidence” of <strong>in</strong>sonat<strong>in</strong>g<br />

and resonance frequency<br />

provides for a strong harmonic response of<br />

the microbubbles.<br />

The resonant behaviour of microbubbles<br />

is crucially dependent on the amplitude<br />

or energy of the transmitted pulse<br />

(transducer out-put). The standardised<br />

measure of transmit energy, which is displayed<br />

<strong>by</strong> modern ultrasound systems, is<br />

the mechanical <strong>in</strong>dex (MI). It is def<strong>in</strong>ed as<br />

the peak rarefactional pressure of an ultrasound<br />

longitud<strong>in</strong>al wave propagat<strong>in</strong>g <strong>in</strong> a<br />

uniform medium, divided <strong>by</strong> the square<br />

root of the centre frequency of the transmitted<br />

pulse. The MI is not measured dur-<br />

Table 2: The most important ultrasound<br />

contrast agents (as of July 2003)<br />

Name Manufacturer Gas Shell State of Development<br />

Bisphere Po<strong>in</strong>t Biomedical Air Polymer Cl<strong>in</strong>ical development<br />

BY963 Byk-Gulden Air Lipid Cl<strong>in</strong>ical development<br />

completed, no license<br />

application <strong>in</strong>tended<br />

EchoGen Sonus Dodeca- Surfactatant Licensed <strong>in</strong> EU,<br />

fluoropentan not marketed<br />

Echovist* Scher<strong>in</strong>g Air No shell, Licensed for<br />

galactose matrix echocardiography and<br />

hysterosalp<strong>in</strong>gography <strong>in</strong> a<br />

few <strong>European</strong> countries<br />

Def<strong>in</strong>ity Dupont Merck/ Schwefel- Liposoms Licensed for<br />

ImaRx hexafluorid echocardiography <strong>in</strong><br />

North America<br />

Imagent Alliance Perfluorohexan/ Surfactatant Cl<strong>in</strong>ical development<br />

Air completed<br />

Levovist Scher<strong>in</strong>g Air Palmitic acid Licensed <strong>in</strong> 70 <strong>European</strong> and<br />

galactose matrix Asian countries, not <strong>in</strong> USA<br />

Optison MBI/Amersham Pefluoropropan Album<strong>in</strong> Licensed for echocardiography<br />

Medical <strong>in</strong> EU and North America<br />

Sonavist Scher<strong>in</strong>g Air Polymer Cl<strong>in</strong>ical development stopped<br />

Sonazoid Amersham Medical Perfluorocarbon Lipid Cl<strong>in</strong>ical development <strong>in</strong> Japan<br />

SonoVue Bracco/ALTANA Schwefel- Phospholipid Licensed <strong>in</strong> EU and several<br />

hexafluorid Asian countries, not <strong>in</strong> Japan<br />

and USA<br />

*No transpulmonary stability


Resonance pressure changes<br />

Low<br />

amplitude<br />

Diameter of the microbubbles<br />

L<strong>in</strong>ear<br />

oscillation<br />

Non-operative status<br />

<strong>in</strong>g an exam<strong>in</strong>ation but calculated based<br />

on a number of assumptions. S<strong>in</strong>ce these<br />

assumptions are not fully met <strong>by</strong> patients <strong>in</strong><br />

cl<strong>in</strong>ical practise (e.g. uniform sound absorbtion<br />

throughout the entire image), MI<br />

read<strong>in</strong>gs should be regarded as estimates.<br />

The true energy deposited <strong>in</strong> tissue will vary<br />

between different parts of the image and<br />

between patients as well as between transducers<br />

and manufacturers. Nevertheless,<br />

the MI value displayed on the scanner has<br />

proven to be a very useful albeit imprecise<br />

<strong>in</strong>dicator of the transmit energy used dur<strong>in</strong>g<br />

cl<strong>in</strong>ical contrast enhanced exam<strong>in</strong>ations.<br />

Careful control of transmit energy is<br />

paramount when us<strong>in</strong>g contrast agents<br />

and transducer out-put is the most important<br />

mach<strong>in</strong>e sett<strong>in</strong>g that the operator<br />

must control carefully. MI sett<strong>in</strong>gs <strong>in</strong> cl<strong>in</strong>ical<br />

contrast-enhanced sonography range<br />

between approx. 0.05 and 1.8 depend<strong>in</strong>g<br />

ma<strong>in</strong>ly on the agent used.<br />

At very low transmit energy (MI <<br />

0.05), the oscillations of the microbubbles<br />

are symmetrical or l<strong>in</strong>ear and the changes<br />

of bubble radius are <strong>in</strong>versely proportional<br />

to the pressure changes <strong>in</strong> tissue: dur<strong>in</strong>g<br />

the positive phase of the US pulse the bubble<br />

is compressed and dur<strong>in</strong>g the negative<br />

phase it is expanded, both to the same degree.<br />

As the amplitude of the <strong>in</strong>sonnat<strong>in</strong>g<br />

US pulse is <strong>in</strong>creased, the bubble becomes<br />

High<br />

amplitude<br />

Figure 2: L<strong>in</strong>ear<br />

und non-l<strong>in</strong>ear<br />

(harmonic)<br />

resonance of<br />

microbubbles.<br />

At low amplitude<br />

the oscillations<br />

of the<br />

bubble match the pressure changes <strong>in</strong>duced<br />

<strong>by</strong> the sound wave. The reflected echo has<br />

the same frequency as the <strong>in</strong>sonat<strong>in</strong>g pulse<br />

(l<strong>in</strong>ear behaviour). At higher amplitude, the<br />

bubble shows stronger resistance to compression<br />

than to expansion and the oscillations<br />

become asymmetrical. The reflected echo<br />

thus conta<strong>in</strong>s frequencies (harmonics) which<br />

are different from that of the <strong>in</strong>sonat<strong>in</strong>g pulse<br />

(non-l<strong>in</strong>ear behaviour).<br />

Non-l<strong>in</strong>ear<br />

oscillation<br />

relatively more resistant to compression<br />

than to expansion which leads to assymetrical<br />

or non-l<strong>in</strong>ear occilations (Fig. 2). These<br />

non-l<strong>in</strong>ear oscillations conta<strong>in</strong> not only the<br />

<strong>in</strong>sonnat<strong>in</strong>g “fundamental” frequency but<br />

several other “harmonic” frequencies”.<br />

These harmonic components become part<br />

of the signal returned from the bubble to<br />

the transducer (bubble response) and are<br />

exploited <strong>by</strong> contrast-specific imag<strong>in</strong>g<br />

modes. Harmonic signals occur at multiples<br />

(two, three and four times) of the <strong>in</strong>sonat<strong>in</strong>g<br />

frequency. The second harmonic (double<br />

the <strong>in</strong>sonat<strong>in</strong>g frequency) has the highest<br />

amplitude among the harmonics (Fig.<br />

3) and is therefore the most relevant for<br />

contrast-specific imag<strong>in</strong>g.<br />

7


8<br />

At even higher amplitudes destruction<br />

of microbubbles occurs. The threshold for<br />

destruction is variable and depends on a<br />

number of different factors such as the size,<br />

shell material and gas of the bubble as well<br />

as the attenuation <strong>by</strong> the overlay<strong>in</strong>g tissue.<br />

For Albunex (no longer commercially available),<br />

the threshold MI for bubble destruction<br />

<strong>in</strong> vitro is 0.3 3 . The process of microbubble<br />

destruction is complex. Recent<br />

video-microscopic studies with extremely<br />

high temporal resolution have given some<br />

<strong>in</strong>sight <strong>in</strong>to the physical phenomena <strong>in</strong>volved.<br />

