14.12.2012 Views

on Fuel Tank Safety - EASA

on Fuel Tank Safety - EASA

on Fuel Tank Safety - EASA

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Federal Aviati<strong>on</strong><br />

Administrati<strong>on</strong><br />

<strong>Fuel</strong> <strong>Tank</strong> <strong>Safety</strong> Enhancements of<br />

Large Transport Airplanes<br />

57 th Annual Internati<strong>on</strong>al Air <strong>Safety</strong><br />

Seminar<br />

November 15-18, 2004<br />

Shanghai, China<br />

Daniel I. Cheney<br />

Mgr, <strong>Safety</strong> Programs<br />

Transport Airplane Directorate, FAA<br />

0


Overview<br />

�� Brief History<br />

�� SFAR 88 Igniti<strong>on</strong> Preventi<strong>on</strong><br />

�� Flammability Reducti<strong>on</strong><br />

– Balanced Approach<br />

�� Summary<br />

�� Implementati<strong>on</strong> Plan<br />

1


Brief History<br />

�� Despite various efforts to reduce the<br />

risk of fuel tank explosi<strong>on</strong>s through<br />

other means, the fundamental safety<br />

approach remains preventing the<br />

presence of igniti<strong>on</strong><br />

2


Brief History<br />

�� Since the 1960’s, there have been FIVE<br />

key accidents involving fuel tank<br />

explosi<strong>on</strong>s which we now believe call<br />

into questi<strong>on</strong> this fundamental safety<br />

strategy applied to fuel systems of large<br />

commercial airplanes<br />

3


Lightning Strikes – 2 Key Accidents<br />

(B707 – 1963, B747 – 1976)<br />

Commercial Airplane Lightning Strike During<br />

Takeoff from an Airport in Japan<br />

4


707 Elkt<strong>on</strong> MD (1963)<br />

Pan Am B707-100; N709PA<br />

5


707 Elkt<strong>on</strong> MD (December 8, 1963)<br />

�� While holding at 5,000 feet, left wing<br />

struck by lightning<br />

�� Left wing exploded<br />

�� In-flight In flight break-up, break up, 81 killed<br />

�� Airplane fueled with mixture of Jet A<br />

and JP-4 JP 4 fuels<br />

6


707 Elkt<strong>on</strong> MD (1963)<br />

Porti<strong>on</strong> of fuselage of Pan Am Flight #214<br />

in cornfield near Elkt<strong>on</strong>, MD<br />

7


747 Madrid (May 9, 1976)<br />

�� Airplane’s left wing was struck by<br />

lightning while descending to 5000 ft<br />

�� Left wing exploded<br />

�� In-flight In flight break-up, break up, 17 killed<br />

�� Airplane fueled with JP-4 JP 4 fuel<br />

8


747 Madrid (May 9, 1976)<br />

Madrid, B-747, 5-8104<br />

Left Wing Rec<strong>on</strong>structi<strong>on</strong><br />

9


N<strong>on</strong>-Lightning N<strong>on</strong> Lightning Caused <strong>Tank</strong><br />

Explosi<strong>on</strong>s – 3 Key Accidents<br />

B737 – 1090, B747 – 1996, B737 - 2001<br />

Frayed In-<strong>Tank</strong> Wire<br />

10


737 Manila (May 11, 1990)<br />

�� While pushing back from gate, empty<br />

center fuel tank exploded<br />

�� Airplane destroyed by fire<br />

�� 8 killed<br />

�� Airplane had been fueled with Jet A fuel<br />

11


737 Manila (1990)<br />

Philippine Air Lines, B737-300; EI-BZG<br />

12


747 New York (July 17, 1996)<br />

�� While climbing through 13,000 feet,<br />

empty center tank exploded<br />

�� In-flight In flight break-up break up of airplane<br />

�� 230 killed<br />

�� Airplane had been fueled with Jet A<br />

13


747 New York (1996)<br />

TWA (Flight 800), B747-100; N93119<br />

14


737 Bangkok (March 3, 2001)<br />

�� While parked at gate, empty center<br />

tank exploded<br />

�� Airplane destroyed by fire<br />

�� 1 flight attendant killed<br />

�� Airplane had been fueled with Jet A fuel<br />

15


737 Bangkok (2001)<br />

Thai Airways, B737-400; HS-TDC<br />

16


Igniti<strong>on</strong> Sources for Key Accidents<br />

Never Identified<br />

�� Massive resources expended during Five<br />

investigati<strong>on</strong>s<br />

�� Elkt<strong>on</strong> 707 - 1963<br />

�� Madrid 747 - 1976<br />

�� Manila 737 - 1990<br />

�� New York 747 - 1996<br />

�� Bangkok 737 - 2001<br />

Exact source of igniti<strong>on</strong> never determined<br />

�� Corrective acti<strong>on</strong>s based <strong>on</strong> most likely scenarios<br />

