18.06.2018 Views

Semrock Master Catalog 2018

Semrock Master Catalog 2018

Semrock Master Catalog 2018

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Working with Optical Density<br />

Optical Density – or OD, as it is commonly called – is a convenient tool to describe the transmission of light through a highly<br />

blocking optical filter (when the transmission is extremely small). OD is simply defined as the negative of the logarithm (base<br />

10) of the transmission, where the transmission varies between 0 and 1 (OD = – log 10<br />

(T)). Therefore, the transmission is<br />

simply 10 raised to the power of minus the OD (T = 10 – OD ). The graph below left demonstrates the power of OD: a<br />

variation in transmission of six orders of magnitude (1,000,000 times) is described very simply by OD values ranging between<br />

0 and 6. The table of examples below middle, and the list of “rules” below right, provide some handy tips for quickly<br />

converting between OD and transmission. Multiplying and dividing the transmission by two and ten is equivalent to<br />

subtracting and adding 0.3 and 1 in OD, respectively.<br />

Optical Density<br />

Optical Density<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

1E-6 1E-5 1E-4 1E-3 0.01 0.1 1<br />

Transmission (0-1)<br />

4<br />

Edge 5 Filters vs. Notch Filters for Raman Instrumentation<br />

6<br />

RazorEdge ® Filter Advantages: Edge Design<br />

7<br />

Notch Design<br />

Steepest possible edge for Laser looking Line at the smallest<br />

8<br />

Stokes 610 615 shifts 620 625 630 635 640 645 650 655 660<br />

Wavelength (nm)<br />

0<br />

0<br />

1<br />

1<br />

2<br />

2<br />

3<br />

3<br />

the laser 4 wavelength (on <strong>Semrock</strong> U-grade edge filters), these filters don’t need to be angle-tuned!<br />

4<br />

5<br />

5<br />

6<br />

Edge Design<br />

6<br />

7<br />

Notch Design<br />

Edge Design<br />

Laser Line<br />

7<br />

Notch Design<br />

shift toward 8 shorter wavelengths as the angle of incidence is increased from Laser Line 0° up to about 14°.<br />

610 615 620 625 630 635 640 645 650 655 660<br />

8<br />

610 615 620 625 630 635 640 645 650 655 660<br />

Wavelength (nm)<br />

Wavelength (nm)<br />

Optical Density<br />

Transmission (%)<br />

TECHNICAL NOTE<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0<br />

1<br />

2<br />

TECHNICAL NOTE<br />

3<br />

Largest blocking of the laser line for maximum<br />

laser rejection<br />

Edge Measured<br />

Notch Measured<br />

Laser Line<br />

550 600 650 700 750 800<br />

Wavelength (nm)<br />

Optical Density<br />

Optical Density<br />

0<br />

1<br />

2<br />

3<br />

4<br />

5<br />

Transmission OD<br />

1 0<br />

0.5 0.3<br />

0.2 0.7<br />

0.1 1.0<br />

0.05 1.3<br />

0.02 1.7<br />

0.01 2.0<br />

0.005 2.3<br />

0.002 2.7<br />

0.001 3.0<br />

6<br />

Edge Design<br />

7<br />

Notch Design<br />

Laser Line<br />

8<br />

610 615 620 625 630 635 640 645 650 655 660<br />

Wavelength (nm)<br />

Optical Density<br />

0<br />

1<br />

2<br />

3<br />

4<br />

5<br />

The “1” Rule<br />

T = 1 → OD = 0<br />

The “x 2” Rule<br />

T x 2 → OD – 0.3<br />

The “÷ 2” Rule<br />

T ÷ 2 → OD + 0.3<br />

The “x 10” Rule<br />

T x 10 → OD – 1<br />

The “÷ 10” Rule<br />

T ÷ 10 → OD + 1<br />

StopLine ® Notch Filter Advantages:<br />

Measure Stokes and Anti-Stokes signals simultaneously<br />

Greater angle-tunability and bandwidth for use with variable<br />

laser lines<br />

The graph below left illustrates the ability of a long-wave-pass (LWP) filter to get extremely close to the laser line. The graph<br />

in the center compares the steepness of an edge filter to that of a notch filter. A steeper edge means a narrower transition<br />

width from the laser line to the high-transmission region of the filter. With transition widths guaranteed to be below 1% of<br />

The graph on the right shows the relative tuning ranges that can be achieved for edge filters and notch filters. <strong>Semrock</strong> edge<br />

filters can be tuned up to 0.3% of the laser wavelength. The filters shift toward shorter wavelengths as the angle of incidence<br />

is increased from 0° to about 8°. <strong>Semrock</strong> notch filters can be tuned up to 1.0% of the laser wavelength. These filters also<br />

6<br />

Edge Design<br />

7<br />

Notch Design<br />

Laser Line<br />

8<br />

610 615 620 625 630 635 640 645 650 655 660<br />

Wavelength (nm)<br />

NIR Filters Mirrors Polarizers<br />

Edge<br />

Filters<br />

Dichroic<br />

Beamsplitters<br />

Laser-line<br />

Filters<br />

Laser Diode<br />

Filters<br />

Notch<br />

Filters<br />

Lamp Clean-up<br />

Filters<br />

0<br />

(%)<br />

100<br />

90<br />

80<br />

70<br />

Density<br />

1<br />

2<br />

3<br />

107<br />

More

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!