The most important mechanism is<br />

Figure 3: Frequency spectrum of Levovist<br />

<strong>in</strong>sonated at 3,75 MHz at <strong>in</strong>termediate<br />

amplitude. The strongest signal reflected<br />

is the fundamental which has the same<br />

frequency as the <strong>in</strong>sonat<strong>in</strong>g pulse. Another<br />

strong peak occurs at the second harmonic,<br />

which has twice the <strong>in</strong>sonationg frequency.<br />

Courtesy of Prof. Peter Burns, University<br />

of Toronto; from: Handbook Handbook<br />

of Contrast Echocardiography, Becher H<br />

und Burns PN, Spr<strong>in</strong>ger, Berl<strong>in</strong> 2000<br />

bubble fragmentation which is preceded<br />

<strong>by</strong> massive expansion of the bubble <strong>by</strong> a<br />

factor of 10 of its orig<strong>in</strong>al radius. Dur<strong>in</strong>g the<br />

next compression, the bubble can no<br />

longer withstand the changes <strong>in</strong> pressure<br />

and size, which results <strong>in</strong> fragmentation <strong>in</strong>to<br />

several smaller bubbles (Fig. 4). This<br />

process only lasts a few milliseconds after<br />

the start of <strong>in</strong>sonation. Another reason for<br />

bubble disruption is deflation of the bubbles<br />

<strong>by</strong> ultrasound-<strong>in</strong>duced diffusion 4,5 .<br />

Similar to break<strong>in</strong>g glass, an <strong>in</strong>tense<br />

and strongly non-l<strong>in</strong>ear signal is produced<br />

<strong>by</strong> the process of bubble disruption. This<br />

signal is very different from a signal returned<br />

from an <strong>in</strong>tact bubble (“decorrelation”)<br />

and has been termed stimulated<br />

acoustic emission (SAE) or transient scatter<strong>in</strong>g.<br />

It produces very bright but highly<br />

transient echoes <strong>in</strong> the US image.<br />

Contrast-specific imag<strong>in</strong>g techniques<br />

such as Pulse Subtraction Imag<strong>in</strong>g (PSI) or<br />

Vascular recognition Imag<strong>in</strong>g (VRI) (both<br />

<strong>by</strong> Toshiba) exploit the non-l<strong>in</strong>ear bubble<br />

response for a highly sensitive and specific<br />

display of contrast agents. PSI is based on<br />

modulation of the phase of two subsequent<br />

pulses (for details see separate section on<br />

page x). It is a grey-scale technique with<br />

high spatial and temporal resolution.


Figure 4: Videomicroscopic study of<br />

a SonoVue bubble exposed to a high<br />

amplitude (0,6 MPa) US pulse over an<br />

observation period of 5ms. Initial resonance<br />

is followed <strong>by</strong> rapid fragmentationv of the<br />

bubble. The graph shows the non-l<strong>in</strong>ear<br />

changes of radius over time.<br />

Courtesy of: Dr. Nico de Jong, Thoraxcenter,<br />

Rotterdam.<br />

VRI is a s<strong>in</strong>gle pulse colour Doppler<br />

technique display<strong>in</strong>g the contrast agent <strong>in</strong>formation<br />

as a colour overlay superimposed<br />

on the conventional B-mode image.<br />

Its advantage is the comb<strong>in</strong>ation of tissue<br />

and contrast <strong>in</strong>formation which can be displayed<br />

separately or simultaneously. Furthermore,<br />

VRI is the first contrast-specific<br />

imag<strong>in</strong>g mode to discrem<strong>in</strong>ate mov<strong>in</strong>g<br />

from stationary bubbles and to display the<br />

flow direction of bubbles. Stationary bubbles<br />

are shown <strong>in</strong> green, while mov<strong>in</strong>g<br />

bubbles are either red or blue, depend<strong>in</strong>g<br />

on their flow direction (Fig. 5).<br />

High versus low<br />

MI imag<strong>in</strong>g<br />

From the above it is clear, that the<br />

transmit energy has crucial <strong>in</strong>fluence on the<br />

signal returned from the microbubble. Different<br />

contrast media require different<br />

transducer out-put sett<strong>in</strong>gs and scann<strong>in</strong>g<br />

techniques. The two ma<strong>in</strong> categories are<br />

high and low MI imag<strong>in</strong>g.<br />

High MI imag<strong>in</strong>g<br />

Air-based agents such as Levovist provide<br />

only weak harmonic signals at low MI.<br />

At high MI (> 0.5), however, they show<br />

strong SAE produc<strong>in</strong>g bright transient signal<br />

enhancement. High MI techniques are<br />

thus required for cl<strong>in</strong>ically useful enhancement<br />

with air-based agents. On Advanced<br />

Dynamic Flow (ADF, Toshiba), SAE is displayed<br />

as bright high resolution colour signals<br />

superimposed on a conventional Bmode<br />

image. Aga<strong>in</strong>, the tissue and contrast<br />

<strong>in</strong>formation can be displayed separately or<br />

simultaneously (Fig. 6).<br />

The ma<strong>in</strong> limitation of high MI imag<strong>in</strong>g<br />

is that the SAE signal occurr<strong>in</strong>g dur<strong>in</strong>g bubble<br />

destruction is highly transient, last<strong>in</strong>g<br />

only 3 or 4 frames when scann<strong>in</strong>g <strong>in</strong> the<br />

same position. After that, almost all bubbles<br />

have been destroyed prohibit<strong>in</strong>g further<br />

enhancement. One way to overcome<br />

this problem is <strong>in</strong>termittent imag<strong>in</strong>g at low<br />

