18.07.2018 Views

A study of histopathological effects and functional tests in liver and kidney of laboratory male mice treated with ammonium chloride

Abstract The present study was aimed to investigate the effects of ammonium chloride on mice. The animals were divided into three groups: groups 2 and 3were treated orally with ammonium chloride at doses of 2 and 4 mg/body weight, respectively for a period of three weeks, while group 1 served as a control group. The tissue sections which were made from mice organs (liver and kidney) which treated with 4mg/ body weight of ammonium chloride proved that this dose has toxic effect only on the liver and kidneys. In the liver, the histopathological effects are represented by hypertrophy and irregular shape of nucleus, degeneration of cytoplasm, congestion of sinusoid, bleeding and infiltration of inflammatory cells. In kidneys, the effects focus on renal tubules only which are represented by the degenerative changes, necrosis and infiltration of inflammatory cells. This study was also carried out to investigate the influence of ammonium chloride on levels of urea, creatinine, total protein, lipid (triglyceride and cholesterol), and liver marker enzymes such as AST, ALT and ALP. Oral administration of ammonium chloride (4mg/body weight) caused a significant increase in the levels of AST and a significant decrease in the level of ALP and total protein in mice. Treated mice with ammonium chloride at a dose of 2 and 4mg/ body weight for 21 days showed a significant decrease in levels of creatinine, triglyceride and cholesterol, while ALT and urea had no affect at two doses of ammonium chloride. In conclusion, ammonium chloride causes direct hepatotoxicity and nephrotoxicity.

Abstract
The present study was aimed to investigate the effects of ammonium chloride on mice. The animals were divided into three groups: groups 2 and 3were treated orally with ammonium chloride at doses of 2 and 4 mg/body weight, respectively for a period of three weeks, while group 1 served as a control group. The tissue sections which were made from mice organs (liver and kidney) which treated with 4mg/ body weight of ammonium chloride proved that this dose has toxic effect only on the liver and kidneys. In the liver, the histopathological effects are represented by hypertrophy and irregular shape of nucleus, degeneration of cytoplasm, congestion of sinusoid, bleeding and infiltration of inflammatory cells. In kidneys, the effects focus on renal tubules only which
are represented by the degenerative changes, necrosis and infiltration of inflammatory cells. This study was also carried out to investigate the influence of ammonium chloride on levels of urea, creatinine, total protein, lipid (triglyceride and cholesterol), and liver marker enzymes such as AST, ALT and ALP. Oral administration of ammonium chloride (4mg/body weight) caused a significant increase in the levels of AST and a significant decrease in the level of ALP and total protein in mice. Treated mice with ammonium chloride at a dose of 2 and
4mg/ body weight for 21 days showed a significant decrease in levels of creatinine, triglyceride and cholesterol, while ALT and urea had no affect at two doses of ammonium chloride. In conclusion, ammonium chloride causes direct hepatotoxicity and nephrotoxicity.

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Int. J. Biosci. 2016<br />

RESEARCH PAPER<br />

OPEN ACCESS<br />

A <strong>study</strong> <strong>of</strong> <strong>histopathological</strong> <strong>effects</strong> <strong>and</strong> <strong>functional</strong> <strong>tests</strong> <strong>in</strong> <strong>liver</strong><br />

<strong>and</strong> <strong>kidney</strong> <strong>of</strong> <strong>laboratory</strong> <strong>male</strong> <strong>mice</strong> <strong>treated</strong> <strong>with</strong> <strong>ammonium</strong><br />

<strong>chloride</strong><br />

Ali A.A. Al-Ali * , Faris S. Kata, Majda I. Abd Al-Majeed<br />

Department <strong>of</strong> Biology, University <strong>of</strong> Basrah, Iraq<br />

International Journal <strong>of</strong> Biosciences | IJB |<br />

ISSN: 2220-6655 (Pr<strong>in</strong>t), 2222-5234 (Onl<strong>in</strong>e)<br />

http://www.<strong>in</strong>nspub.net<br />

Vol. 8, No. 2, p. 184-194, 2016<br />

Key words: Ammonium <strong>chloride</strong>, Histopathological Changes, AST, Urea, Triglyceride.<br />

http://dx.doi.org/10.12692/ijb/8.2.184-194 Article published on February 28, 2016<br />

Abstract<br />

The present <strong>study</strong> was aimed to <strong>in</strong>vestigate the <strong>effects</strong> <strong>of</strong> <strong>ammonium</strong> <strong>chloride</strong> on <strong>mice</strong>. The animals were divided<br />

<strong>in</strong>to three groups: groups 2 <strong>and</strong> 3were <strong>treated</strong> orally <strong>with</strong> <strong>ammonium</strong> <strong>chloride</strong> at doses <strong>of</strong> 2 <strong>and</strong> 4 mg/body<br />

weight, respectively for a period <strong>of</strong> three weeks, while group 1 served as a control group. The tissue sections<br />

which were made from <strong>mice</strong> organs (<strong>liver</strong> <strong>and</strong> <strong>kidney</strong>) which <strong>treated</strong> <strong>with</strong> 4mg/ body weight <strong>of</strong> <strong>ammonium</strong><br />

<strong>chloride</strong> proved that this dose has toxic effect only on the <strong>liver</strong> <strong>and</strong> <strong>kidney</strong>s. In the <strong>liver</strong>, the <strong>histopathological</strong><br />

<strong>effects</strong> are represented by hypertrophy <strong>and</strong> irregular shape <strong>of</strong> nucleus, degeneration <strong>of</strong> cytoplasm, congestion <strong>of</strong><br />

s<strong>in</strong>usoid, bleed<strong>in</strong>g <strong>and</strong> <strong>in</strong>filtration <strong>of</strong> <strong>in</strong>flammatory cells. In <strong>kidney</strong>s, the <strong>effects</strong> focus on renal tubules only which<br />

are represented by the degenerative changes, necrosis <strong>and</strong> <strong>in</strong>filtration <strong>of</strong> <strong>in</strong>flammatory cells. This <strong>study</strong> was also<br />

carried out to <strong>in</strong>vestigate the <strong>in</strong>fluence <strong>of</strong> <strong>ammonium</strong> <strong>chloride</strong> on levels <strong>of</strong> urea, creat<strong>in</strong><strong>in</strong>e, total prote<strong>in</strong>, lipid<br />

(triglyceride <strong>and</strong> cholesterol), <strong>and</strong> <strong>liver</strong> marker enzymes such as AST, ALT <strong>and</strong> ALP. Oral adm<strong>in</strong>istration <strong>of</strong><br />

<strong>ammonium</strong> <strong>chloride</strong> (4mg/body weight) caused a significant <strong>in</strong>crease <strong>in</strong> the levels <strong>of</strong> AST <strong>and</strong> a significant<br />

decrease <strong>in</strong> the level <strong>of</strong> ALP <strong>and</strong> total prote<strong>in</strong> <strong>in</strong> <strong>mice</strong>. Treated <strong>mice</strong> <strong>with</strong> <strong>ammonium</strong> <strong>chloride</strong> at a dose <strong>of</strong> 2 <strong>and</strong><br />

4mg/ body weight for 21 days showed a significant decrease <strong>in</strong> levels <strong>of</strong> creat<strong>in</strong><strong>in</strong>e, triglyceride <strong>and</strong> cholesterol,<br />

while ALT <strong>and</strong> urea had no affect at two doses <strong>of</strong> <strong>ammonium</strong> <strong>chloride</strong>. In conclusion, <strong>ammonium</strong> <strong>chloride</strong> causes<br />

direct hepatotoxicity <strong>and</strong> nephrotoxicity.<br />

* Correspond<strong>in</strong>g Author: Ali A.A. Al-Ali qalialali_75@ymail.com<br />

