16.12.2012 Views

H - Interlab - UFRJ

H - Interlab - UFRJ

H - Interlab - UFRJ

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Electrophilic Aromatic Substitution – S E 2<br />

G<br />

E 1<br />

+ E 2 +<br />

G<br />

E 2<br />

+ E 1 +


G<br />

Mechanisms of Reaction<br />

� Ingold-Hughes (original idea)<br />

� Advantage: aromaticity is mantained in the direct displacement<br />

E +<br />

� Melander<br />

E<br />

H<br />

B<br />

G<br />

E<br />

+ BH +<br />

� Secondary kinetic isotopic effect for nitration and bromination of<br />

aromatics<br />

Reaction k H /k D<br />

Benzene + HNO3 /H2SO4 0.89<br />

Toluene + NO +<br />

2 BF4 - 0.85


Energia<br />

Do<br />

Ponto<br />

Zero<br />

(EPZ)<br />

E<br />

Efeito Cinético Isotópico<br />

C-H<br />

C-D<br />

N 1<br />

EPZ = ∑ hν<br />

i<br />

2<br />

i<br />

ν =<br />

1<br />

2π<br />

k<br />

µ<br />

C . + . H<br />

C . + . D<br />

ΔG D<br />

ΔG H<br />

r C-H(D)


“Accepted” Mechanism for Nitration<br />

§� Ingold-Hughes (Polar) Mechanism<br />

ArHNO 2 +<br />

HNO 3 + HA H 2 NO 3 + + A - (1)<br />

H 2 NO 3 +<br />

k 1<br />

k -1<br />

NO 2 + + H2 O (2)<br />

ArH + NO 2 + ArHNO2 + (3)<br />

ArHNO 2 + + A -<br />

k R<br />

ArNO 2 + HA (4)<br />

HNO 3 + ArH ArNO 2 + H 2 O<br />

Wheland Intermediate<br />

Arenium ion (Olah)<br />

σ Complex (H. C. Brown)<br />

Reaction Intermediate<br />

Isolated or<br />

detected


Modified Mechanisms<br />

k1 ArH + NO +<br />

2 ArH.NO2 +<br />

π Complex<br />

• Interaction between<br />

reactants<br />

• π system is involved<br />

with the NO 2 + as a whole<br />

(Olah)<br />

Complex<br />

k 2<br />

Encounter Pair<br />

• No interaction between<br />

the reactants<br />

• Random collision of<br />

species leads<br />

to the σ complex<br />

• Reactants are trapped<br />

into the solvent cage<br />

G<br />

(Schofield)<br />

H<br />

NO 2<br />

Complex σ<br />

-“H + ”<br />

G<br />

NO 2<br />

SET<br />

• Charge Transfer complex<br />

• Formation of ArH + and NO 2<br />

• Depends on ionization<br />

potential of the aromatic<br />

(Kerner, Weiss,<br />

Perrin, Eberson,<br />

Kochi)


SET Mechanism<br />

§� Kenner (1945) and Weiss (1946)<br />

§� Single Electron Transfer from ArH to NO 2 +<br />

§� Perrin (1977)<br />

§� Nitronaphthalene from naphthalene under NO 2 and electrolysis<br />

§� Same product ratio for α and β (10:1) nitronaphthalene as that<br />

found in HNO3 /H3CCN kSET ArH + NO +<br />

2 ArH + + NO2<br />

SET<br />

(Single Electron Transfer)<br />

k colapse<br />

Oxidation potentials of aromatics more activated than<br />

toluene are lower than oxidation potentials of NO 2<br />

G<br />

H<br />

NO 2<br />

σ Complex<br />

-“H + ”<br />

G<br />

NO 2<br />

SET is exothermic<br />

Perrin, C. L.; J. Am. Chem. Soc. 1977, 99, 5516


SET Mechanism<br />

§� Kochi, 1981<br />

§� Nitration with NO 2 Y (Y= OH, OAc, NO 3 , Cl, Py, C(NO 2 ) 3 )<br />

§� NO 2 Y + aromatics à� Observation of absorption<br />

bands in the UV/Vis spectrum<br />

Typical for Charge Transfer complexes<br />

Intramolecular


Perrin and Kochi´s Mechanism<br />

ArH + NO 2 Y [ArH, NO 2 Y] (CT)<br />

[ArH, NO 2 Y] (CT)<br />

[ArH + , NO 2 Y - ] (ET)<br />

[ArH + , NO 2 Y - ] (ET) [ArH + , NO 2 ] Y -<br />

[ArH + , NO 2 ] Y -<br />

G<br />

H<br />

NO 2<br />

hν<br />

or Δ<br />

- Y -<br />

fast<br />

+ Y- fast<br />

G<br />

H<br />

NO 2<br />

G<br />

NO 2<br />

(σ)<br />

+ HY<br />

Rate controlling: Single Electron Transfer (SET)<br />

Spin density: Controls Regioselectivity<br />

Problems: small k predicted for an outer sphere complex (Marcus Theory)<br />

Explain low ipso substitution despite the high spin density on<br />

this position


Ion-Molecule Reactions in the Gas Phase<br />

§� Olah, Dunbar: ICR (Ion Cyclotron Resonance)<br />

ArH + NO +<br />

2 C6H6O + k1 . + NO<br />

§� Cacace and col., ICR<br />

ArH + NO 2 + .HOCH3<br />

or<br />

NO 2 + .O=CH2<br />

Unknown<br />

Intermediate<br />

G<br />

H<br />

k H /k D = 1.0<br />

NO 2<br />

σ Complex<br />

Gas phase results disfavor the mechanism of Schofield, since there is<br />

complex formation and there is no solvent involved<br />

Controversy: Nature of the intermediate<br />

observed before the σ complex<br />

B:<br />

G<br />

NO 2<br />

+ HB +<br />

Single electron transfer<br />

π Complex<br />

?