frame rates (one image every few seconds)<br />

to allow refill<strong>in</strong>g of the image plane before<br />

9


10<br />

Pulse Subtraction Imag<strong>in</strong>g<br />

Pulse subtraction imag<strong>in</strong>g is based on the<br />

pr<strong>in</strong>ciple of phase modulation for detection<br />

of non l<strong>in</strong>ear echo signals. It is a broad band<br />

technique, that displays signals returned<br />

from micro bubbles at a high spacial resolution<br />

<strong>in</strong> the entire B-mode image. PSI uses<br />

two pulses which are 180° out of phase (two<br />

exact mirror images). The two pulses are<br />

transmitted immediately back and the reflected<br />

echoes from these these pulses are<br />

summed to form one image frame.<br />

If the transmitted pulses encounter an<br />

exclusively l<strong>in</strong>ear reflector (such as tissue at<br />

low MI) the responses to the two <strong>in</strong>verted<br />

pulses are aga<strong>in</strong> identical mirror images of<br />

each other. if two pulses are added, the signal<br />

is completely cancelled, so that l<strong>in</strong>ear reflectors<br />

are not shown <strong>in</strong> the image. If, on<br />

the other hand, non-l<strong>in</strong>ear reflectors such as<br />

microbubbles are encountered <strong>by</strong> the two<br />

pulses, each of these pulses is distorted due<br />

to the production of harmonics. The distortion<br />

also means that the two reflected pulses<br />

are no longer identical mirror images to<br />

each other. As a consequence, addition of<br />

these two pulses will no longer result <strong>in</strong> cancellation;<br />

the harmonic component of the<br />

two pulses is used for the image. S<strong>in</strong>ce microbubbles<br />

are strong harmonic reflectors,<br />

this technique is idealy suited selectively to<br />

display microbubbles and suppress<strong>in</strong>g tissue<br />

signal at low MI.<br />

At high MI the first of the two<br />

pulses will destroy the bubble and<br />

lead to an <strong>in</strong>tense broad band nonl<strong>in</strong>ear<br />

signal. The second pulse can no<br />

longer be reflected <strong>by</strong> the destroyed<br />

bubble and there is subsequently no<br />

response from the second pulse.<br />

Add<strong>in</strong>g the two pulses means that the<br />

strong reflections from the first pulse<br />

will be displayed without modification.<br />

In cl<strong>in</strong>ical practice this means<br />

that there is a strong but extremely<br />

short lived response from micro bubbles<br />

such as Levovist on high MI PSI.<br />

PSI is a B-mode technique with non-l<strong>in</strong>ear<br />

signals displayed <strong>in</strong> the entire imag<strong>in</strong>g<br />

<strong>in</strong>dependent of any region of <strong>in</strong>terest or<br />

colour box. The stronger the non-l<strong>in</strong>ear signal<br />

<strong>in</strong>tensity from the micro bubbles, the<br />

brighter is the signal <strong>in</strong> the image of the pixel<br />

represent<strong>in</strong>g that bubble <strong>in</strong> the image.<br />

At high MI, tissue also produces harmonics.<br />

For that reason, PSI is also used for tissue<br />

harmonic imag<strong>in</strong>g.<br />

Pr<strong>in</strong>ciple of PSI. Two pulses that are 180°<br />

out of phase are sent immediately back-toback,<br />

and the returned signals are summed<br />

to build a US frame. In case of exclusively<br />

l<strong>in</strong>ear scatter<strong>in</strong>g without distortion, this<br />

summation produces a signal void.<br />

Nonl<strong>in</strong>ear response from microbubbles,<br />

<strong>in</strong>clud<strong>in</strong>g harmonic resonance and stimulated<br />

acoustic emission (//SAE), distorts the<br />

returned signals; thus, the summation of<br />

two pulses no longer results <strong>in</strong> a signal void.<br />

The resultant signal is particularly strong <strong>in</strong><br />

the presence of bubble destruction, as the<br />

destroyed bubble can no longer produce a response<br />

to the second pulse so that the strong<br />

signal from the first pulse is used without any<br />

subtraction from the second pulse.


Figure 5: Kidney of a healthy subject on<br />

Vascular Recognition Imag<strong>in</strong>g (VRI) post<br />

SonoVue. Stationary microbubbles are<br />

displayed <strong>in</strong> green, flow<strong>in</strong>g bubbles are<br />

coded <strong>in</strong> red and blue, depend<strong>in</strong>g on flow<br />

direction relative to the transducer.<br />

the next destructive US frame. Alternatively,<br />

the so-called sweep technique can be<br />

used: The transducer is cont<strong>in</strong>uously<br />

moved through an organ so that a new<br />

area with undestroyed bubbles is scanned<br />

with each new frame. This allowes one to<br />

obta<strong>in</strong> one or two brightly enhanced<br />

sweeps of an entire organ and the c<strong>in</strong>e loop<br />

is used to review the sweeps. The images<br />

obta<strong>in</strong>ed us<strong>in</strong>g this approach are of high<br />

quality and <strong>in</strong> has been shown to be cl<strong>in</strong>ically<br />

usefull <strong>in</strong> experienced hands. However,<br />

the sweep technique requires tra<strong>in</strong><strong>in</strong>g<br />

and is somewhat cumbersome, as the real<br />

time nature of the exam<strong>in</strong>ation is lost and<br />

further sweeps can often not be performed<br />

unless a second <strong>in</strong>jection is adm<strong>in</strong>istered.<br />

Low MI imag<strong>in</strong>g<br />

The more recent perfluor agents such<br />

as SonoVue have a much stronger harmonic<br />

response even at low MI. The optimal<br />

MI for imag<strong>in</strong>g with SonoVue is between<br />

approx. 0.07 and 0.2 . Imag<strong>in</strong>g at<br />

such low amplitude provides for good signal<br />

enhancement with little bubble destruction.<br />

Contrast-enhanced real time imag<strong>in</strong>g<br />

is thus possible. It can be used e.g.for<br />

dynamic assessment of perfusion of tumours<br />

or for complete real time assessment<br />

of organs such as the liver <strong>by</strong> multiple slow<br />

sweeps performed over several m<strong>in</strong>utes.<br />

Low MI imag<strong>in</strong>g is very similar to conventional<br />

US and much more user friendly than<br />

the high MI technique. Low MI imag<strong>in</strong>g<br />

has thus replaced the high MI approach <strong>in</strong><br />

most centres. PSI and VRI are well suited for<br />

low MI imag<strong>in</strong>g with SonoVue.<br />

11


12<br />

Figure 6: Normal liver<br />

scanned at high MI us<strong>in</strong>g<br />

Advanced Dynamic flow<br />

<strong>in</strong> the liver-specific late<br />

phase 4:50 m<strong>in</strong> post<br />

Levovist. ADF can be<br />

displayed (a) as conventional<br />

B-mode only,<br />

(b) as a comb<strong>in</strong>ation<br />

of B-mode and colourised<br />

contrast <strong>in</strong>formation<br />

or (c) as a contrast only<br />

image.<br />

a<br />

b<br />

c


USCA can also be used as tracers for<br />

functional imag<strong>in</strong>g of organs or tumours.<br />

Such applications are currently at an experimental<br />

stage and is discussed below <strong>in</strong><br />

a separate section.<br />

Cl<strong>in</strong>ical applications<br />

Doppler enhancement, which was the<br />

orig<strong>in</strong>al <strong>in</strong>dication for USCA, has become<br />

almost obsolete <strong>in</strong> most areas due to improvements<br />

<strong>in</strong> equipment performance. It<br />

still has a role, however, <strong>in</strong> transcranial<br />

Doppler studies 18-20 and <strong>in</strong> some rare abdom<strong>in</strong>al<br />

applications such as evaluation of<br />

TIPS shunts 21-24 , Budd-Chiari-Syndrome or<br />

renal ve<strong>in</strong> thrombosis.<br />

a<br />

b<br />

Figure 7: (a) Basel<strong>in</strong>e<br />

US shows ascites and<br />

a slightly heterogenous<br />

liver but no focal<br />

lesions. (b) On VRI <strong>in</strong><br />

the delayed phase post<br />

SonoVue (2.59 m<strong>in</strong> p.i.)<br />

several non-enhanc<strong>in</strong>g<br />

small metastases<br />

(arrows) are shown.<br />

Current cl<strong>in</strong>ical use of USCA is ma<strong>in</strong>ly<br />

based on the dynamic assessment of contrast<br />

enhancement of vessels, organs and<br />

pathologies such as tumours or absesses<br />

and parallels the use of contrast agents <strong>in</strong><br />

CT or MRI. The most established cl<strong>in</strong>ical<br />

application of USCA is the liver, followed<br />

<strong>by</strong> kidney (especially test<strong>in</strong>g for reflux <strong>in</strong><br />

children) and spleen. In these areas, the<br />

cl<strong>in</strong>ical value of USCA has been proven<br />

and they are <strong>in</strong>creas<strong>in</strong>gly used <strong>in</strong> rout<strong>in</strong>e<br />