184 Al-Ali et al.


Int. J. Biosci. 2016<br />

Introduction<br />

Ammonium <strong>chloride</strong> is a reagent that is used <strong>in</strong> a<br />

variety <strong>of</strong> <strong>in</strong>dustrial <strong>and</strong> research applications.<br />

Industrial uses <strong>in</strong>clude electroplat<strong>in</strong>g, t<strong>in</strong>n<strong>in</strong>g, <strong>and</strong><br />

manufacture <strong>of</strong> dyes. It is also used as a flux<strong>in</strong>g agent<br />

for the galvaniz<strong>in</strong>g <strong>of</strong> steel, the ref<strong>in</strong>ement <strong>of</strong> z<strong>in</strong>c <strong>and</strong><br />

the coat<strong>in</strong>g <strong>of</strong> sheet iron <strong>with</strong> z<strong>in</strong>c (Williams, 2006).<br />

Ammonium <strong>chloride</strong> acidifies the ur<strong>in</strong>e <strong>and</strong> is used to<br />

dissolve certa<strong>in</strong> type <strong>of</strong> bladder stones; it may also be<br />

used to promote the excretion <strong>of</strong> certa<strong>in</strong> tox<strong>in</strong>s or<br />

drugs <strong>in</strong>to the ur<strong>in</strong>e. It may be amended <strong>with</strong> certa<strong>in</strong><br />

antibiotics such as tetracycl<strong>in</strong>e <strong>and</strong> penicill<strong>in</strong> to<br />

<strong>in</strong>crease their effect aga<strong>in</strong>st certa<strong>in</strong> bacteria <strong>in</strong> the<br />

ur<strong>in</strong>e (Foster <strong>and</strong> Smith Pharmacy, 2010).<br />

In biological research, <strong>ammonium</strong> is <strong>of</strong>ten used for<br />

lyses <strong>of</strong> human red blood cells (Kang et al., 2002).<br />

Also, it is used <strong>in</strong> the isolation <strong>of</strong> prote<strong>in</strong>s from 50S<br />

ribosomal subunits <strong>of</strong> Bacillus stearothermophilus<br />

(Gewitz, 1987). In mammals, ammonia is an<br />

important nitrogen substrate <strong>in</strong> several reactions <strong>and</strong><br />

plays an important role <strong>in</strong> nitrogen homeostasis <strong>of</strong><br />

mammalian cells. Ammonia is produced by am<strong>in</strong>o<br />

acid <strong>and</strong> prote<strong>in</strong> catabolism <strong>and</strong> is toxic to bra<strong>in</strong> <strong>and</strong><br />

muscles. Ammonia toxicity results <strong>in</strong> free- radical<br />

generation that leads to oxidative stress <strong>and</strong> tissue<br />

damage (Lena <strong>and</strong> Subramanian, 2004).<br />

Ammonia affects both excitatory <strong>and</strong> <strong>in</strong>hibitory<br />

synaptic transmission <strong>in</strong> the mammalian bra<strong>in</strong><br />

through a variety <strong>of</strong> mechanisms (Monfort <strong>and</strong><br />

Felipo, 2005). It is the major metabolic end product<br />

dur<strong>in</strong>g the catabolism <strong>of</strong> prote<strong>in</strong>s. Because <strong>of</strong> its high<br />

toxicity, even at a very low concentration <strong>in</strong> vivo,<br />

ammonia is either excreted directly or converted to<br />

some less toxic compounds such urea, uric acid or<br />

am<strong>in</strong>o acids (Cooper <strong>and</strong> Plum, 1987; R<strong>and</strong>all <strong>and</strong><br />

Wright, 1987; Campall, 1991; Wood, 1993).<br />

Ammonium is also an endogenous substance that<br />

serves a major role <strong>in</strong> the ma<strong>in</strong>tenance <strong>of</strong> the acidbase<br />

balance (Hall, 2015).<br />

Ammonia is converted to urea <strong>in</strong> the <strong>liver</strong> by ureacycle<br />

enzymes, which is then excreted by the <strong>kidney</strong>s.<br />

Hyperammonemia may result from genetic defect or<br />

deficiency <strong>of</strong> the urea-cycle enzymes or from acquired<br />

condition such as Reyes syndrome, <strong>liver</strong> failure, highdose<br />

chemotherapy <strong>and</strong> severe <strong>in</strong>fection (Treem,<br />

1994).<br />

It has been well established that <strong>in</strong> man, rat <strong>and</strong> dog<br />

ur<strong>in</strong>ary ammonia <strong>in</strong>creases <strong>in</strong> response to metabolic<br />

acidosis (Pollak et al., 1965).<br />

Ammonia toxicity occurs partly via oxidative stress,<br />

which leads to lipid peroxidation <strong>and</strong> free radical<br />

generation. This causes hepatic dysfunction <strong>and</strong><br />

failure, which is a primary cause <strong>of</strong> neurological<br />

disorders <strong>and</strong> alteration <strong>in</strong> the function <strong>of</strong> central<br />

nervous system associated <strong>with</strong> hyperammonemia,<br />

such as hepatic encephalopathies, Reye syndrome,<br />

irritability, somnolence, vomit<strong>in</strong>g <strong>and</strong> derangement<br />

<strong>of</strong> cerebral function, coma <strong>and</strong> death (Harikrishnan et<br />

al., 2008; Vijayakumar <strong>and</strong> Subramanian, 2010).<br />

In the present <strong>study</strong>, the <strong>effects</strong> <strong>of</strong> <strong>ammonium</strong><br />

<strong>chloride</strong> on <strong>mice</strong> <strong>liver</strong> <strong>and</strong> <strong>kidney</strong> are <strong>in</strong>vestigated.<br />

However, no available literatures deal<strong>in</strong>g <strong>with</strong><br />

histological changes <strong>and</strong> function <strong>tests</strong> <strong>in</strong> <strong>liver</strong> <strong>and</strong><br />

<strong>kidney</strong> evoked by <strong>ammonium</strong> <strong>chloride</strong><br />

adm<strong>in</strong>istration.<br />

Materials <strong>and</strong> methods<br />

Test material<br />

Ammonium Chloride NH4Cl powder (1kg) product <strong>of</strong><br />

(Reagent Chemical Services Company Ltd. UK). This<br />

powder was dissolved <strong>in</strong> distilled water.<br />

Animals<br />

Forty-eight adult <strong>male</strong> alb<strong>in</strong>o <strong>mice</strong> Mus musculus L.<br />

weight<strong>in</strong>g 23-25 gm were used for this <strong>study</strong> <strong>and</strong> were<br />

obta<strong>in</strong>ed from the animals house <strong>of</strong> Department <strong>of</strong><br />

Biology, College <strong>of</strong> Education, University <strong>of</strong> Basrah.<br />

Animals were housed <strong>in</strong> cages (4 animals/ cage) <strong>and</strong><br />

were fed <strong>with</strong> st<strong>and</strong>ard diet for 21 days at room<br />

temperature (25±3 o C) <strong>with</strong> controlled light- dark<br />

cycle throughout the experiment (Jawad, 1996).<br />

Experimental Design<br />

Animals were divided <strong>in</strong>to three groups compris<strong>in</strong>g<br />