Mechanistics Aspects<br />

Initial approach: ab initio/DFT calculations


Initial Approach: π Complexes?<br />

H<br />

H H<br />

H H<br />

1.415<br />

H<br />

H<br />

θ (ONO) = 180 o<br />

1.129<br />

O N O<br />

3.486 3.486<br />

1.406<br />

H H<br />

C 2v<br />

1 (2)<br />

1.376<br />

O<br />

1.185<br />

H<br />

H<br />

C s<br />

4 (0)<br />

N<br />

1.997<br />

1.406<br />

136.7 o<br />

1.187<br />

1.085<br />

1.447<br />

H<br />

O<br />

H<br />

H<br />

H<br />

1.409<br />

H<br />

H<br />

H<br />

θ (ONO) = 145.0 o<br />

1.390<br />

θ (ONO) = 180 o<br />

C s *<br />

5 (1)<br />

O<br />

N<br />

O 1.155<br />

3.074 3.074<br />

H<br />

1.403<br />

C 2v *<br />

2 (2)<br />

2.434<br />

H<br />

O<br />

1.189<br />

NO<br />

H<br />

1.419<br />

H<br />

H<br />

1.387<br />

H<br />

H<br />

1.403<br />

O<br />

H<br />

H<br />

1.173<br />

142.2 o<br />

N<br />

1.428<br />

1.429<br />

2.607<br />

C s<br />

6 (2)<br />

O<br />

H<br />

H<br />

H<br />

1.405<br />

H<br />

H<br />

1.426<br />

H<br />

H<br />

H<br />

180.0 o<br />

2.826<br />

H<br />

1.387<br />

O<br />

N<br />

O<br />

1.404<br />

1.151<br />

1.144<br />

2.826<br />

C 6v<br />

3 (0)<br />

O<br />

C s<br />

7 (1)<br />

H<br />

H<br />

θ(ONO) = 141.1 o<br />

1.175<br />

N<br />

2.331 2.331<br />

H<br />

H 1.404<br />

H<br />

1.086<br />

1.178<br />

1.442<br />

H<br />

O


B3LYP/6-311++G**//B3LYP/6-31++G** calculations<br />

H<br />

PhOH<br />

+ NO +<br />

4.3<br />

-29.7<br />

H<br />

H<br />

O<br />

H<br />

H<br />

30.4<br />

N<br />

PhOH +.<br />

+ NO .<br />

17.3<br />

H<br />

H<br />

O<br />

O<br />

N<br />

H<br />

H<br />

16.5<br />

H<br />

20<br />

O<br />

17<br />

H<br />

22<br />

≈<br />

H<br />

NO 2 + +<br />

33.5<br />

NO 2 +<br />

-47.0<br />

≈ ≈<br />

18.9<br />

H<br />

21.8<br />

11.7<br />

-7.7<br />

15<br />

H H<br />

H H<br />

14.6<br />

33<br />

H<br />

8.2<br />

H<br />

-6.0<br />

O<br />

O<br />

N<br />

N<br />

H<br />

32<br />

H<br />

0.5<br />

O<br />

H<br />

H<br />

H<br />

O<br />

N O<br />

H H<br />

14<br />

O<br />

H<br />

O H<br />

18<br />

H H<br />

H<br />

16<br />

36<br />

2.2<br />

13<br />

N<br />

H H<br />

H H<br />

[PhOH.NO] +<br />

H H<br />

21<br />

H<br />

H<br />

H<br />

H<br />

N<br />

H<br />

O<br />

O<br />

H<br />

H<br />

H<br />

H<br />

2.6<br />

O<br />

2.2<br />

6.6<br />

H<br />

H<br />

O<br />

O<br />

31<br />

34<br />

N<br />

12.0<br />

H<br />

H<br />

H<br />

3<br />

14.3<br />

O<br />

N<br />

O<br />

H<br />

H<br />

π−complex<br />

H<br />

H<br />

< 7 (estimated)<br />

H<br />

H<br />

0.7<br />

4<br />

O<br />

H<br />

H<br />

N<br />

H<br />

10<br />

O<br />

0.9<br />

H<br />

H<br />

H H<br />

H<br />

H<br />

O N O<br />

7<br />

8 1.1 8<br />

σ−complex<br />

O<br />

N<br />

O<br />

H<br />

28<br />

10.8<br />

4.4<br />

H<br />

12.7<br />

O<br />

H H<br />

23<br />

N<br />

H<br />

H<br />

10.2<br />

O<br />

35<br />

29<br />

H<br />

H<br />

37<br />

H<br />

O<br />

N<br />

H<br />

24<br />

30<br />

H<br />

11.6<br />

O<br />

H<br />

H<br />

H H<br />

H<br />

H H<br />

25<br />

N<br />

O<br />

O<br />

20.2<br />

-32.8<br />

H<br />

H<br />

H<br />

O<br />

N<br />

H<br />

26<br />

O<br />

5.1<br />

H<br />

H<br />

H<br />

O<br />

≈<br />

35.8<br />

+ NO<br />

H<br />

H<br />

O<br />

H<br />

27<br />

N<br />

H<br />

O<br />

H<br />

H<br />

C


Key intermediates<br />

H<br />

H<br />

H<br />

O<br />

N<br />

O<br />

NO 2 + |ArH<br />

π-complex /<br />

Charge Transfer<br />

Complex<br />

H<br />

H<br />

H<br />

H<br />

H<br />

H<br />

NO 2 . |ArH +.<br />

Cation radical molecule<br />

Intimated pair<br />

O<br />

H<br />

H<br />

N<br />

H<br />

O<br />

H<br />

H<br />

H<br />

H H<br />

Unoriented complex à� Electrostatic nature (π)<br />

Oriented complex à� SET intimate pair<br />

ArHNO 2<br />

H<br />

σ-complex<br />

Avoided crossing between different electronic states<br />

N<br />

O<br />

O


Ion-Molecule Reaction in the Gas Phase: Pentaquadrupole MS<br />

Colaboration with Prof. Marcos N. Eberlin (State University of Campinas – Brazil)<br />

Extrel Pentaquadrupole QqQqQ Mass Spectrometer (MS 3 )<br />

Eberlin, M. N. Mass Spectrom. Reviews 1997, 16, 113


Extrel Pentaquadrupole QqQqQ Mass Spectrometer (MS 3 )<br />

M 1<br />

M 2<br />

Fonte Q1 q2 Q3 q4 Q5 Det.<br />

Eberlin, M. N. Mass Spectrom. Reviews 1997, 16, 113


Reaction of Benzene with NO 2 +<br />

NO 2 +<br />

SET is<br />

dominant


Ion-Molecule Reaction: Solvent Effects<br />

NO 2 + .CH3NO 2<br />

(CI)