practise. Other potential areas for use are<br />

e.g. pancreas, small bowel, prostate,<br />

breast and eye, but these should be regarded<br />

as ma<strong>in</strong>ly experimental at the current<br />

stage.<br />

13


14<br />

Figure 8: Dynamic CEUS<br />

of a haemangioma<br />

(arrows) us<strong>in</strong>g VRI<br />

and SonoVue.<br />

(a) Peripheral nodular<br />

enhancement <strong>in</strong> the arterial<br />

phase.<br />

(b) Partial centripetal<br />

fill<strong>in</strong>g of the lesion <strong>in</strong> the<br />

portal venous phase.<br />

(c) Subtotal fill<strong>in</strong>g of the<br />

lesion <strong>in</strong> the delayed<br />

phase (2:30 m<strong>in</strong> p.i.).<br />

a<br />

b<br />

c


Liver<br />

Levovist and SonoVue (albeit to a lesser<br />

extent) have a property which makes<br />

them particularly suitable for liver imag<strong>in</strong>g:<br />

Several m<strong>in</strong>utes after adm<strong>in</strong>istration the<br />

micobubbles accumulate <strong>in</strong> normal liver<br />

parenchyma, while other tissue such as<br />

metastases and most HCC are spared from<br />

this delayed enhancement effect. The<br />

cause of the delayed enhancement effect<br />

rema<strong>in</strong>s unknown. There is circumstantial<br />

evidence that the liver- specific late phase<br />

of Levovist is mediated <strong>by</strong> <strong>in</strong>teraction with<br />

the Kuppfer-cells of the RES. In case of<br />

SonoVue, pool<strong>in</strong>g <strong>in</strong> the liver s<strong>in</strong>usoids is<br />

the more likely explanation, therefore the<br />

term s<strong>in</strong>usoidal phase is also used.<br />

Delayed phase imag<strong>in</strong>g is important<br />

for detection (and characterization, as discussed<br />

below) of malignant liver lesions. By<br />

analogy with MRI us<strong>in</strong>g liver specific contrast<br />

agents, detection of metastases is substantially<br />

improved s<strong>in</strong>ce metastases show<br />

little or no contrast up-take and are therefore<br />

easily discrim<strong>in</strong>ated from the enhanc<strong>in</strong>g<br />

normal liver tissue 28-34 . The same effect<br />

can usually also be observed dur<strong>in</strong>g the<br />

portal venous phase <strong>in</strong> most patients, albeit<br />

to a lesser extent. The contrast between<br />

metastases and surround<strong>in</strong>g hepatic<br />

parenchyma is <strong>in</strong>creased dur<strong>in</strong>g the delayed<br />

phase of Levovist <strong>by</strong> approximately 11 dB <strong>in</strong><br />

comparison to basel<strong>in</strong>e imag<strong>in</strong>g 28 . In pr<strong>in</strong>ciple,<br />

HCC have similar properties on delayed<br />

phase imag<strong>in</strong>g as metastases, however<br />

some HCC (typically highly differentiated<br />

tumors) will show delayed enhancement<br />

similar to surround<strong>in</strong>g liver and this makes<br />

their detection more difficult.<br />

Delayed phase imag<strong>in</strong>g is particularly<br />

useful for detection of small malignant lesions<br />

or lesions which are isoreflective on<br />

basel<strong>in</strong>e imag<strong>in</strong>g and therefore often <strong>in</strong>visible.<br />

Lesions up to 5 mm <strong>in</strong> size are well<br />

demonstrated <strong>by</strong> CEUS and even lesions<br />

smaller than 5 mm are not <strong>in</strong>frequently<br />

found 28,29,32 . The sensitivity of CEUS <strong>in</strong> the<br />

detection of liver metastases is comparable<br />

to that of dual phase spiral-CT 33 . The de-<br />

tection of other malignant liver tumours<br />

such as HCC or cholangio carc<strong>in</strong>oma is also<br />

improved.<br />

UCA have also been shown to improve<br />

characterization of focal liver lesions substantially.<br />

When low MI real time imag<strong>in</strong>g<br />

with SonoVue is used, the dynamic contrast<br />

properties of a lesion can be assessed dur<strong>in</strong>g<br />

the arterial, portal venous and delayed<br />

phase. The dynamic images are <strong>in</strong>terpreted<br />

us<strong>in</strong>g essentially the same criteria that<br />

are used for dynamic CT or MRI. Haemangioma<br />

show typical peripheral nodular enhancement<br />

<strong>in</strong> the arterial phase followed<br />

<strong>by</strong> partial or complete centripetal fill<strong>in</strong>g <strong>in</strong><br />

the subsequent phases (Fig. 8). Focal nodular<br />

hyperplasia shows strong arterial hyperenhancement<br />

(often with a “spoke wheel”<br />

central feed<strong>in</strong>g artery) followed <strong>by</strong> isoechogenecity<br />

compared to normal liver <strong>in</strong><br />

the portal venous and delayed phases.<br />

Some FNH also show a non-enhanc<strong>in</strong>g<br />

central scare on delayed imag<strong>in</strong>g. Focal fatty<br />

change will show the same contrast enhancement<br />

as normal liver <strong>in</strong> all three phases.<br />

In summary, all common benign liver<br />

lesions show considerable contrast up-take<br />

dur<strong>in</strong>g the delayed phase, they are therefore<br />

easily differentiated from malignant lesions<br />

which do not enhance at this stage.<br />

Up to 90 % of all focal liver lesions can<br />

be characterized <strong>by</strong> contrast enhanced ultrasound<br />

(CEUS) with regards to their specific<br />

diagnosis 36,38 . Differentiation of benign<br />

and malignant lesions is possible than <strong>in</strong><br />

over 90 % of cases 38,40 . In our cl<strong>in</strong>ical experience<br />

CEUS is superior to CT <strong>in</strong> characterization<br />

of focal liver lesions and comparable<br />

to MRI. In patients with <strong>in</strong>conclusive CT (or<br />

MRI) exam<strong>in</strong>ations, CEUS can serve as a<br />

fast and non-<strong>in</strong>vasive a problem solver <strong>in</strong><br />

many <strong>in</strong>stances.<br />

Kidney<br />

Test<strong>in</strong>g for reflux <strong>in</strong> children after <strong>in</strong>travesical<br />

adm<strong>in</strong>istration of USCA – so called<br />

void<strong>in</strong>g urosonography – is a well established<br />

exam<strong>in</strong>ation <strong>in</strong> paediatric radiology.<br />

Void<strong>in</strong>g urosonography is highly sensitive<br />

15


16<br />

Figure 9: Dynamic CEUS<br />

of a FNH (arrows) us<strong>in</strong>g<br />

PSI and SonoVue.<br />

(a) Unenhanced power<br />

Doppler shows no <strong>in</strong>tralesional<br />

vessels. The FNH is<br />

slightly hyperechoic.<br />

(b) Homogenous<br />

enhancement of the lesion<br />

<strong>in</strong> the arterial phase,<br />

additionally a typical<br />

feed<strong>in</strong>g artery is identified<br />

(arrow head).<br />

(c) Early <strong>in</strong> the portal<br />

venous phase (45 s p.i.)<br />

the lesion becomes<br />

isoechoic and is hardly<br />

discernable from<br />

normal liver.<br />

a<br />

b<br />

c


a<br />

b<br />

c<br />

Figure 10: (a) Basel<strong>in</strong>e<br />

image of a large almost<br />

isoechoic HCC (arrows).<br />

(b) Strong arterial enhancement<br />

of the HCC<br />

17 s post SonoVue on PIS.<br />

The contrast between the<br />

tumour and surround<strong>in</strong>g<br />

liver is <strong>in</strong>creased.<br />

(c) In the portal venous<br />

phase (1:47 m<strong>in</strong> p.i.)<br />

the lesion shows as a well<br />

def<strong>in</strong>ed relative enhancement<br />

defect on PSI.<br />

17


18<br />

Fig. 11: Dynamic CEUS of<br />

“hypovascular” hepatic<br />

metastasis from breast<br />

carc<strong>in</strong>oma us<strong>in</strong>g PSI and<br />

SonoVue.<br />

(a) In the arterial phase<br />

the lesion displays strong<br />

peripheral rim enhancement<br />

(arrow).<br />

(b) Portal venous phase<br />

imag<strong>in</strong>g shows fad<strong>in</strong>g of<br />

the rim.<br />

(c) In the delayed phase,<br />

the lesion presents as a<br />

hypoechoic enhancement<br />

defect with sharp<br />

marg<strong>in</strong>s.<br />

a<br />

b<br />

c


and specific to reflux and at least equivalent<br />

to X-ray void<strong>in</strong>g cystourethrography <strong>in</strong> this<br />