185 Al-Ali et al.


Int. J. Biosci. 2016<br />

eight animals <strong>in</strong> each group as follows:<br />

Group 1: Mice were served as control <strong>treated</strong> <strong>with</strong> 0.2<br />

ml <strong>of</strong> distal water.<br />

Group 2: Experimental animals were orally given 0.2<br />

ml <strong>of</strong> <strong>ammonium</strong> <strong>chloride</strong> solution at a dose level <strong>of</strong> 2<br />

mg/ body weight daily, for a period <strong>of</strong> three weeks.<br />

Group 3: The animals were orally given 0.2 ml<br />

<strong>ammonium</strong> <strong>chloride</strong> solution at a dose level <strong>of</strong> 4 mg/<br />

body weight daily for a period <strong>of</strong> three weeks.<br />

Histopathological exam<strong>in</strong>ation<br />

For light microscopic exam<strong>in</strong>ation, <strong>liver</strong> <strong>and</strong> <strong>kidney</strong><br />

tissues from each group were fixed <strong>with</strong> Bou<strong>in</strong>'s<br />

solution <strong>and</strong> embedded <strong>with</strong> paraff<strong>in</strong>. After rout<strong>in</strong>e<br />

process<strong>in</strong>g, paraff<strong>in</strong> sections <strong>of</strong> each tissue were cut<br />

<strong>in</strong>to 7 μm thickness <strong>and</strong> sta<strong>in</strong>ed <strong>with</strong> hematoxyl<strong>in</strong> <strong>and</strong><br />

eos<strong>in</strong> (Humason, 1972).<br />

Biochemical Analysis<br />

At the end <strong>of</strong> experimental period, <strong>mice</strong> were<br />

anaesthetized <strong>with</strong> ether. Blood samples were<br />

<strong>with</strong>drawn by heart puncture <strong>and</strong> serum was<br />

separated, centrifuged at 3500 rpm for 15 m<strong>in</strong>utes,<br />

<strong>and</strong> blood serum was then collected <strong>and</strong> stored at 4 ◦ C<br />

prior immediate determ<strong>in</strong>ation <strong>of</strong> serum parameters.<br />

Serum aspartate transam<strong>in</strong>ase (AST) <strong>and</strong> alan<strong>in</strong>e<br />

transam<strong>in</strong>ase (ALT) were determ<strong>in</strong>ed accord<strong>in</strong>g to<br />

the methods <strong>of</strong> Reitman <strong>and</strong> Frankel (1957). Serum<br />

alkal<strong>in</strong>e phosphatase (ALP) <strong>and</strong> urea were<br />

determ<strong>in</strong>ed accord<strong>in</strong>g to the methods <strong>of</strong> K<strong>in</strong>g <strong>and</strong><br />

K<strong>in</strong>g (1954) <strong>and</strong> Wills <strong>and</strong> Savory (1981), respectively.<br />

Serum creat<strong>in</strong><strong>in</strong>e <strong>and</strong> total prote<strong>in</strong> were estimated<br />

us<strong>in</strong>g the methods <strong>of</strong> Butch (1994). Serum total<br />

cholesterol <strong>and</strong> Triglycerides were determ<strong>in</strong>ed<br />

accord<strong>in</strong>g to the methods <strong>of</strong> Tietz (1995). All <strong>of</strong> these<br />

parameters were measured us<strong>in</strong>g spectrophotometer.<br />

Kits were provided by Biolabo <strong>and</strong> Biomerieux<br />

Company (France).<br />

Statistical Analysis<br />

The results <strong>of</strong> biochemical <strong>tests</strong> were analyzed us<strong>in</strong>g<br />

the Statistical Package for Social Sciences (SPSS for<br />

w<strong>in</strong>dows, version 12.0). Comparisons were made<br />

between experimental groups us<strong>in</strong>g one-way analysis<br />

<strong>of</strong> variance (ANOVA) followed by Dennett's test.<br />

Values <strong>of</strong> less than 0.01 were regarded as statistically<br />

significant.<br />

Results<br />

Histopathological results<br />

The <strong>histopathological</strong> exam<strong>in</strong>ation <strong>of</strong> the <strong>liver</strong> <strong>of</strong><br />

group 1 <strong>and</strong> 2 shows normal tissues which <strong>in</strong>cluded<br />

the center ve<strong>in</strong>, hepatocytes arranged as cords <strong>and</strong><br />

between them s<strong>in</strong>usoids.<br />

Table 1. Effects <strong>of</strong> <strong>ammonium</strong> <strong>chloride</strong> on function <strong>tests</strong> <strong>in</strong> <strong>liver</strong> <strong>of</strong> <strong>mice</strong>.<br />

Treatments<br />

AST<br />

(IU/L)<br />

9.63<br />

± 0.41<br />

9.12<br />

± 0.46<br />

*12.21<br />

± 0.89<br />

Control group<br />

(Distal water)<br />

Ammonium <strong>chloride</strong><br />

(2mg/ body weight)<br />

Ammonium <strong>chloride</strong><br />

(4mg/ body weight)<br />

* Significant differences (p< 0.01 & 0.05) compared <strong>with</strong> the control group.<br />

ALT<br />

(IU/L)<br />

7.61<br />

± 0.49<br />

6.61<br />

± 0.24<br />

7.92<br />

± 0.23<br />

ALP<br />

(IU/L)<br />

128.61<br />

± 2.51<br />

120.06<br />

± 3.45<br />

*103.15<br />

± 2.74<br />

Histological exam<strong>in</strong>ation <strong>of</strong> <strong>liver</strong> <strong>of</strong> group 3 (<strong>treated</strong><br />

<strong>with</strong> high dose) revealed <strong>histopathological</strong> alterations<br />

which <strong>in</strong>cluded hypertrophy <strong>and</strong> irregular shape <strong>of</strong><br />

nucleus <strong>with</strong> prom<strong>in</strong>ent central nucleoli, massive<br />

degeneration <strong>and</strong> <strong>in</strong> other animals, the hepatocytes<br />

had numerous pale vacuoles <strong>of</strong> widely different sizes.<br />

Other hepatocytes were necrotized. Liver sections<br />

reflected other signs <strong>of</strong> <strong>in</strong>jury as <strong>in</strong>dicated by<br />

congestion <strong>of</strong> s<strong>in</strong>usoid; bleed<strong>in</strong>g <strong>and</strong> dilatation <strong>of</strong><br />

<strong>in</strong>filtrations by large mass <strong>of</strong> leukocytic <strong>in</strong>flammatory<br />

cells were observed. These <strong>in</strong>flammatory cells <strong>in</strong>clude<br />

lymphocytes, giant mult<strong>in</strong>ucleated cell <strong>and</strong> cluster <strong>of</strong><br />

epithelioid histiocytes (Fig. 1 <strong>and</strong> 2).<br />

186 Al-Ali et al.


Int. J. Biosci. 2016<br />

Table 2. Effect <strong>of</strong> <strong>ammonium</strong> <strong>chloride</strong> on function <strong>tests</strong> <strong>in</strong> <strong>kidney</strong> <strong>of</strong> <strong>mice</strong>.<br />

Treatments<br />

Control group<br />

(Distilled water)<br />

Ammonium <strong>chloride</strong><br />

(2mg/ day)<br />

Ammonium <strong>chloride</strong><br />

(4mg/ body weight)<br />

Urea<br />

(mg/dL)<br />

33.45<br />

± 1.31<br />

32.11<br />

± 1.25<br />

37.38<br />

± 1.47<br />

* Significant differences (p< 0.01 & 0.05) compared <strong>with</strong> the control group.<br />