NO 2 + .CH3NO 2<br />

(CI)<br />

m/z 107<br />

H<br />

O<br />

N O<br />

H<br />

m/z 185<br />

124<br />

m/z 78<br />

NO 2<br />

ou<br />

NO 2.CH 3NO 2<br />

SET<br />

H<br />

N O<br />

O-<br />

N O<br />

O<br />

+ CH 3NO 2*<br />

OH<br />

m/z 124 m/z 124 m/z 124 m/z 94<br />

+ NO


Contagem<br />

MS/MS of m/z 124<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

50 65 66<br />

77<br />

78<br />

- CO<br />

20 40 60 80 100 120 140<br />

m/z<br />

OH H O<br />

94<br />

ou<br />

N O<br />

H<br />

O<br />

e/ou<br />

124<br />

H<br />

e/ou<br />

N<br />

O<br />

O<br />

H N<br />

O<br />

O


Does SET thermodynamically feasible?<br />

Ionization Energy (Potential) for ionization in the Gas<br />

Phase<br />

. NO2 à� NO 2 + + e IE1<br />

ArH à� ArH + + e IE 2<br />

NO 2 + + e à� NO2 -IE 1<br />

+ ArH à� ArH + + e IE 2<br />

NO 2 + + ArH à� NO2 + ArH +<br />

ΔH reaction ≈ IE 2 – IE 1 = ΔIE


Substrate Ionization Energy<br />

(IE)<br />

(eV) a<br />

ΔIE for<br />

Reaction with<br />

NO 2 + (eV)<br />

ΔIE for<br />

Reaction with<br />

NO 2 + (kcal/<br />

mol)<br />

NO 2 → NO 2 + + e 9.586 ± 0.002 0.000 0.00<br />

Benzene → C 6 H 6 + + e 9.24378 ± 0.00007 -0.342 -7.89<br />

Toluene → C 7 H 8 + + e 8.828 ± 0.001 -0.758 -17.48<br />

mesitylene → C 9 H 12 + + e 8.40 ± 0.01 -1.186 -27.35<br />

PhNH 2 → PhNH 2 + + e 7.720 ± 0.002 -1.866 -43.03<br />

PhOMe → PhOMe + + e 8.20 ± 0.05 -1.386 -31.96<br />

naphthalene → C 10 H 8 + + e 8.1442 ± 0.0009<br />

8.141 ± 0.01<br />

-1.442 -33.25<br />

Nitrobenzene → C 6 H 5 NO 2 + + e 9.94 ± 0.08 +0.354 +8.16<br />

1,3-dinitrobenzene → C 6 H 4 N 2 O 4 + + e 10.4 +0.814 +18.77<br />

C 6 H 5 CN → C 6 H 5 CN + + e 9.73 ± 0.01 +0.144 +3.32<br />

C 6 H 5 CF 3 → C 6 H 5 CF 3 + + e 9.685 ± 0.005 +0.099 +2.28<br />

fluorbenzene → C 6 H 5 F + + e 9.20 ± 0.01 -0.386 -8.90<br />

chlorobenzene → C 6 H 5 Cl + + e 9.07 ± 0.02 -0.516 -11.9<br />

bromobenzene → C 6 H 5 Br + + e 9.00 ± 0.03 -0.586 -13.5<br />

iodobenzene → C 6 H 5 I + + e 8.72 ± 0.04 -0.866 -20.0<br />

Data from NIST database: http://webbook.nist.gov/chemistry


Nitration of Activated Aromatics<br />

NO 2 + .CH3NO 2<br />

(CI)<br />

CH 3


Count<br />

50000<br />

40000<br />

30000<br />

20000<br />

10000<br />

Nitration of Activated Aromatics<br />

0<br />

NO +<br />

2 .CH3NO2 107<br />

NO 2 +<br />

46<br />

65<br />

78<br />

93<br />

108<br />

OCH 3<br />

OH<br />

OCH 3<br />

124<br />

0 50 100 150 200 250 300<br />

m/z<br />

NO 2 + .CH3NO 2<br />

(CI)<br />

OMe


Count<br />

Nitration of Halo-Aromatics: PhF<br />

35000<br />

30000<br />

25000<br />

20000<br />

15000<br />

10000<br />

5000<br />

0<br />

84<br />

F<br />

91<br />

96<br />

-CO<br />

97<br />

107<br />

112<br />

142<br />

0 50 100 150 200 250<br />

OH<br />

F<br />

m/z<br />

NO 2 + .CH3NO 2<br />

F<br />

(CI)<br />

NO 2<br />

F


Count<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

MS/MS of m/z 142<br />

62 75 84<br />

96<br />

112<br />

125<br />

142<br />

0 20 40 60 80 100 120 140 160 180<br />

m/z<br />

- NO 2<br />