�� Exact source of igniti<strong>on</strong> never determined<br />

17


Igniti<strong>on</strong> Sources for Key Accidents<br />

Never Identified<br />

�� All FIVE accidents involved explosi<strong>on</strong>s of what<br />

are now being referred to as “High Flammability”<br />

fuel tanks<br />

�� >7% flammability exposure <strong>on</strong> a worldwide basis<br />

�� Highlights uncertain nature of igniti<strong>on</strong> source<br />

preventi<strong>on</strong> strategy<br />

�� Emphasizes need for an independent layer of<br />

protecti<strong>on</strong><br />

�� “Balanced Approach” needed<br />

18


<strong>Fuel</strong> <strong>Tank</strong> Flammability Exposure<br />

Typical<br />

Main <strong>Tank</strong>s 2-4%<br />

Tail <strong>Tank</strong>s 2-4%<br />

Body <strong>Tank</strong>s<br />

• Pressurized 20%<br />

Center Wing <strong>Tank</strong> with Adjacent Pack Bays 15-30%,<br />

(Boeing, Airbus)<br />

19<br />

Center Wing <strong>Tank</strong>s without Pack Bays 4-7%


<strong>Fuel</strong> Types and <strong>Tank</strong> Locati<strong>on</strong>s have<br />

Very Different Service Histories<br />

�� A wing tank fueled with JP-4 JP 4 has<br />

approximately the same world wide exposure<br />

to flammability as an empty heated center<br />

tank with Jet A.<br />

�� In general, wing tanks and unheated center<br />

wing tanks fueled with Jet A have exhibited<br />

an acceptable service history.<br />

�� Wing tanks fueled with JP-4 JP 4 and empty<br />

heated center tanks fueled with Jet A have<br />

not had an acceptable service history.<br />

20


Comparis<strong>on</strong> of Flammability<br />

Envelopes JP 4 and Jet A<br />

21


Flammability Envelope<br />

1 Joule Spark, C<strong>on</strong>venti<strong>on</strong>al Aluminum Transport, Air C<strong>on</strong>diti<strong>on</strong>ing<br />

Systems Located Underneath Center Wing <strong>Tank</strong> (CWT)<br />

Altitude 1000's ft.<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Flammable Z<strong>on</strong>es<br />

Jet A<br />

JP4<br />

Flammability Envelope<br />

Wing<br />

Jet A<br />

-50 0 50 100 150 200<br />

Temperature Deg F<br />

CWT<br />

LFL<br />

UFL<br />

Heated CWT<br />

Profile<br />

Unheated<br />

Wing <strong>Tank</strong><br />

Profile<br />

22


Brief History - Summary<br />

�� TWA 800 brought a realizati<strong>on</strong> that some<br />

tanks could be flammable for a large porti<strong>on</strong><br />

of their operati<strong>on</strong>al time.<br />

�� U.S. NTSB “Most Most Wanted List”: List : Flammability<br />

Reducti<strong>on</strong><br />

�� ””preclude preclude the the operati<strong>on</strong> operati<strong>on</strong> of of transport transport category category<br />

airplanes airplanes with with explosive explosive fuel--air fuel air mixtures mixtures in in the the<br />

fuel fuel tank”” tank<br />

�� TWA 800 recommendati<strong>on</strong><br />

23


SFAR 88 Igniti<strong>on</strong> Preventi<strong>on</strong><br />

�� Efforts to resolve TWA 800 led the FAA<br />

to c<strong>on</strong>clude that:<br />

1. Many current airplanes had similar short<br />

comings in their igniti<strong>on</strong> preventi<strong>on</strong><br />

approaches<br />

2. An additi<strong>on</strong>al independent layer of<br />

protecti<strong>on</strong> is needed to “Back-Up” “Back Up” the<br />

igniti<strong>on</strong> preventi<strong>on</strong> strategy<br />

24


SFAR 88 Igniti<strong>on</strong> Preventi<strong>on</strong><br />

�� In resp<strong>on</strong>se to these findings, the FAA<br />

issued Special Federal Aviati<strong>on</strong><br />

Regulati<strong>on</strong> No. 88 in June of 2001.<br />

�� Re-examine Re examine existing commercial fleet<br />

related to igniti<strong>on</strong> preventi<strong>on</strong><br />

�� Implement safety enhancements related<br />

to the findings of these examinati<strong>on</strong>s<br />

25


<strong>Fuel</strong> <strong>Tank</strong> <strong>Safety</strong> History<br />