Creat<strong>in</strong><strong>in</strong>e (mg/dL)<br />

0.95<br />

± 0.03<br />

0.47*<br />

± 0.04<br />

0.34*<br />

± 0.03<br />

Exam<strong>in</strong>ation <strong>of</strong> tissue section <strong>of</strong> <strong>kidney</strong> <strong>of</strong> group 3<br />

(<strong>treated</strong> <strong>with</strong> high dose) revealed <strong>histopathological</strong><br />

changes on l<strong>in</strong><strong>in</strong>g epithelial tissue <strong>of</strong> renal tubule<br />

which was represented by degenerative changes,<br />

dilation <strong>of</strong> lumen <strong>of</strong> distal convoluted tubule <strong>and</strong> lysis<br />

<strong>of</strong> the apical cell membrane <strong>of</strong> the proximal<br />

convoluted renal tubule <strong>and</strong> seems that these tubules<br />

have a broad lumen <strong>and</strong> its lacks the brush boarder <strong>in</strong><br />

comparison <strong>with</strong> the control group. Kidney tissue<br />

sections showed atrophy cells <strong>of</strong> renal tubule <strong>and</strong><br />

deformation <strong>of</strong> nuclei <strong>of</strong> other epithelial cells <strong>of</strong> both<br />

distal <strong>and</strong> proximal convoluted renal tubule. In<br />

addition, the bleed<strong>in</strong>g was observed between cortical<br />

renal tubule <strong>and</strong> <strong>in</strong>filtration <strong>of</strong> <strong>in</strong>flammatory cells<br />

near large vessel (Fig. 2 <strong>and</strong> 3).<br />

Biochemical results<br />

The results <strong>of</strong> this <strong>study</strong> showed a significant <strong>in</strong>crease<br />

<strong>in</strong> aspartate transam<strong>in</strong>ase enzyme level at p


Int. J. Biosci. 2016<br />

Subramanian 2009). By do<strong>in</strong>g so, the <strong>liver</strong> also plays<br />

a major role <strong>in</strong> the metabolic regulation <strong>of</strong> systemic<br />

pH, because hydrogen ions released from NH4 dur<strong>in</strong>g<br />

the synthesis <strong>of</strong> neutralize excess bicarbonate<br />

produced by the breakdown <strong>of</strong> am<strong>in</strong>o acid. An<br />

<strong>in</strong>crease level <strong>of</strong> circulatory ammonia might <strong>in</strong>dicate a<br />

hyperammonemic condition <strong>in</strong> rats <strong>treated</strong> <strong>with</strong><br />

<strong>ammonium</strong> <strong>chloride</strong> (Lena <strong>and</strong> Subramanian, 2004;<br />

Essa <strong>and</strong> Subramanian, 2007). Steven et al. (2009)<br />

showed that the damage <strong>of</strong> hepatocytes <strong>in</strong> <strong>liver</strong><br />

<strong>in</strong>creased the level <strong>of</strong> ammonia <strong>in</strong> blood <strong>and</strong> caused<br />

hyperammonemic condition due to <strong>in</strong>capability <strong>of</strong><br />

hepatocytes on synthesis <strong>of</strong> the urea, <strong>and</strong> all <strong>of</strong> this<br />

leads to decrease <strong>of</strong> urea <strong>in</strong> blood.<br />

Fig. 1. (A) Liver <strong>of</strong> the control group (400x), (E&H). (B) Liver <strong>of</strong> <strong>treated</strong> group (4mg <strong>ammonium</strong> <strong>chloride</strong>)<br />

show<strong>in</strong>g hypertrophy <strong>of</strong> nuclei (arrow) (400x), (E&H). (C) Liver <strong>of</strong> <strong>treated</strong> group (4mg <strong>ammonium</strong> <strong>chloride</strong>)<br />

show<strong>in</strong>g irregular shape <strong>of</strong> nucleus <strong>in</strong> hepatocyte <strong>with</strong> prom<strong>in</strong>ent central nucleoli (arrows) (400x), (E&H). (D)<br />

Liver <strong>of</strong> <strong>treated</strong> group (4mg <strong>ammonium</strong> <strong>chloride</strong>) show<strong>in</strong>g massive degeneration (th<strong>in</strong> arrows) <strong>and</strong> necrosis<br />

(thick arrows) (400x), (E&H). (E) Liver <strong>of</strong> <strong>treated</strong> group (4mg <strong>ammonium</strong> <strong>chloride</strong>) show<strong>in</strong>g vacuole<br />

degeneration (th<strong>in</strong> arrows) <strong>and</strong> congestion <strong>of</strong> s<strong>in</strong>usoid (thick arrows) (100x), (E&H). (F) Liver <strong>of</strong> <strong>treated</strong> group<br />

(4mg <strong>ammonium</strong> <strong>chloride</strong>) show<strong>in</strong>g <strong>in</strong>crease <strong>of</strong> giant mult<strong>in</strong>ucleated cells (arrow) <strong>and</strong> <strong>in</strong>filtration (stars) (400x),<br />

(E&H).<br />

The present <strong>study</strong> the histological exam<strong>in</strong>ation <strong>of</strong><br />

<strong>liver</strong> <strong>and</strong> <strong>kidney</strong> <strong>of</strong> <strong>treated</strong> <strong>mice</strong> <strong>with</strong> <strong>ammonium</strong><br />

<strong>chloride</strong> showed many <strong>histopathological</strong> changes<br />

which <strong>in</strong>cluded hypertrophy <strong>and</strong> irregular <strong>of</strong> nucleus,<br />

massive degeneration, necrosis <strong>and</strong> <strong>in</strong>crease <strong>of</strong> giant<br />

cells, <strong>and</strong> congestion <strong>of</strong> s<strong>in</strong>usoid <strong>in</strong> <strong>liver</strong>. Liver is one<br />

<strong>of</strong> the most important organs <strong>of</strong> the body which is<br />

sensitive to tox<strong>in</strong>s be<strong>in</strong>g a member <strong>of</strong> the President<br />

metabolism <strong>of</strong> many toxic substances enter<strong>in</strong>g the<br />

body <strong>of</strong> the organism. So, it may exhibit severe<br />

<strong>histopathological</strong> <strong>effects</strong> than those tox<strong>in</strong>s <strong>and</strong> exceed<br />

the limits <strong>of</strong> its ability to get rid <strong>of</strong> them, which may<br />

expla<strong>in</strong> the diversity <strong>of</strong> <strong>histopathological</strong> changes <strong>in</strong><br />

the <strong>liver</strong> <strong>and</strong> <strong>in</strong>crease the <strong>in</strong>tensity (Klaassen <strong>and</strong><br />

Watk<strong>in</strong>s, 1999). The <strong>ammonium</strong> <strong>chloride</strong> <strong>in</strong> <strong>mice</strong> may<br />

cause changes <strong>in</strong> the functions responsible for<br />

remov<strong>in</strong>g tox<strong>in</strong>s so reflected on the <strong>liver</strong>'s ability to<br />

remove the harmful <strong>effects</strong> <strong>of</strong> <strong>ammonium</strong> <strong>chloride</strong><br />

188 Al-Ali et al.


Int. J. Biosci. 2016<br />

system cells (Rub<strong>in</strong> <strong>and</strong> Reisner, 2014). some studies<br />

suggest that exposure to tox<strong>in</strong>s cause a degeneration<br />

<strong>of</strong> the <strong>liver</strong> cells to failure <strong>in</strong> prote<strong>in</strong> representation<br />