application 41-43 .<br />

The disadvantage of void<strong>in</strong>g urosonography<br />

is <strong>in</strong>complete visualization of the<br />

male urethra, so that the <strong>in</strong>itial <strong>in</strong>vestigation<br />

of a reflux <strong>in</strong> boys still requires the use<br />

of X-ray void<strong>in</strong>g cystourethrography. All<br />

other <strong>in</strong>vestigations (<strong>in</strong>itial <strong>in</strong>vestigations <strong>in</strong><br />

girls and all follow up imag<strong>in</strong>g) should<br />

nowadays be performed us<strong>in</strong>g ultrasound<br />

as this avoids significant radiation exposure<br />

of these young children.<br />

Another application of USCA <strong>in</strong> the<br />

kidney is assessment of focal lesions. Tumours,<br />

<strong>in</strong>farcts and traumatic hemorrhage<br />

are better visualized follow<strong>in</strong>g contrast adm<strong>in</strong>istration.<br />

This is particularly relevant for<br />

a<br />

b<br />

Fig. 12: Renal cell<br />

carc<strong>in</strong>oma.<br />

(a) Basel<strong>in</strong>e US shows<br />

a 6 cm heterogenous<br />

hyperechoic tumor.<br />

(b) The tumour is seen<br />

as a hypovascular lesion<br />

50 s p.i. on VRI.<br />

Courtesy of: Dr. Cochl<strong>in</strong>,<br />

Radiology Department,<br />

University <strong>Hospital</strong><br />

Wales, UK<br />

<strong>in</strong>farcts and haematomas which are often<br />

occult on conventional sonography. Probably<br />

the most important cl<strong>in</strong>ical application<br />

with regards to focal renal lesions is the differentiation<br />

of pseudo tumors from true lesions.<br />

Pseudo tumors will show the same<br />

enhancement characteristics as normal<br />

parenchyma with normal vessels, while tumours<br />

show either more or less enhancement<br />

than the surround<strong>in</strong>g parenchyma<br />

and often an abnormal and irregular<br />

macro-vascular pattern. Conversely, the<br />

role of CEUS <strong>in</strong> the characterization of true<br />

renal tumours is currently very limited,<br />

s<strong>in</strong>ce various types of tumours such as renal<br />

cell carc<strong>in</strong>oma and angiomyolipoma<br />

show a considerable overlap of their contrast<br />

behaviour 47 .<br />

19


20<br />

Spleen<br />

The delayed phase of Levovist and<br />

SonoVue applies not only to the liver<br />

but also to the spleen: both agents<br />

pool <strong>in</strong> normal splenic parenchyma for<br />

many m<strong>in</strong>utes. This can be exploited<br />

for detection of tumors such as focal<br />

lymphoma (Fig.14), <strong>in</strong>farcts and<br />

haematomas 48-50 . In children with blunt<br />

abdom<strong>in</strong>al trauma, <strong>in</strong>juries of the<br />

spleen (and other organs) are readily<br />

visualised on CEUS, which is a good alternative<br />

to CT. Characterisation of<br />

splenic tumors with CEUS is much<br />

more difficult and probably not possible<br />

at this stage.<br />

Summary<br />

Recent contrast-specific imag<strong>in</strong>g<br />

techniques are highly sensitive<br />

to USCA and provide<br />

contrast-enhanced<br />

images at excellent<br />

quality. The cl<strong>in</strong>ical use<br />

of USCA is similar that<br />

of contrast agents for<br />

CT and MRI as. They<br />

give crucial additional<br />

<strong>in</strong>formation for the diagnosis<br />

of abdom<strong>in</strong>al<br />

organs, especially for<br />

detection and<br />

characterisation<br />

of focal liver lesions.<br />

CEUS often<br />

provides a def<strong>in</strong>itive<br />

diagnosis<br />

and obviates the<br />

need for further imag<strong>in</strong>g<br />

<strong>in</strong> many patients.<br />

Functional<br />

haemodynamic<br />

studies<br />

with USCA<br />

USCA can be used as tracers for dynamic<br />

studies of arterio-venous transit<br />

time of organs such as the liver, kidney<br />

or bra<strong>in</strong>. This is based on time-<strong>in</strong>tensity<br />

curves measured <strong>in</strong> artery and ve<strong>in</strong>.<br />

There are three advantages of CEUS <strong>in</strong><br />

this application:<br />

1. The contrast volume is small (<strong>in</strong> the order<br />

of 1 ml) which makes an <strong>in</strong>jected bolus<br />

very compact (short and dense).<br />

2. At frame rates of 10 – 20/s, CEUS has<br />

very high temporal resolution.<br />

3. There is a l<strong>in</strong>ear relationship between<br />

contrast agent concentration and signal<br />

<strong>in</strong>tensity, which is a prerequisite<br />

for mean<strong>in</strong>gful quantification.<br />

The Aplio system (Toshiba)<br />

has a software package that generates<br />

time-<strong>in</strong>tensity curves. The<br />

relevant organ is scanned <strong>in</strong> a<br />

s<strong>in</strong>gle imag<strong>in</strong>g plane dur<strong>in</strong>g and<br />

after contrast <strong>in</strong>jection. The scan<br />

is recorded as a digital loop for<br />

analysis. Several regions of <strong>in</strong>terest<br />

(ROI) can be placed <strong>in</strong> vessels<br />

and/or parenchyma. For each<br />

ROI, the signal changes are calculated<br />

over time and displayed<br />

as a curve (Figure). From these<br />

curves, <strong>in</strong>dices such as arrival<br />

time, paek enhancement or<br />

transit time can be extracted.<br />

There are some promis<strong>in</strong>g<br />

applications for this technique,<br />

which are however still at an experimental<br />

stage. It has been<br />

shown that patients with cirrhosis<br />

have a much shorter transit time


than patients with normal livers or chronic<br />

hepatitis (9-11) . This is due to arterialisation<br />

that occurs <strong>in</strong> cirrhotic livers. Arterialsation<br />

and shorten<strong>in</strong>g of transit time is also observed<br />

<strong>in</strong> livers with early metastases (13,14) .<br />

Exploit<strong>in</strong>g this phenomonen, hepatic transit<br />

time analysis may become useful for early<br />

detection of metastases <strong>in</strong> the future.<br />

Anther approach for haemodynamic<br />

studies of organs or tumours are the destruction<br />

reperfusion or negative bolus technique.<br />

For this technique a steady state of<br />

microbuuble concentration is required and<br />

this is achieved <strong>by</strong> cont<strong>in</strong>uous <strong>in</strong>fusion of<br />