- NO<br />

- OH<br />

N O<br />

H<br />

O<br />

F


Count<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

MS/MS of m/z 112<br />

20 40 60 80 100 120 140<br />

m/z<br />

84<br />

- CO<br />

112<br />

OH<br />

F


Nitration of Halo-Aromatics: PhCl<br />

NO 2 + .CH3NO 2<br />

(CI)<br />

Cl


Count<br />

Nitration of Halo-Aromatics: PhBr<br />

12000<br />

10000<br />

8000<br />

6000<br />

4000<br />

2000<br />

0<br />

46<br />

68<br />

72<br />

85<br />

106<br />

92<br />

100<br />

107<br />

156<br />

158<br />

0 50 100 150 200 250<br />

m/z<br />

Br<br />

NO 2 + .CH3NO 2<br />

(CI)<br />

Br


Count<br />

Nitration of Halo-Aromatics: PhI<br />

30000<br />

25000<br />

20000<br />

15000<br />

10000<br />

5000<br />

0<br />

107<br />

204<br />

0 50 100 150 200 250 300<br />

m/z<br />

NO 2 + .CH3NO 2<br />

I<br />

(CI)<br />

I


Nitration of Deactivated Aromatics<br />

NO 2 + .CH3NO 2<br />

(CI)<br />

NO 2<br />

SET is not<br />

detected


e<br />

Proposal<br />

� Aprotic polar solvent<br />

O<br />

N<br />

O<br />

O N<br />

O<br />

O<br />

N<br />

G<br />

O<br />

H<br />

CH 3<br />

G<br />

N<br />

O<br />

O O N<br />

O<br />

+<br />

G<br />

(a) (b)<br />

CH 3<br />

Oxygen transfer Nitration<br />

O<br />

(c)<br />

O<br />

N<br />

H<br />

*<br />

G<br />

G<br />

+ . NO 2<br />

Electron Transfer


Solv<br />

Solv<br />

e<br />

Proposal<br />

� Protic polar solvent<br />

H<br />

O<br />

N<br />

H<br />

O<br />

H H<br />

Solv<br />

Solv-H<br />

Solv<br />

G<br />

Solv<br />

Solv<br />

O<br />

H H Solv<br />

O<br />

N<br />

Solv-H*<br />

H<br />

O<br />

H Solv<br />

O<br />

N<br />

H<br />

(a)<br />

G<br />

G<br />

(b)<br />

Nitration<br />

G<br />

+ . NO 2<br />

Electron transfer


SET x Solvation<br />

S<br />

S<br />

S<br />

S<br />

S S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

O<br />

S<br />

O N O<br />

S<br />

S S<br />

N O<br />

S S<br />

S S<br />

S<br />

S S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

Electron<br />

Transfer<br />

S S<br />

O<br />

N<br />

O<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S S<br />

S<br />

O<br />

N<br />

O<br />

S<br />

S<br />

S<br />

S S S<br />

S<br />

S<br />

S S S S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S S<br />

S S<br />

S<br />

S S<br />

Difusion Difusion<br />

Non-oriented π complex<br />

Electron<br />

Transfer<br />

S<br />

S<br />

S<br />

S S<br />

O<br />

S<br />

S<br />

N O<br />

S S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S S<br />

O N O<br />

S S<br />

Interaction<br />

S<br />

S<br />

S<br />

S<br />

S<br />

Oriented π complex<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

Collapse<br />

S<br />

O N O<br />

S S<br />

S S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

H<br />

S<br />

S<br />

NO 2<br />

S S<br />

S S<br />

S<br />

S<br />

S<br />

S<br />

S


18 O isotope study<br />

H 3C NO 2<br />

+ NO 2<br />

O<br />

O N<br />

Detsina, Sidorova, Panova,<br />

Malykhin, Shakirov<br />