<strong>and</strong> its accumulation (Thophon et al., 2003) or due to<br />

the <strong>in</strong>hibition <strong>of</strong> toxic substances the process <strong>of</strong><br />

prote<strong>in</strong> synthesis through its effect on the enzyme<br />

prote<strong>in</strong> phosphatase (Stevens et al., 2009). This may<br />

be considered as one <strong>of</strong> the reasons for the occurrence<br />

<strong>of</strong> necrosis. The vacuolar degeneration <strong>in</strong> <strong>liver</strong> may be<br />

represented by the fatty changes which may be<br />

developed <strong>in</strong>to fatty necrosis (Rub<strong>in</strong> <strong>and</strong> Reisner,<br />

2014). This f<strong>in</strong>d<strong>in</strong>g is <strong>in</strong> agreement <strong>with</strong> Subash <strong>and</strong><br />

Subramanian (2009) who reported that 100 mg/kg<br />

body weight; i.p. <strong>ammonium</strong> <strong>chloride</strong> rats show <strong>liver</strong><br />

fibrosis, steatosis <strong>and</strong> s<strong>in</strong>usoidal dilatation. The<br />

gavage studies <strong>in</strong> rats have shown some lesions <strong>of</strong><br />

gastric mucosa <strong>with</strong> notable <strong>histopathological</strong> <strong>effects</strong><br />

(Takeuchi et al., 1995; Mori et al., 1998). In the<br />

<strong>kidney</strong>, the pathological changes showed no damage<br />

<strong>in</strong> the glomeruli <strong>and</strong> the changes are focused <strong>in</strong> the<br />

renal tubule, because <strong>of</strong> the structural nature <strong>of</strong> the<br />

glomeruli which restrict the movement <strong>of</strong> blood cells<br />

<strong>and</strong> most large molecules opposite that allow to many<br />

substances (<strong>in</strong>clud<strong>in</strong>g water <strong>and</strong> solutes) <strong>in</strong> the blood<br />

pass through the renal corpuscle <strong>and</strong> enter the renal<br />

tubule (Hall, 2015). The <strong>histopathological</strong> changes <strong>of</strong><br />

hyperammoneic <strong>mice</strong> are <strong>in</strong>filtration <strong>of</strong> <strong>in</strong>flammatory<br />

cells, deformation <strong>and</strong> hypertrophy <strong>of</strong> nucleus . The<br />

necrosis <strong>of</strong> the l<strong>in</strong><strong>in</strong>g <strong>of</strong> the renal tubule possibly<br />

causes later renal failure, especially when number <strong>of</strong><br />

affected tubule grows (Cotran et al., 1999).<br />

Fig. 2. (G) Liver <strong>of</strong> <strong>treated</strong> group (4mg <strong>ammonium</strong> <strong>chloride</strong>) show<strong>in</strong>g bleed<strong>in</strong>g <strong>and</strong> <strong>in</strong>filtration <strong>of</strong> <strong>in</strong>flammatory<br />

cells (200x), (E&H). (H) Liver <strong>of</strong> <strong>treated</strong> group (4mg <strong>ammonium</strong> <strong>chloride</strong>) show<strong>in</strong>g congestion <strong>of</strong> the s<strong>in</strong>usoid<br />

(400x), (E&H). (I) Kidney <strong>of</strong> control group show<strong>in</strong>g cortical renal tubule (400x), (E&H). (J) Kidney <strong>of</strong> control<br />

group show<strong>in</strong>g the medullary renal tubules (400x), (E&H). (K) Kidney <strong>of</strong> <strong>treated</strong> group (4mg <strong>ammonium</strong><br />

<strong>chloride</strong>) show<strong>in</strong>g deformation <strong>of</strong> nucleus (400x), (E&H). (L) Degeneration (arrow) <strong>and</strong> dilation <strong>in</strong> distal<br />

convoluted renal tubule (stars) <strong>of</strong> <strong>treated</strong> group (4mg <strong>ammonium</strong> <strong>chloride</strong>) (400x), (E&H).<br />

189 Al-Ali et al.


Int. J. Biosci. 2016<br />

Oxidative stress <strong>in</strong>jury is actively <strong>in</strong>volved <strong>in</strong> the<br />

pathogenesis <strong>of</strong> <strong>ammonium</strong> <strong>chloride</strong> <strong>and</strong> <strong>in</strong>duced<br />

acute <strong>kidney</strong> <strong>in</strong>jury. Reactive oxygen species (ROS)<br />

directly act on cell components, <strong>in</strong>clud<strong>in</strong>g lipids,<br />

prote<strong>in</strong>s, <strong>and</strong> DNA, <strong>and</strong> destroy their structure.<br />

Increased levels <strong>of</strong> circulatory ammonia <strong>in</strong> <strong>mice</strong><br />

<strong>treated</strong> <strong>with</strong> <strong>ammonium</strong> <strong>chloride</strong> may be due to the<br />

<strong>liver</strong> damage caused by ammonia-<strong>in</strong>duced free radical<br />

generation. Reports have shown that excess ammonia<br />

<strong>in</strong>duces nitric oxide synthase, which lead to the<br />

enhanced production <strong>of</strong> the nitric oxide, lead<strong>in</strong>g <strong>in</strong><br />

turn to oxidative stress <strong>and</strong> <strong>liver</strong> damage (Kosenko et<br />

al., 2000; Schliess et al., 2002).<br />

Fig. 3. (M) Kidney <strong>of</strong> <strong>treated</strong> group (4mg <strong>ammonium</strong> <strong>chloride</strong>) show<strong>in</strong>g atrophy <strong>in</strong> renal cells (1000x) (E&H).<br />

(N) Lysis <strong>of</strong> apical membrane <strong>of</strong> proximal convoluted renal tubule cells (arrows) <strong>and</strong> dilation <strong>of</strong> lumen (star) <strong>of</strong><br />

<strong>treated</strong> group (4mg <strong>ammonium</strong> <strong>chloride</strong>) (400x), (E&H). (P) Bleed<strong>in</strong>g <strong>in</strong> medullary renal tubules <strong>of</strong> <strong>treated</strong> group<br />

(4mg <strong>ammonium</strong> <strong>chloride</strong>) (stars) (400x), (E&H). (Q) Kidney <strong>of</strong> <strong>treated</strong> group (4mg <strong>ammonium</strong> <strong>chloride</strong>)<br />

show<strong>in</strong>g congestion <strong>of</strong> blood vessel (arrow) <strong>and</strong> <strong>in</strong>filtration <strong>of</strong> <strong>in</strong>flammatory cells <strong>and</strong> bleed<strong>in</strong>g between cortical<br />

tubules (star) (400x), (E&H).<br />

The present <strong>study</strong> showed also a significant <strong>in</strong>crease<br />

<strong>in</strong> aspartate transam<strong>in</strong>ase enzyme (AST) at high dose<br />

(4 mg <strong>ammonium</strong> <strong>chloride</strong>/ day) <strong>of</strong> <strong>treated</strong> group<br />

<strong>with</strong> <strong>ammonium</strong> <strong>chloride</strong>, <strong>and</strong> significant decrease <strong>in</strong><br />

alkal<strong>in</strong>e phosphatase <strong>with</strong> high dose only compared<br />

<strong>with</strong> control group. The alan<strong>in</strong>e transam<strong>in</strong>ase level <strong>in</strong><br />

two <strong>treated</strong> groups was not affected by treatment as<br />

compared <strong>with</strong> control (Table 1). The <strong>in</strong>creased<br />

activities <strong>of</strong> these serum markers observed <strong>in</strong> this<br />

<strong>study</strong> correspond to considerable <strong>liver</strong> damage<br />