USCA. Dur<strong>in</strong>g the steady state, microbubbles<br />

<strong>in</strong> the imag<strong>in</strong>g plane are destroyed <strong>by</strong><br />

short <strong>in</strong>sonation at high MI. Subsequent<br />

scann<strong>in</strong>g (either <strong>in</strong>termittend at high MI or<br />

cont<strong>in</strong>uous t low MI) is performed to assess<br />

the time required for the signal to recover<br />

from the destruction, as this time is directly<br />

related to perfusion. Aga<strong>in</strong> time-<strong>in</strong>tensity<br />

curves are used; perfusion is calculated<br />

based on the slope of the curve and fractional<br />

vascular volume depends on the high<br />

of the plateau. The most important cl<strong>in</strong>ical<br />

application of the destruction reperfusion<br />

technique is assessment of myocardial perfusion,<br />

which is start<strong>in</strong>g to f<strong>in</strong>d its way <strong>in</strong>to<br />

cl<strong>in</strong>ical practise. Other applications such as<br />

assessment of renal perfusion <strong>in</strong> various<br />

conditions or of tumour perfusion e.g. dur<strong>in</strong>g<br />

anti-angiogenic therapy are still experimental.<br />

Time <strong>in</strong>tensity curves generated <strong>in</strong> the<br />

porta hepatis with ROIs <strong>in</strong> the hepatic<br />

artery, portal ve<strong>in</strong> and hepastic ve<strong>in</strong>.<br />

The frame shown corresponds to the<br />

white vertical l<strong>in</strong>e <strong>in</strong> the graph: at this<br />

time po<strong>in</strong>t the contrast has arrived <strong>in</strong> the<br />

artery (ROI and curve A) but not yet <strong>in</strong><br />

the ve<strong>in</strong>s (ROIs and curves B and C).<br />

21


22<br />

a<br />

Fig. 13: Splenic haematoma.<br />

(a) Basel<strong>in</strong>e shows a poorly<br />

def<strong>in</strong>ed, slightly hyperechoic<br />

band-like area (arrow) <strong>in</strong> the<br />

spleen and some perisplenic<br />

fluid (arrow). Courtesy<br />

of Dr. Cochl<strong>in</strong>, Radiology Dept.<br />

University <strong>Hospital</strong> Wales, UK.<br />

(b) Post SonoVue an extensive<br />

haematoma is shown as an<br />

irregular non-enhanc<strong>in</strong>g area on<br />

PSI. Courtesy of Dr. C. Klemm,<br />

St. Georg <strong>Hospital</strong>, Leipzig,<br />

Germany.<br />

Fig. 14: Large focal splenic<br />

lymphoma. (a) The lymphoma<br />

shows as a large hypoechoic area<br />

<strong>in</strong> the lower half of the spleen.<br />

(b) Post SonoVue, there is<br />

homogenous enhancement of<br />

the normal part of the spleen<br />

(show<strong>in</strong>g <strong>in</strong> green, VRI) while<br />

there is almost no up-take <strong>in</strong> the<br />

lymphoma. Courtesy of: Dr.<br />

Cochl<strong>in</strong>, Radiology Department,<br />

University <strong>Hospital</strong> Wales, UK<br />

b<br />

a<br />

b


Literature<br />

1. Gramiak, R.,Shah, P.M., Echocardiography<br />

of the aortic root. Invest Radiol,<br />

1968. 3: 356-366.<br />

2. Scher<strong>in</strong>g, Levovist Monograph. 1996,<br />

London: Churchill Communications Europe.<br />

12.<br />

3. Klibanov, A.L., Ferrara, K.W., Hughes,<br />

M.S., Wible, J.H., Jr., Wojdyla, J.K., Dayton,<br />

P.A., Morgan, K.E.,Brandenburger, G.H.,<br />

Direct video-microscopic observation of<br />

the dynamic effects of medical ultrasound<br />

on ultrasound contrast microspheres. Invest<br />

Radiol, 1998. 33: 863-870.<br />

4. de Jong, N., Fr<strong>in</strong>k<strong>in</strong>g, P.J., Bouakaz, A.,<br />

Goorden, M., Schourmans, T., J<strong>in</strong>gp<strong>in</strong>g,<br />

X.,Mastik, F., Optical imag<strong>in</strong>g of contrast<br />

agent microbubbles <strong>in</strong> an ultrasound<br />

field with a 100-MHz camera. Ultrasound<br />

Med Biol, 2000. 26: 487-492.<br />

5. Chomas, J.E., Dayton, P., Allen, J., Morgan,<br />

K.,Ferrara, K.W., Mechanisms of<br />

contrast agent destruction. IEEE Trans<br />

Ultrason Ferroelectr Freq Control, 2001.<br />

48: 232-248.<br />

6. Uhlendorf, V.,Hoffmann, C., Non l<strong>in</strong>ear<br />

acoustic response of coated microbubbles<br />

<strong>in</strong> diagnostic ultrasound. Proc IEEE:<br />

Ultrason. Symp., 19941559-1562.<br />

7. Bauer, A., Schlief, R., Zomack, M., Urbank,<br />

A.,Niendorf, H.-P., Acoustically<br />

stimulated microbubbles <strong>in</strong> diagnostic<br />

ultrasound: properties and implications<br />

for diagnostic use. 2nd ed. 1997, Lancaster:<br />

Kluwer Academic Publishers.<br />

669-684.<br />

8. Fritsch, T., Heldmann, D.,Re<strong>in</strong>hardt, M.,<br />

The potential of a novel contrast medium,<br />

<strong>in</strong> Ultrasound Contrast <strong>Agents</strong>, B. Goldberg,<br />

Editor. 1997, Mart<strong>in</strong> Dunitz: London.<br />

p. 169-176.<br />

9. Albrecht, T., Blomley, M.J., Cosgrove,<br />

D.O., et al., Non-<strong>in</strong>vasive diagnosis of<br />

hepatic cirrhosis <strong>by</strong> transit-time analysis<br />

of an ultrasound contrast agent. Lancet,<br />

1999. 353: 1579-1583.<br />

10. Bang, N., Nielsen, M.B., Rasmussen,<br />

A.N., Osterhammel, P.A.,Pedersen, J.F.,<br />

Hepatic ve<strong>in</strong> transit time of an ultrasound<br />

contrast agent: simplified procedure<br />

us<strong>in</strong>g pulse <strong>in</strong>version imag<strong>in</strong>g. Br J<br />