Zh. Org. Khim. 1979, 15, 1887


Proposal: Distinct Reaction Intermediates<br />

NO 2 + +<br />

33.5<br />

NO 2 +<br />

21.8<br />

11.7<br />

O<br />

N<br />

O<br />

14.3<br />

O<br />

H<br />

Avoided Crossing TS Step<br />

(SET)?<br />

N O<br />

0.7<br />

-7.7<br />

O N O<br />

O N O<br />

H<br />

NO 2<br />

-11.0<br />

O N O<br />

7.5<br />

O<br />

H<br />

NO 2<br />

N<br />

O<br />

H<br />

Three distinct<br />

intermediates<br />

before proton<br />

elimination


LUMO<br />

HOMO<br />

Frontier MO and its relation to SET<br />

LUMO<br />

HOMO<br />

LUMO<br />

ΔE = hν<br />

HOMO<br />

Donor (D) Acceptor (A)<br />

(b) Ground State: c 1 |NO 2 + ,C6 H 6 > + c 2 |NO 2 ,C 6 H 6 +. > + …<br />

ΔE = 0<br />

LUMO<br />

HOMO<br />

Donor (D) Acceptor (A)<br />

LUMO<br />

HOMO<br />

ΔE = 0<br />

LUMO<br />

HOMO<br />

Donor (D) Acceptor (A)<br />

(a) Ground State: |NO 2 + ,C6 H 6 ><br />

LUMO<br />

HOMO<br />

ΔE = 0<br />

LUMO<br />

HOMO<br />

Donor (D) Acceptor (A)


θ = 180 o<br />

O N O<br />

LUMO<br />

Angle<br />

Distortion<br />

LUMO energy of<br />

NO 2 + as a function of<br />

the ONO bond angle.<br />

The LUMO of NO 2 +<br />

becomes isoenergetic<br />

with the HOMO of<br />

benzene at 147 o ,<br />

indicating an<br />

approximate<br />

geometry for the SET<br />

process.<br />

LUMO<br />

θ<br />

O N O<br />

(a) (b)<br />

LUMO energy of NO2+ (eV)<br />

+<br />

-0,20<br />

-0,25<br />

-0,30<br />

-0,40<br />

-0,45<br />

LUMO in NO 2 + cation at (a) linear<br />

and (b) bent geometries.<br />

HOMO (ArH)-LUMO (NO 2 + )<br />

Crossing point<br />

(aproximate geometry where SET takes<br />

place)<br />

Energy of<br />

the HOMO<br />

of C6H6<br />

(-0.336)<br />

ONO angle in NO2+ (degrees)<br />

-0,35120<br />

125 130 135 140 145 150 155 160 165 170 175 180<br />

E LUMO NO2+


Symmetric<br />

HOMO of Benzene<br />

Antisymmetric<br />

E = -0,329 Hartrees E = -0,329 Hartrees<br />

Jean, Y.; Volatron, F.; An introduction to molecular orbitals; Oxford University Press; New York, 213, 1993..


E<br />

Z<br />

C H Z C H<br />

C H Y<br />

6 5 6 6<br />

6 5<br />

Symmetric<br />

Z Y<br />

S , A<br />

Antisymmetric<br />

Y<br />

Antisymmetric<br />

Symmetric<br />

Z=donor Y=acceptor<br />

Fukuzumi, S.; Kochi, J.K.; J. Am. Chem. Soc., 103,7240, 1981.


Energy (a.u.) of MO´s for the aromatic substrates<br />

Substrate HOMO HOMO - 1<br />

Benzene<br />

-0,329 (S) -0,329 (A)<br />

Toluene<br />

Aniline<br />

Phenol<br />

Fluorbenzene<br />

Clorobenzene<br />

Bromobenzene<br />

Nitrobenzene<br />

Benzaldehyde<br />

(Trifluormethyl)benzene<br />

-0,317 (S)<br />

-0,290 (S)<br />

-0,310 (S)<br />

-0,334 (S)<br />

-0,333 (S)<br />

-0,330 (S)<br />

-0,365 (A)<br />

-0,346 (A)<br />

-0,352 (A)<br />

-0,328 (A)<br />

-0,330 (A)<br />

-0,338 (A)<br />

Analysis of symmetry and energy of selected MOs<br />

-0,347 (A)<br />

-0,347 (A)<br />

-0,348 (A)<br />

-0,374 (S)<br />

-0,350 (S)<br />

-0,357 (S)<br />

Donors: CH 3 , NH 2 , OH, F, Cl and Br.<br />

Acceptors: NO 2 , CHO and CF 3 .