<strong>in</strong>duced <strong>in</strong> <strong>ammonium</strong> <strong>chloride</strong> <strong>mice</strong>. Moreover, the<br />

estimation <strong>in</strong> serum is useful quantitative marker to<br />

<strong>in</strong>dicate hepatocellular damage (Sallie et al., 1991).<br />

Serum AST, ALT <strong>and</strong> ALP are the sensitive markers<br />

employed <strong>in</strong> the diagnosis <strong>of</strong> <strong>liver</strong> diseases. When the<br />

<strong>liver</strong> cell plasma membrane is damaged, numerous<br />

enzymes normally located <strong>in</strong> the cytosol are released<br />

<strong>in</strong>to the blood stream (Rajesh <strong>and</strong> Latha, 2004).<br />

Furthermore, the present <strong>study</strong> showed a significant<br />

decrease <strong>in</strong> serum creat<strong>in</strong><strong>in</strong>e level <strong>of</strong> <strong>mice</strong> <strong>treated</strong><br />

<strong>with</strong> both doses (2 <strong>and</strong> 4mg <strong>ammonium</strong> <strong>chloride</strong>) as<br />

shown <strong>in</strong> table (2), <strong>and</strong> no significant effect <strong>in</strong> serum<br />

urea <strong>with</strong> the two doses, besides a significant decrease<br />

<strong>in</strong> total prote<strong>in</strong> level <strong>with</strong> high dose compared <strong>with</strong><br />

the control group. The decreas<strong>in</strong>g <strong>of</strong> serum creat<strong>in</strong><strong>in</strong>e<br />

may be due to the decreas<strong>in</strong>g <strong>of</strong> serum total prote<strong>in</strong>.<br />

The free radicals affect the activity <strong>of</strong> skeletal muscles<br />

190 Al-Ali et al.


Int. J. Biosci. 2016<br />

<strong>and</strong> thereby cause decreas<strong>in</strong>g <strong>of</strong> serum creat<strong>in</strong><strong>in</strong>e<br />

(Kumar et al., 2010). Also, they cause oxidation <strong>of</strong><br />

molecular prote<strong>in</strong> <strong>in</strong> serum <strong>and</strong> this may result <strong>in</strong><br />

decreas<strong>in</strong>g the total prote<strong>in</strong> <strong>in</strong> serum (Ujjwal <strong>and</strong><br />

Dey, 2010). Mostafa et al. (2009) mentioned that the<br />

free radicals caused a significant decrease <strong>in</strong> plasma<br />

prote<strong>in</strong>s.<br />

Previous reports stated that <strong>ammonium</strong> (<strong>chloride</strong>/<br />

acetate) salt <strong>in</strong>duces ammonia toxicity party via<br />

oxidative stress, which leads to lipid peroxidation <strong>and</strong><br />

free- radical generation (Essa <strong>and</strong> Subramanian,<br />

2006). Moreover, the excess <strong>of</strong> ammonia <strong>in</strong>toxication<br />

leads to excessive activation <strong>of</strong> N-methyl-D aspartate<br />

(NMDA) receptors lead<strong>in</strong>g to neuronal degeneration<br />

<strong>and</strong> death (Subash <strong>and</strong> Subramanian, 2010). Also, the<br />

elevated levels <strong>of</strong> circulatory <strong>liver</strong>- markers <strong>and</strong> lipid<br />

peroxidation products <strong>in</strong> <strong>ammonium</strong> <strong>chloride</strong> <strong>in</strong> rats<br />

might be due to the <strong>liver</strong> damage caused by ammonia<strong>in</strong>duced<br />

free radical generation (Essa <strong>and</strong><br />

Subramanian, 2006; Thenmozhi <strong>and</strong> Subramanian,<br />

2011).<br />

In the present <strong>study</strong>, the adm<strong>in</strong>istration <strong>of</strong><br />

<strong>ammonium</strong> <strong>chloride</strong> caused a significant <strong>in</strong>crease <strong>in</strong><br />

the levels <strong>of</strong> serum lipids (cholesterol <strong>and</strong><br />

triglycerides as <strong>in</strong>dicated <strong>in</strong> Table (3). These f<strong>in</strong>d<strong>in</strong>gs<br />

<strong>in</strong>dicate that hyperammoemia may be accompanied<br />

by complication <strong>of</strong> atherosclerosis. Some studies<br />

showed that the levels <strong>of</strong> serum <strong>and</strong> tissue lipid were<br />

elevated dur<strong>in</strong>g hyperammonemic conditions (Lena<br />

<strong>and</strong> Subramanian, 2004; Lena <strong>and</strong> Subramanian,<br />

2004; Eassa et al. 2010; Subash <strong>and</strong> Subramanian,<br />

2012). It has been reported that <strong>ammonium</strong><br />

(<strong>chloride</strong>/acetate) salts may deplete levels <strong>of</strong> α-KG<br />

<strong>and</strong> other Krebs cycle <strong>in</strong>termediates (Lena <strong>and</strong><br />

Subramanian; 2004; Essa <strong>and</strong> Subramanian, 2006)<br />

<strong>and</strong> thus elevate the levels <strong>of</strong> acetyl coenzyme A. This<br />

acetyl Co A may be used for the synthesis <strong>of</strong> fatty<br />

acids <strong>and</strong> cholesterol, s<strong>in</strong>ce fatty acids <strong>of</strong> different<br />

sources are used as substrates for synthesiz<strong>in</strong>g<br />

triglycerides <strong>and</strong> phospholipids. The elevated levels <strong>of</strong><br />

acetyl CoA may <strong>in</strong>crease levels <strong>of</strong> lipid pr<strong>of</strong>ile (free<br />

fatty acids, triacylglycerols, phospholipids <strong>and</strong><br />

cholesterol). Another important function <strong>of</strong> α-KG<br />

occurs <strong>in</strong> the formation <strong>of</strong> carnit<strong>in</strong>e (Vijayakumar <strong>and</strong><br />

Subramanian, 2010). Carnit<strong>in</strong>e acts as a carrier <strong>of</strong><br />

fatty acids <strong>in</strong>to cell mitochondria so that proper<br />

catabolism <strong>of</strong> fats can proceed.<br />

Conclusion<br />

In conclusion, <strong>ammonium</strong> <strong>chloride</strong> causes direct<br />

hepatotoxicity <strong>and</strong> nephrotoxicity. The results<br />

<strong>in</strong>dicate that the exposure <strong>of</strong> <strong>male</strong> <strong>mice</strong> to <strong>ammonium</strong><br />

<strong>chloride</strong> affects both <strong>liver</strong> <strong>and</strong> <strong>kidney</strong>s, <strong>and</strong> this may<br />

be due to the generation <strong>of</strong> free radicals by show<strong>in</strong>g<br />

their toxicity on <strong>liver</strong> <strong>and</strong> <strong>kidney</strong>s.<br />

Acknowledgement<br />

We would like thank Dr. Farhan Mohsen for his<br />

remarks value <strong>in</strong> paper output.<br />

References<br />

Campall JW. 1991. Excretory nitrogen metabolism.<br />

In: Prosser, C.L. (Ed.). Environmental <strong>and</strong> metabolic<br />

animal physiology. Wiley- Liss Inc., New York: 277-<br />

324.<br />

Cooper AJL, Plum F. 1987. Biochemistry <strong>and</strong><br />

physiology <strong>of</strong> bra<strong>in</strong> ammonia. Physiological Reviews<br />