Radiol, 2001. 74: 752-755.<br />

11. Sugimoto, H., Kaneko, T., Hirota, M.,<br />

Tezel, E.,Nakao, A., Earlier hepatic ve<strong>in</strong><br />

transit-time measured <strong>by</strong> contrast ultrasonography<br />

reflects <strong>in</strong>trahepatic hemo-<br />

dynamic changes accompany<strong>in</strong>g cirrhosis.<br />

J Hepatol, 2002. 37: 578-583.<br />

12. Blomley, M.J., Albrecht, T., Cosgrove,<br />

D.O., et al., Liver vascular transit time<br />

analyzed with dynamic hepatic venography<br />

with bolus <strong>in</strong>jections of an US contrast<br />

agent: early experience <strong>in</strong> seven patients<br />

with metastases. Radiology, 1998.<br />

209: 862-866.<br />

13. Leen, E., Goldberg, J.A., Angerson,<br />

W.J.,McArdle, C.S., Potential role of<br />

doppler perfusion <strong>in</strong>dex <strong>in</strong> selection of<br />

patients with colorectal cancer for adjuvant<br />

chemotherapy. Lancet, 2000. 355:<br />

34-37.<br />

14. Harvey, C.J., Blomley, M., Lynch, M., Eckersley,<br />

R., Pilcher, J.M.,Cosgrove, D.O.,<br />

Liver vascular transit time measured us<strong>in</strong>g<br />

the carotid delay time with bolus <strong>in</strong>jections<br />

of the microbubble Levovist can<br />

predict the presence of occult liver metastases<br />

<strong>in</strong> colorectal cancer. Radiology,<br />

2001. 221(P): 269.<br />

15. Foster, F.S., Burns, P.N., Simpson, D.H.,<br />

Wilson, S.R., Christopher, D.A.,Goertz,<br />

D.E., Ultrasound for the visualization<br />

and quantification of tumor microcirculation.<br />

Cancer Metastasis Rev, 2000. 19:<br />

131-138.<br />

16. Lafitte, S., Higashiyama, A., Masugata,<br />

H., Peters, B., Strachan, M., Kwan,<br />

O.L.,DeMaria, A.N., Contrast echocardiography<br />

can assess risk area and <strong>in</strong>farct<br />

size dur<strong>in</strong>g coronary occlusion and reperfusion:<br />

experimental validation. J Am Coll<br />

Cardiol, 2002. 39: 1546-1554.<br />

17. Porter, T.R.,Xie, F., Cl<strong>in</strong>ical experience <strong>in</strong><br />

the detection of coronary artery disease<br />

with myocardial contrast echocardiography.<br />

Echocardiography, 2002. 19:<br />

399-407.<br />

18. R<strong>in</strong>gelste<strong>in</strong>, E.B., Echo-enhanced ultrasound<br />

for diagnosis and management <strong>in</strong><br />

stroke patients. Eur J Ultrasound, 1998. 7<br />

Suppl 3: S3-15.<br />

19. Iglseder, B., Patt, C.M., Raffer, E., Hess-<br />

Eberle, I., Huemer, M., Staffen,<br />

W.,Ladurner, G., Verbesserung der<br />

Darstellbarkeit <strong>in</strong>trakranieller Gefäße mit<br />

farbkodierter Duplexsonographie durch<br />

den Echosignalverstärker Levovist. Ultraschall<br />

Med, 2000. 21: 107-111.<br />

20. Gahn, G., Gerber, J., Hallmeyer, S., Hahn,<br />

G., Ackerman, R.H., Reichmann, H.,von<br />

Kummer, R., Contrast-enhanced transcranial<br />

color-coded duplexsonography <strong>in</strong> stroke<br />

patients with limited bone w<strong>in</strong>dows. AJNR<br />

Am J Neuroradiol, 2000. 21: 509-514.<br />

23


24<br />

21. Gebel, M., Caselitz, M., Bowen-Davies,<br />

P.E.,Weber, S., A multicenter, prospective,<br />

open label, randomized, controlled phase<br />

IIIb study of SH U 508 a (Levovist) for<br />

Doppler signal enhancement <strong>in</strong> the portal<br />

vascular system. Ultraschall Med,<br />

1998. 19: 148-156.<br />

22. Leutloff, U.C., Scharf, J., Richter, G.M.,<br />

Libicher, M., Wunsch, A., Schenk,<br />

J.P.,Kauffmann, G.W., Der E<strong>in</strong>satz des Ultraschallkontrastmittels<br />

Levovist <strong>in</strong> der<br />

Nachsorge von Lebertransplantationen.<br />

Radiologe, 1998. 38: 399-404.<br />

23. Gutberlet, M., Venz, S., Neuhaus, R., et<br />

al., Kontrastmittelgestützte Duplexsonographie:<br />

Darstellung der Arteria hepatica<br />

noch orthotopischer Lebertransplantation.<br />

Rofo Fortschr Geb Rontgenstr<br />

Neuen Bildgeb Verfahr, 1997. 166: 411-<br />

416.<br />

24. Uggowitzer, M.M., Kugler, C., Machan,<br />

L., Hausegger, K.A., Groell, R., Quehenberger,<br />

F., L<strong>in</strong>dbichler, F.,Schreyer, H.,<br />

Value of echo-enhanced Doppler sonography<br />

<strong>in</strong> evaluation of transjugular <strong>in</strong>trahepatic<br />

portosystemic shunts. AJR Am<br />

J Roentgenol, 1998. 170: 1041-1046.<br />

25. Albrecht, T., Blomley, M.J., Heckemann,<br />

R.A., et al., Stimulierte akustische Emission<br />

mit dem Ultraschallkontrastmittel<br />

Levovist: e<strong>in</strong> kl<strong>in</strong>isch nutzbarer Effekt mit<br />