Regioselectivity: SET pair for PhCl<br />

2,396Å 146 o<br />

145 o 40’<br />

q(NO 2 )= +0.34 e –<br />

q(ArH)= +0.66 e –<br />

2,327Å<br />

q(NO 2 )= +0.30 e –<br />

q(ArH)= +0.70 e –<br />

Directing groups ortho and para<br />

SET complex is only formed at ipso and para positions


MO’s for the complex between PhNO 2 and NO 2 +<br />

ortho<br />

HOMO HOMO - 1<br />

para<br />

HOMO<br />

HOMO - 1


E LUMO (hartrees)<br />

-0,260<br />

-0,300<br />

-0,340<br />

-0,380<br />

-0,420<br />

o<br />

o<br />

NO<br />

2<br />

o<br />

E LUMO of NO 2 + versus θONO<br />

CHO<br />

CF<br />

3<br />

o<br />

Br<br />

Cl<br />

F<br />

CH<br />

H<br />

o<br />

o<br />

3<br />

OH<br />

o<br />

NH<br />

130 150 170<br />

190<br />

o<br />

2<br />

o<br />

o<br />

o<br />

Ângulo O-N-O<br />

θ = 180 o<br />

O N O<br />

LUMO<br />

Angle<br />

Distortion<br />

LUMO<br />

θ<br />

O N O<br />

(a) (b)<br />

+


E (Kcal/mol)<br />

40,00<br />

30,00<br />

20,00<br />

10,00<br />

E rel of NO 2 + (λMarcus ) versus θ ONO<br />

o<br />

o<br />

o<br />

λ NO2+<br />

o<br />

NO<br />

2<br />

o<br />

CF<br />

3<br />

CHO<br />

o<br />

λ NO2+<br />

F<br />

Cl<br />

Br<br />

H<br />

CH3<br />

OH<br />

0,00<br />

o o<br />

130 150 170<br />

190<br />

o<br />

o<br />

Reactivity order for the substrates:<br />

C 6 H 5 NH 2 > C 6 H 5 OH > C 6 H 5 CH 3 > C 6 H 6 ><br />

C 6 H 5 Br > C 6 H 5 Cl > C 6 H 5 F > C 6 H 5 CHO ><br />

C 6 H 5 CF 3 and C 6 H 5 NO 2 .<br />

o<br />

Crossing curve model<br />

E a = f(λ NO2+ +λ ArH )<br />

NH<br />

2<br />

Angle ONO<br />

λ ArH ≈ 0<br />

E a = f(λ NO2+ )