67, 440-519.<br />

http://dx.doi.org/10.1016/j.ab.2015.11.0030003-<br />

2697/©<br />

Cotran RS, Kumar V, Coll<strong>in</strong>s T. 1999. Robb<strong>in</strong>s<br />

pathologic basis <strong>of</strong> diseases 6 th ed., Saunders Co.,<br />

543p.<br />

Essa MM, Ali AA, Waly MI, Guillem<strong>in</strong> GJ,<br />

Subramanian P. 2010. Effect <strong>of</strong> leaves on serum<br />

lipids <strong>in</strong> <strong>ammonium</strong> <strong>chloride</strong> <strong>in</strong>duced experimental<br />

hyperammonemic rats. International Journal <strong>of</strong><br />

Biologcal <strong>and</strong> Medical Research 3, 71-73.<br />

Essa MM, Subramanian P. 2006. Pongamia<br />

p<strong>in</strong>nata modulates oxidant- antioxidant imbalance<br />

dur<strong>in</strong>g hyperammonemic rats. Fundamental &<br />

Cl<strong>in</strong>ical Pharmacology 3, 299-303.<br />

http://dx.doi.org/10.1111/j.14728206.2006.00410.x<br />

191 Al-Ali et al.


Int. J. Biosci. 2016<br />

Essa MM, Subramanian P. 2007. Hibiscus<br />

sabdariffa affects <strong>ammonium</strong> <strong>chloride</strong>-<strong>in</strong>duced<br />

hyperammonemic rats, Evidence-Based<br />

Complementary <strong>and</strong> Alternative Medic<strong>in</strong>e (eCAM)<br />

4(3), 321-325.<br />

http://dx.doi.org/10.1093/ecam/nel087<br />

Foster Smith Pharmacy. 2010. Patient<br />

<strong>in</strong>formation sheet.<br />

139-146.<br />

http://dx.doi.org/10.1016/S0008993(00)02785-2<br />

Kosenko E, Kam<strong>in</strong>sky Y, Lopata O, Muravyov<br />

N, Kam<strong>in</strong>sky H, Hermenegilioto C, FelipoV.<br />

1998. Nitroarg<strong>in</strong><strong>in</strong>e, an <strong>in</strong>hibitor <strong>of</strong> nitric oxide<br />

syntheses, prevents changes <strong>in</strong> superoxide radical <strong>and</strong><br />

antioxidant enzymes <strong>in</strong>duced by ammonia<br />

<strong>in</strong>toxication. Metabolic Bra<strong>in</strong> Disease 13, 29-41.<br />

Gewitz HS. 1987. Reconstitution <strong>and</strong> crystallization<br />

experiments <strong>with</strong> isolated split prote<strong>in</strong>s from Bacillus<br />

stearothrmophilus ribosome’s. International Journal<br />

<strong>of</strong> Biochemistry 15(5), 887-895.<br />

Hall J. 2015. Guyton <strong>and</strong> Hall textbook <strong>of</strong> medical<br />

physiology. 13 th ed., Saunders, p1043p.<br />

Harikrishnan B, Subramanian P, Subash S.<br />

2008. Antihyperammonemia effect <strong>of</strong> Withania<br />

somnifera on ammonia <strong>in</strong>duced wistar rat. Cell <strong>and</strong><br />

Tissue Research 8, 1417-1420.<br />

Humason GL. 1972. Animal tissue techniques.<br />

3 rd ,Freeman <strong>and</strong> Company, San Francisco, 641 p.<br />

Jawad AAH. 1996. Ethological studies <strong>in</strong> assess<strong>in</strong>g<br />

the anti- aggressive <strong>effects</strong> <strong>of</strong> some Iraqi medic<strong>in</strong>al<br />

plant <strong>in</strong> <strong>laboratory</strong> <strong>mice</strong> (Mus musculus). thesis<br />

College <strong>of</strong> Education, University <strong>of</strong> Basrah: 204<br />

pp.(In Arabic).<br />

K<strong>in</strong>g PR, K<strong>in</strong>g EJ. 1954. Estimation <strong>of</strong> plasma<br />

phosphatase by determ<strong>in</strong>ation <strong>of</strong> hydrolysed phenol<br />

<strong>with</strong> am<strong>in</strong>o-antipyr<strong>in</strong>e. Journal <strong>of</strong> Cl<strong>in</strong>ical Pathology<br />

7, 322-326.<br />

Klaassen CD, Watk<strong>in</strong>s JB. 1999. Casarett <strong>and</strong><br />

Doull’s toxicology: The basic science <strong>of</strong> poisons, 5 th<br />

ed., McGraw Hill, New York: P816 p.<br />

Kosenko E, Kam<strong>in</strong>sky Y, Stavroskaya IG,<br />

Felipo V. 2000. Alternation <strong>of</strong> mitochondrial<br />

calcium by ammonia-reduced activation <strong>of</strong> NMDA<br />

receptor <strong>in</strong> rat bra<strong>in</strong> <strong>in</strong> vivo. Bra<strong>in</strong> Research 880,<br />

Kumar R, Malhotra S, Kumar D. 2010.<br />

Antibiotic <strong>and</strong> free radical scaveng<strong>in</strong>g bpotential <strong>of</strong><br />

Euphorbia hirta flower extract.<br />

Journal <strong>of</strong> Pharmaceutical Sciences 72(4), 533-537.<br />

http://dx.doi.org/10.4103/0250-474X.73921<br />

Lena PJ, Subraman<strong>in</strong>an P. 2004. Effects <strong>of</strong><br />

melaton<strong>in</strong> on the levels <strong>of</strong> antioxidants <strong>and</strong> lipid<br />

peroxidation products <strong>in</strong> the rats <strong>treated</strong> <strong>with</strong><br />

<strong>ammonium</strong> acetate. Pharmazie 59, 636-639.<br />

Monfort P, Felipo V. 2005. Long-term<br />

potentiation <strong>in</strong> hippocampus <strong>in</strong>volves sequential<br />

activation <strong>of</strong> soluble guanylate cycleas, Cgmpdependent<br />

prote<strong>in</strong> k<strong>in</strong>ase <strong>and</strong> Cgmp-depend<strong>in</strong>g<br />

phosphodisterase alteration <strong>in</strong> hyperammonemia.<br />

BMC. Pharmacology 5(Suppl 1), 66 o.<br />

http://dx.doi.org/10.1186/1471-2210-5-S1-P66<br />

Mori S, Kaneko H, Mitsuma T. 1998.<br />

Implications <strong>of</strong> gastric topical bioactive peptides <strong>in</strong><br />

ammonia-<strong>in</strong>duced acute gastric mucosal lesions <strong>in</strong><br />

rats. Sc<strong>and</strong><strong>in</strong>avian Journal <strong>of</strong> Gastroenterology<br />

33(4), 386-393.<br />

http://dx.doi.org/10.1080/00365529850171017<br />

Mostafa A, Saleh M, Bassam A, Samera A.<br />

2009. Oxidative <strong>in</strong> blood <strong>of</strong> camels (Camelus<br />

dromedarius) naturally <strong>in</strong>fected <strong>with</strong> Trypanosoma<br />

evansi. Veter<strong>in</strong>ary Parasitology 162(3-4), 192-199.<br />

http://dx.doi.org/10.1016/j.vetpar.2009.03.035<br />

Nelson DL, Lehn<strong>in</strong>ger AL, Cox MM. 2008.<br />

Leh<strong>in</strong><strong>in</strong>ger pr<strong>in</strong>ciples <strong>of</strong> Biochemistry. W. H.<br />

Freeman, London: 1100 p.<br />

192 Al-Ali et al.


Int. J. Biosci. 2016<br />

Pollak VE, Mattenheimer EH, De Bru<strong>in</strong> H,<br />

We<strong>in</strong>man KJ. 1965.Experimental metabolic<br />

acidosis. The enzymatic basis <strong>of</strong> ammonia production<br />

by the dog <strong>kidney</strong>. Journal <strong>of</strong> Cl<strong>in</strong>ical Investigation<br />