leberspezifischen Eigenschaften. Rofo<br />

Fortschr Geb Rontgenstr Neuen Bildgeb<br />

Verfahr, 2000. 172: 61-67.<br />

26. Blomley, M.J., Albrecht, T., Cosgrove,<br />

D.O., et al., Stimulated acoustic emission<br />

to image a late liver and spleen-specific<br />

phase of Levovist <strong>in</strong> normal volunteers<br />

and patients with and without liver disease.<br />

Ultrasound Med Biol, 1999. 25:<br />

1341-1352.<br />

27. Iijima, M., S<strong>in</strong>usoidal endothelium and<br />

microbubble: Kupffer imag<strong>in</strong>g and bioeffect.<br />

Ultrasound <strong>in</strong> Medic<strong>in</strong>e and Biology,<br />

2003. 29: S222.<br />

28. Albrecht, T., Blomley, M.J., Burns, P.N., et<br />

al., Improved detection of hepatic metastases<br />

with pulse-<strong>in</strong>version US dur<strong>in</strong>g the<br />

liver-specific phase of SHU 508A: multicenter<br />

study. Radiology, 2003. 227:<br />

361-370.<br />

29. Albrecht, T., Hoffmann, C.W., Schmitz,<br />

S.A., Schettler, S., Overberg, A., Germer,<br />

C.T.,Wolf, K.J., Phase-<strong>in</strong>version sonography<br />

dur<strong>in</strong>g the liver-specific late phase of<br />

contrast enhancement: improved detection<br />

of liver metastases. AJR Am J<br />

Roentgenol, 2001. 176: 1191-1198.<br />

30. Dalla Palma, L., Bertolotto, M., Quaia,<br />

E.,Locatelli, M., Detection of liver metastases<br />

with pulse <strong>in</strong>version harmonic imag<strong>in</strong>g:<br />

prelim<strong>in</strong>ary results. Eur Radiol,<br />

1999. 9: S382-387.<br />

31. Harvey, C.J., Blomley, M.J., Eckersley, R.J.,<br />

Cosgrove, D.O., Patel, N., Heckemann,<br />

R.A.,Butler-Barnes, J., Hepatic malignancies:<br />

improved detection with pulse-<strong>in</strong>version<br />

US <strong>in</strong> late phase of enhancement<br />

with SH U 508A-early experience. Radiology,<br />

2000. 216: 903-908.<br />

32. Harvey, C.J., Blomley, M.J., Eckersley, R.J.,<br />

Heckemann, R.A., Butler-Barnes, J.,Cosgrove,<br />

D.O., Pulse-<strong>in</strong>version mode imag<strong>in</strong>g<br />

of liver specific microbubbles: improved<br />

detection of subcentimetre<br />

metastases. Lancet, 2000. 355: 807-<br />

808.<br />

33. Albrecht, T., Hoffmann, C.W., Schmitz,<br />

S.A., Schettler, S., Bolze, X.,Wolf, K.J.,<br />

Detection of liver metastases: comparison<br />

of contrast-enhanced phase <strong>in</strong>version<br />

ultrasound and dual phase spiral<br />

CT with <strong>in</strong>traoperative sonographic correlation.<br />

Radiology, 2000. 207(P): 459.<br />

34. Beissert, M., Jenett, M., Keberle, M.,<br />

Kessler, C., Kle<strong>in</strong>, D., Beer, M.,Hahn, D.,<br />

Vergleich von Contrast Harmonic Imag<strong>in</strong>g<br />

im B-Mode mit stimulierter akustischer<br />

Emission, konventionellem B-Mode<br />

US und Spiral-CT <strong>in</strong> der Detektion fokaler<br />

Leberläsionen. Rofo Fortschr Geb Rontgenstr<br />

Neuen Bildgeb Verfahr, 2000.<br />

172: 361-366.<br />

35. Khalili, K., Metser, U.,Wilson, S.R., Hilar<br />

biliary obstruction: prelim<strong>in</strong>ary results<br />

with Levovist-enhanced sonography. AJR<br />

Am J Roentgenol, 2003. 180: 687-693.<br />

36. Bryant, T.H., Blomley, M.J., Albrecht, T.,<br />

et al., Liver phase uptake of a liver specific<br />

microbubble improves characterization<br />

of liver lesions: a prospective multicenter<br />

study. Radiology, 2003. <strong>in</strong> press.<br />

37. Strobel, D., Raeker, S., Martus, P., Hahn,<br />

E.G.,Becker, D., Phase <strong>in</strong>version harmonic<br />

imag<strong>in</strong>g versus contrast-enhanced<br />

power Doppler sonography for the characterization<br />

of focal liver lesions. Int J Colorectal<br />

Dis, 2003. 18: 63-72.<br />

38. Hohmann, J., Skrok, J., Puls, R.,Albrecht,<br />

T., Charakterisierung fokaler Leberläsionen<br />

mit kontrast-mittelgestütztem „low<br />

MI real time" Ultraschall und SonoVue.<br />

Rofo Fortschr Geb Rontgenstr Neuen<br />

Bildgeb Verfahr, 2003. 175: 835-843.<br />

39. Albrecht, T., Overberg, A., Hoffmann,<br />

C.W., Eckersley, R.J., Schmitz, S.A.,Wolf,


K.J., Late phase enhancement patterns<br />

of various benign and malignant liver lesions:<br />

a quantitative study. Radiology,<br />

2000. 207(P): 304-305.<br />

40. von Herbay, A., Vogt, C.,Hauss<strong>in</strong>ger, D.,<br />

Late-phase pulse-<strong>in</strong>version sonography<br />

us<strong>in</strong>g the contrast agent levovist: differentiation<br />

between benign and malignant<br />

focal lesions of the liver. AJR Am J<br />

Roentgenol, 2002. 179: 1273-1279.<br />

41. Radmayr, C., Oswald, J., Klauser, A.,<br />

Bartsch, G.,Frauscher, F., Kontrastmittelverstärkte<br />

Refluxsonographie bei<br />

K<strong>in</strong>dern: E<strong>in</strong> Vergleich zur herkömmlichen<br />

radiologischen Untersuchungstechnik.<br />

Urologe A, 2002. 41: 548-551.<br />

42. Mentzel, H.J., Vogt, S., John, U.,Kaiser,<br />

W.A., Void<strong>in</strong>g urosonography with ultrasonography<br />

contrast medium <strong>in</strong> children.<br />

Pediatr Nephrol, 2002. 17: 272-276.<br />

43. Darge, K., Troeger, J., Duett<strong>in</strong>g, T.,<br />

Zieger, B., Rohrschneider, W., Moehr<strong>in</strong>g,<br />

K., Weber, C.,Toenshoff, B., Reflux <strong>in</strong><br />

young patients: comparison of void<strong>in</strong>g<br />

US of the bladder and retrovesical space<br />

with echo enhancement versus void<strong>in</strong>g<br />

cystourethrography for diagnosis. Radiology,<br />

1999. 210: 201-207.<br />

44. Darge, K., Ghods, S., Zieger, B.,<br />

Rohrschneider, W.,Troeger, J., Reduction<br />

<strong>in</strong> void<strong>in</strong>g cystourethrographies after the<br />

<strong>in</strong>troduction of contrast enhanced sonographic<br />

reflux diagnosis. Pediatr Radiol,<br />

2001. 31: 790-795.<br />

45. Kim, J.H., Eun, H.W., Lee, H.K., Park,<br />

S.J., Sh<strong>in</strong>, J.H., Hwang, J.H., Goo,<br />

D.E.,Choi, D.L., Renal perfusion abnormality.<br />

Coded harmonic angio US with<br />

contrast agent. Acta Radiol, 2003. 44:<br />

166-171.<br />

46. Ascenti, G., Zimbaro, G., Mazziotti, S.,<br />

Gaeta, M., Lamberto, S.,Scribano, E.,<br />

Contrast-enhanced power Doppler US <strong>in</strong><br />

the diagnosis of renal pseudotumors. Eur<br />

Radiol, 2001. 11: 2496-2499.<br />

47. Ascenti, G., Zimbaro, G., Mazziotti, S.,<br />

Gaeta, M., Sett<strong>in</strong>eri, N.,Scribano, E.,<br />

Usefulness of power Doppler and contrast-enhanced<br />

sonography <strong>in</strong> the differentiation<br />

of hyperechoic renal masses.<br />

Abdom Imag<strong>in</strong>g, 2001. 26: 654-660.<br />

48. Hoffmann, C.W., Albrecht, T., Schettler,<br />

S.,Overberg, A., Non-l<strong>in</strong>ear ultrasound<br />

of the spleen dur<strong>in</strong>g the late phase of<br />

Levovist: Improved detection of focal lesions.<br />

<strong>European</strong> Radiology, 2000.<br />

10(suppl1).<br />

49. Dietrich, C.F., Kontrastverstärkte 3D-<br />

Bildgebung unter Echtzeitbed<strong>in</strong>gungen,<br />

e<strong>in</strong>e neue Technik. Rofo Fortschr Geb<br />

Rontgenstr Neuen Bildgeb Verfahr,<br />

2002. 174: 160-163.<br />

50. Catalano, O., Lobianco, R., Sandomenico,<br />

F.,Siani, A., Splenic trauma: evaluation<br />

with contrast-specific sonography<br />

and a second-generation contrast medium:<br />

prelim<strong>in</strong>ary experience. J Ultrasound<br />

Med, 2003. 22: 467-477.<br />

25


Aplio<br />

The most important<br />

requirement for complex<br />

diagnosis and research is<br />

the ability to perform<br />

high-quality exam<strong>in</strong>ations.<br />

Aplio’s groundbreak<strong>in</strong>g<br />

system architecture produces<br />

excellent diagnostic<br />

performance and offers<br />

great potential for new<br />

and advanced applications.<br />

But Aplio has<br />

even more to offer like<br />

<strong>in</strong>novative workflow<br />

management, sophisticated<br />

quantification analysis<br />

tools or communication<br />

and data management<br />

facilities just to name but<br />

a few advantages.


visions<br />

No 6 . Volume 4 . 2004<br />

The little reference guide to<br />

<strong>„Contrast</strong> <strong>Agents</strong> <strong>in</strong> <strong>Sonography“</strong><br />

<strong>by</strong> T. Albrecht and J. Hohmann, Toshiba VISIONS 6/2004,<br />

is very <strong>in</strong>terest<strong>in</strong>g:<br />

� I would like to subscribe to Toshiba VISIONS<br />

� Please send a copy also to:<br />

free of charge<br />

Name:<br />

Name:<br />

Institute:<br />

Institute:<br />

Department:<br />

Department:<br />

Street:<br />

Street:<br />

ZIP-Code, City:<br />

ZIP-Code, City:<br />

Email:<br />

Email:<br />

Please return to: Toshiba Medical Systems Europe, Mr Jack Hoogendoorn<br />

Zilverstraat 1, NL-2718 RP Zoetermeer or via email: visions@tmse.nl


Toshiba VISIONS 6/2004

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!