R<br />

NH<br />

Rearrangement of N-Nitroanilines<br />

R NO2 N<br />

"H + "<br />

R<br />

NH<br />

R NO2 N H<br />

+ NO 2 +<br />

Fissão<br />

homolítica<br />

SET<br />

R<br />

NH<br />

. NO2<br />

R<br />

NH<br />

NO 2


SET in aniline nitration?<br />

Reação<br />

Energia de<br />

Ionização (IE)<br />

(eV) a<br />

ΔEI para a<br />

reação com<br />

NO 2 + (kcal/mol)<br />

NO 2 → NO 2 + + e 9.586 ± 0.002 0.00<br />

PhNH 2 → PhNH 2 + + e 7.72 ± 0.002 -43.0<br />

p-MeOC 6 H 4 NH 2 → p-MeOC 6 H 4 NH 2 + + e 7.58 ± 0.01 -46.3<br />

p-MeSC 6 H 4 NH 2 → p-MeSC 6 H 4 NH 2 + + e 7.60 ± 0.01 -45.8<br />

p-MeC 6 H 4 NH 2 → p-MeC 6 H 4 NH 2 + + e 7.85 ± 0.05 -40.0<br />

m-MeC 6 H 4 NH 2 → m-MeC 6 H 4 NH 2 + + e 7.50 ± 0.02 -40.7<br />

p-FC 6 H 4 NH 2 → p-FC 6 H 4 NH 2 + + e 8.18 -32.4<br />

p-ClC 6 H 4 NH 2 → p-ClC 6 H 4 NH 2 + + e 7.8 -41.2<br />

m-FC 6 H 4 NH 2 → m-FC 6 H 4 NH 2 + + e 8.33 -29.0<br />

m-ClC 6 H 4 NH 2 → m-ClC 6 H 4 NH 2 + + e 8.1 ± 0.1 -34.3<br />

m-BrC 6 H 4 NH 2 → m-BrC 6 H 4 NH 2 + + e 7.7 ± 0.1 -43.5<br />

p-NCC 6 H 4 NH 2 → p-NCC 6 H 4 NH 2 + + e 8.64 ± 0.04 -21.8<br />

p-O 2 NC 6 H 4 NH 2 → p-O 2 NC 6 H 4 NH 2 + + e 8.34 ± 0.01 -28.7


Hammett correlation<br />

log(kx/kh)<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1<br />

σ +<br />

-1<br />

-2<br />

-3<br />

-4<br />

R<br />

NH<br />

R NO2 N<br />

"H + "<br />

R<br />

NH<br />

R NO2 N H<br />

+ NO 2 +<br />

y = -3.0643x + 0.2259<br />

R 2 = 0.9213<br />

Fissão<br />

homolítica<br />

SET<br />

R<br />

NH<br />

. NO2<br />

White, W. N.; e Klink, J. R. J. Org. Chem. 1970, 35(4), 965-9.<br />

R<br />

NH<br />

NO 2


Rearrangement<br />

of<br />

N-Nitrosoanilines<br />

X<br />

Log(k X /k H )<br />

CH3 N<br />

NO<br />

..<br />

+ "H + "<br />

X<br />

δ-<br />

Polar<br />

CH3 N<br />

H<br />

..<br />

+ NO +<br />

SET Polar<br />

X<br />

CH3 N<br />

NO<br />

H<br />

X<br />

SET<br />

δ+<br />

CH3 N<br />

H<br />

+ NO<br />

σ


ArH + NO 2 + ArH.NO 2 +<br />

ArH.NO 2 +<br />

ArH + fast<br />

.NO2 (SET)<br />

G<br />

Mechanistic Proposal<br />

H<br />

NO 2<br />

- “H + ”<br />

ArH + .NO 2 (SET)<br />

G<br />

Rate controlling step: Depends on the ionization potential of ArH<br />

G<br />

H<br />

NO 2<br />

NO 2<br />

(σ)<br />

Unoriented<br />

electrostatic complex<br />

SET intimate complex


Conclusions: Nitration<br />

§� Reaction of NO 2 + with ArH à� SET<br />

§� Solvation makes<br />

§� Deactivated aromatics à� Aducts formed<br />

§� Activated aromatics à� SET is favored<br />

§� SET mechanism is surely involved in nitration of activated<br />

aromatics<br />

§� Mechanistic continuum between polar mechanism (Ingold-<br />

Hughes) and SET: Depends on ArH and on solvation<br />

§� The higher the HOMO of ArH, lower the “barrier” for the SET<br />

and aromatic is more easily undergo oxidation.


Nitration: Mechanistic Continuum<br />

Polar<br />

Mechanism<br />

(Ingold-Hughes)<br />

• Substrates with high PI (meta<br />

directing substituents)<br />

• Non oxidant electrophiles<br />

• Solvents with high ε (H 2 SO 4 ,<br />

polar protic solvents, etc)<br />

SET<br />

Mechanism<br />

• Substrates with low PI (orthopara<br />

directing substituents)<br />

• Oxidant electrophiles<br />

• Solvents with low ε (aprotic<br />

polar solvents, SO 2 , CH 2 Cl 2 ,<br />

etc)


Other Typical Electrophilic Aromatic<br />

Substitution<br />

� Friedel-Crafts Alkylation<br />

� Friedel-Crafts Acylation<br />

� Halogenation<br />

� Sulfonation<br />

� Nitrosation<br />

� Metalation


49,4<br />

16,3<br />

2,4<br />

2,1<br />

1,6<br />

1,5<br />

0,0<br />

Acetilação do tolueno<br />

ΔH (kcal/mol)<br />

33,1<br />

0,3<br />

0,5<br />

13,9<br />

14,2<br />

14,7<br />

0,1<br />

+ 180,0o<br />

SET<br />

0,8<br />

+<br />

(e)<br />

128,6 o<br />

(a)<br />

(d)<br />

(c)<br />

(b)<br />

127,0 o<br />

1,80<br />

137,2 o<br />

2,05 (e)<br />

128,0 o<br />

1,77 (d)<br />

130,3 o<br />

130,9 o<br />

1,83 (c)<br />

1,68<br />

0,3 kcal/mol<br />

0,5 kcal/mol<br />

0,1 kcal/mol<br />

(b)<br />

1,5 kcal/mol<br />

(a)<br />

Eletrófilo X Oxidante<br />

Ativação pelo CH 3<br />

Permite a formação de<br />

um complexo σ em para,<br />

porém menos estável<br />

que o complexo π<br />

correspondente.<br />

Complexo σ em orto não<br />

foi encontrado.<br />

Pequenas diferenças de<br />

Energia X efeito estérico?<br />

Parâmetros geométricos<br />

Ângulo do grupo acílio<br />

nos complexos é muito<br />

semelhante ao do radical<br />

acila<br />

Complexo π X complexo<br />

SET


85,5<br />

24,6<br />

4,4<br />

0,0<br />

Acetilação do nitrobenzeno<br />

ΔH (kcal/mol)<br />

180,0 o<br />

20,2<br />

+<br />

81,2<br />

+<br />

1,79<br />

178 o<br />

128,6 o<br />

135,9 o<br />

1,57<br />

Desativação pelo grupo nitro<br />

Processo SET muito desfavorecido<br />

Complexos π não foram encontrados<br />

Dois mínimos encontrados:<br />

ambos de interação do íon<br />

acetílio com a base n do grupo<br />

nitro (átomo de oxigênio), mais<br />

forte do que a base π do anel.