44(2), 169–181.<br />

http://dx.doi.org/10.1172%2FJCI105132<br />

Subash S, Subramanian P. 2009. Mor<strong>in</strong> a<br />

flavonoid exerts antioxidant potential <strong>in</strong> chronic<br />

hyperammonemic rats: A biochemical <strong>and</strong><br />

<strong>histopathological</strong> <strong>study</strong>. Molecular <strong>and</strong> Cellular<br />

Biochemistry 327, 153-161.<br />

http://dx.doi.org/10.1007/s11010-009-0053-1<br />

Rajesh MG, Latha MS. 2004. Prelim<strong>in</strong>ary<br />

evaluation <strong>of</strong> antihepatotoxic activity <strong>of</strong> kamilari, a<br />

poly herbal formulation. Journal <strong>of</strong><br />

Ethnopharmacolog 91(1), 99-104.<br />

http://dx.doi.org/10.1016/j.jep.2003.12.011<br />

R<strong>and</strong>all DJ, Wright PA. 1987. Ammonia<br />

distribution <strong>and</strong> excretion <strong>in</strong> fish.Fish Physiology <strong>and</strong><br />

Biochemistry 3, 107-120.<br />

Reitman S, Frankel S. 1957. A colorimetric<br />

method for the determ<strong>in</strong>ation <strong>of</strong> sperm GOT <strong>and</strong><br />

GPT. American Journal <strong>of</strong> Cl<strong>in</strong>ical Pathology 28, 56-<br />

63.<br />

Rub<strong>in</strong> E, Reisner HM. 2014. Essential <strong>of</strong> Rub<strong>in</strong>'s<br />

pathology, 6 th ed., Wolters Kluwer, Lipp<strong>in</strong>cott<br />

William <strong>and</strong> Wilk<strong>in</strong>s: 826 p.<br />

Sallie R, Tredger JM, William R. 1991. Drugs<br />

<strong>and</strong> the <strong>liver</strong>. Biopharmaceut. Pharmaceutical<br />

Disposal 12, 251-259.<br />

Schliess F, Görg B, Fischer R, Desjard<strong>in</strong>s P,<br />

Bidmon HJ, Herrmann A, Butterworth RF,<br />

Zilles K, Häuss<strong>in</strong>ger D. 2002. Ammonia <strong>in</strong>duces<br />

MK-801- sensitive nitrate <strong>and</strong> phosphorylation <strong>of</strong><br />

prote<strong>in</strong> tyros<strong>in</strong>e <strong>and</strong> residues <strong>in</strong> rat astrocytes. The<br />

FASEB Journal 16(7), 739-741.<br />

Subash S, Subramanian P. 2010. Mor<strong>in</strong> improves<br />

the expression <strong>of</strong> urea cycle enzymes <strong>in</strong><br />

hyperammonemic rats. Journal <strong>of</strong> Pharmacy<br />

Research 3(6), 2557-2560.<br />

Subash S, Subramanian P. 2012. Protective effect<br />

<strong>of</strong> mor<strong>in</strong> on lipid peroxidation <strong>and</strong> lipid pr<strong>of</strong>ile <strong>in</strong><br />

<strong>ammonium</strong> <strong>chloride</strong>-<strong>in</strong>duced hyperammonemic rats.<br />

Asian Pacific Journal <strong>of</strong> Tropical Medic<strong>in</strong>e 1(2), 103-<br />

106.<br />

http://dx.doi.org/10.1016/S2222-1808(12)60025-5<br />

Takeuchi K, Ohuchi T, Harada H. 1995. Irritant<br />

<strong>and</strong> protective action <strong>of</strong> urea-unease ammonia <strong>in</strong> rat<br />

gastric mucosa. Digestive Diseases <strong>and</strong> Sciences<br />

40(2), 274-281.<br />

Thenmozhi AJ, Subramanian P. 2011.<br />

Antioxidant potential <strong>of</strong> Momordica charantia <strong>in</strong><br />

<strong>ammonium</strong> <strong>chloride</strong>- <strong>in</strong>duced hyperammonemic rats.<br />

Evidence-Based Complementary <strong>and</strong> Alternative<br />

Medic<strong>in</strong>e. Article ID 612023, 7 pages.<br />

http://dx.doi.org/10.1093/ecam/nep227<br />

Thophon S, Kruatrachue M, Upthan ES,<br />

Pokethitiyook P, Sahaphong S, Jarikuan S.<br />

2003. Histopathological alterations <strong>of</strong> white seabass,<br />

Lates calcarifer, <strong>in</strong> acute <strong>and</strong> subchronic cadmium<br />

exposure. Environmental Pollution 121, 307–320.<br />

Stevens A, Lowe J, Scott I, Damjanov I. 2009.<br />

Core pathology, 3 rh ed. Mosby, Elsvier, London: 632<br />

p.<br />

Steven W, Rajiv J, Dejong H. 2009. Interorgan<br />

ammonia traffick<strong>in</strong>g <strong>in</strong> <strong>liver</strong> disease. Metabolic Bra<strong>in</strong><br />

Disease 24, 169-181.<br />

http://dx.doi.org/10.1007/s11011-008-9122-5<br />

Tietz NW. 1995. Cl<strong>in</strong>ical guide to <strong>laboratory</strong> <strong>tests</strong>,<br />

3 rd ed. W. B. Saunders, Philadelphia: 610-611 p.<br />

Treem WR. 1994. Inherited <strong>and</strong> acquired<br />

syndromes <strong>of</strong> hyperammonemia <strong>and</strong> encephalopathy<br />

<strong>in</strong> children. Sem<strong>in</strong>ars <strong>in</strong> Liver Disease 14, 236-258.<br />

Ujjwal K, Dey S. 2010. Evaluation <strong>of</strong> organ<br />

193 Al-Ali et al.


Int. J. Biosci. 2016<br />

function <strong>and</strong> oxidant/ antioxidant status <strong>in</strong> goats <strong>with</strong><br />

sarcoptic mange. Tropical Animal Health <strong>and</strong><br />

Production 2, 1663-1668.<br />

http://dx.doi.org/10.1007/s11250-010-9618-y<br />

Vijayakumar N, Subramanian P. 2010.<br />

Neuroprotective effect <strong>of</strong> Semecarpus anacardium<br />

aga<strong>in</strong>st hyperammonemia <strong>in</strong> rat. Journal <strong>of</strong> Pharmacy<br />

Research 3, 1564-1568.<br />

http://jpronl<strong>in</strong>e.<strong>in</strong>fo/article/view/2815/1489<br />

Wills MR, Savory J. 1981. Biochemistry <strong>of</strong> renal<br />

failure. Annals <strong>of</strong> Cl<strong>in</strong>ical <strong>and</strong> Laboratory Science<br />

11(4), 292-299.<br />

Williams M. 2006.The Merck <strong>in</strong>dex: An<br />

encyclopedia <strong>of</strong> chemicals, drugs, <strong>and</strong> biologicals, 14 th<br />

ed., Station, New Jersey: 2564 p.<br />

Wood CM. 1993. Ammonia <strong>and</strong> urea metabolism<br />

<strong>and</strong> excretion. In: Evans, D.H. (Ed.). The physiology<br />

<strong>of</strong> fishes. CRC Press, Boca Raton, Florida: 379-425 p.<br />

194 Al-Ali et al.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!