Kinetic Isotope Effect for Propionilation and<br />

Benzoylation of Aromatics<br />

CH 3 CH 2 CO + SbF 6 -<br />

Toluene-benzene-d 6<br />

Toluene-benzene-d 6<br />

Tolueno-d 5 -benzeno<br />

C 6 H 5 CO + SbF 6 -<br />

p-Xilene-benzene<br />

p-Xileno-benzeno-d 6<br />

Toluene-d 5 -benzene<br />

Toluene-d 5 -benzene<br />

k H :k D = 2.84<br />

Benzeno-d 6<br />

k H :k D = 3.06<br />

Toluene-d 5<br />

k H :k D = 1.80<br />

Benzene-d 5<br />

k H :k D = 1.65<br />

Toluene-d 5<br />

G. A. Olah, J. Lukas, E. Lukas; JACS 1969, 91(19), 5319


Other kinetic isotopic effects:<br />

Reaction Type k H /k D<br />

PhNMe 2 + Br 2 Halogenation 2.6<br />

PhOMe + ICl Halogenation 3.8<br />

PhBr + H 2 SO 4 (oleum) Sulfonation 1.5<br />

PhOH + NO + Nitrosation 4.1<br />

PhH + Hg(OAc) 2 Metalation 6.0


New Reactions: New paradigms<br />

G<br />

G<br />

X<br />

ATCIC (oxidante)<br />

NaNO 2,SiO 2/H 2O<br />

ATCIC (oxidante)<br />

NaNO 2,SiO 2/H 2O<br />

Yields<br />

G = OH, X = H 98%<br />

G = OH, X= F 99%<br />

G = OH, X = CN, 95%<br />

G = OH, X = NHAc 33%<br />

O 2N<br />

G<br />

NO 2<br />

G<br />

X<br />

NO 2<br />

NO 2<br />

Zolfigol, Madrakian e Ghaemi<br />

Synlett, 2003, 14, 2222-2224


E<br />

Reaction Profiles: States and Electronic Configurations<br />

[E<br />

ΨC + Ar . . H] [E . . Ar H + ] [E . Ar + . H]<br />

Ψ A<br />

S 1<br />

Case 1: Ψ c of high energy<br />

E a<br />

Ψ B<br />

Transition State is due to the<br />

Crossing of the electronic<br />

configurations<br />

r Ar-E


E<br />

Reaction Profiles: States and Electronic Configurations<br />

Ψ A<br />

S 1<br />

Case 2: Ψ c of low energy<br />

[E + Ar . . H] [E . . Ar H + ] [E . Ar + . H]<br />

Ψ C<br />

Ψ B<br />

2 Transition States<br />

1 Reaction intermediate<br />

r Ar-E


Conclusion<br />

� The electrophilic aromatic substitution mechanism<br />

can be a spectrum of possibilities between the SET<br />

or Polar (Ingold-Hughes) mechanism,<br />

dependending on the oxidative character of the<br />

electrophile and the ionization potential of the<br />

aromatic substrate.<br />

� Solvent/medium effects can influence the<br />

reactional pathway


Perspectives<br />

§� Reinvestigation of other electrophilic aromatic and alifatic<br />

substitution under the SET paradigm<br />

§� Electrophiles, Superelectrophiles or Superoxidants?<br />

§� The single electron transfer process and theories of<br />

reactivity<br />

§� Development of new reaction under the new paradigm.


Team<br />

§� Coworkers<br />

§� José Walkimar de M. Carneiro (IQ/UFF)<br />

§� Marcos N. Eberlin (IQ/UNICAMP)<br />

§� Regina Sparapan (IQ/UNICAMP)<br />

§� Adão A. Sabino (IQ/UNICAMP)<br />

§� Liliane (IQ/UNICAMP)<br />

§� Márcio Contrucci de Mattos (IQ/<strong>UFRJ</strong>)<br />

§� Students<br />

§� Students (Cont.)<br />

§� Fabio Luis Rodrigues (IC/<strong>UFRJ</strong>)<br />

§� Leonardo Almeida (PG/DQO/<strong>UFRJ</strong>)<br />

§� Gabriela Fonseca (PG/DQO/<strong>UFRJ</strong>)<br />

§� Felipe Fleming Pereira (PG/DQO/<strong>UFRJ</strong>)<br />

§� Jorge Freitas (IQ/UFF)<br />

§� Rachel Moraes (IC/<strong>UFRJ</strong>)<br />

§� Leandro (IC/<strong>UFRJ</strong>)<br />

§� Ana Cristina Paes Leme (IC/<strong>UFRJ</strong>)<br />

§� Vivian Mazzei (IC/<strong>UFRJ</strong>)<br />

§� Thiago Muza (IC/<strong>UFRJ</strong>)<br />

§� Rejane Magalhães Ramos (IC/<strong>UFRJ</strong>)<br />

§� Carolina Leite Araujo (IC/<strong>UFRJ</strong>)


Acknowledgements<br />

§� CNPq<br />

§� CNPq (PROFIX)<br />

§� FAPERJ (Cientista Jovem do Nosso Estado)


Instituto de Química<br />

Universidade Federal do Rio de Janeiro<br />

Prof. Pierre M. Esteves<br />

(pesteves@iq.ufrj.br)<br />

www.iq.ufrj.br/~pesteves

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!