(FIVE Key Accidents) 1960’s-1990 1990-1999 2000-Present<br />

5 Key Accidents<br />

<strong>Safety</strong> Approach:<br />

Igniti<strong>on</strong> Sources<br />

Igniti<strong>on</strong><br />

<strong>Fuel</strong> Air<br />

Flammability<br />

707 Elkt<strong>on</strong> MD<br />

747 Madrid<br />

(Lighting)<br />

Prevent igniti<strong>on</strong><br />

sources<br />

(improvements to<br />

affected model<br />

after accident)<br />

Some R&D. Not<br />

found to be<br />

practical. No<br />

requirements<br />

established.<br />

737 Manila<br />

747 New York<br />

(Not Lighting)<br />

Re-examine design<br />

and maintenance<br />

to better prevent<br />

igniti<strong>on</strong> sources<br />

(SFAR 88)<br />

Whole Fleet<br />

Soluti<strong>on</strong><br />

FAA research led<br />

to inerting<br />

developments.<br />

Industry (ARAC)<br />

deemed it<br />

impractical.<br />

737 Bangkok<br />

(Not Lighting)<br />

Recogniti<strong>on</strong> that<br />

our best efforts<br />

may not be<br />

adequate to<br />

prevent all<br />

explosi<strong>on</strong>s<br />

FAA Simplified<br />

system developed.<br />

Recognized that<br />

inerting is practical,<br />

and may be needed<br />

to achieve balanced<br />

soluti<strong>on</strong><br />

26


SFAR 88 Less<strong>on</strong>s Learned<br />

�� Goal of SFAR 88 was to preclude igniti<strong>on</strong> sources<br />

�� <strong>Safety</strong> Assessments were very valuable<br />

�� Revealed unexpected igniti<strong>on</strong> sources<br />

�� Difficulty in identifying all igniti<strong>on</strong> sources<br />

�� Number of previously unknown failures found<br />

�� C<strong>on</strong>tinuing threat from still unknown failures<br />

�� Unrealistic to expect we can eliminate all igniti<strong>on</strong><br />

sources<br />

�� Must c<strong>on</strong>sider flammability reducti<strong>on</strong> of high<br />

flammability tanks as an integral part of system<br />

safety<br />

27


The Fire Triangle<br />

Oxygen<br />

Igniti<strong>on</strong><br />

Flammability Reducti<strong>on</strong><br />

Igniti<strong>on</strong> Preventi<strong>on</strong><br />

<strong>Fuel</strong> Vapor<br />

28


SFAR 88 Findings<br />

External & Internal<br />

Wiring<br />

<strong>Fuel</strong> Pumps<br />

Recurring<br />

Maintenance<br />

Lightning<br />

Flight Manual<br />

Procedures<br />

Motor Operated Valves<br />

FQIS<br />

29


Service Experience<br />

ARC TO LOWER WING SKIN<br />

ARC THROUGH CONDUIT<br />

ARC THROUGH PUMP HOUSING<br />

<strong>Fuel</strong> Pump Internal<br />

Damage/Overheat<br />

30


Flammability Reducti<strong>on</strong><br />

�� In 1998 and again in 2001, the FAA<br />

tasked the U.S. Aviati<strong>on</strong> Rulemaking<br />

and Advisory Committee (ARAC) to<br />

explore ways to reduce flammability in<br />

fuel tank systems<br />

�� Direct resp<strong>on</strong>se to TWA 800<br />

31


Flammability Reducti<strong>on</strong><br />

�� While both ARAC committees c<strong>on</strong>cluded<br />

that flammability reducti<strong>on</strong> efforts<br />

would be valuable—existing valuable existing technology<br />

was c<strong>on</strong>sidered not practical for<br />

commercial aviati<strong>on</strong><br />

�� Weight – too heavy<br />

�� Cost – too expensive<br />

�� Reliability – too low<br />

�� FAA c<strong>on</strong>tinued technology R&D<br />

32


<strong>Fuel</strong> <strong>Tank</strong> <strong>Safety</strong> – Recent History<br />

1996<br />

TWA 800<br />

ARAC<br />

1<br />

NTSB<br />

TWA 800<br />

Hearing<br />

Inerting<br />

Studies<br />

Started<br />

ARAC<br />

2<br />

Flammability Reducti<strong>on</strong><br />

Igniti<strong>on</strong> Preventi<strong>on</strong><br />

FAA FRS<br />

Dem<strong>on</strong>strator<br />

Today<br />

FRS<br />

Implementati<strong>on</strong><br />

2004 +<br />

THAI SFAR 88<br />

737 Reviews Igniti<strong>on</strong><br />

Changes<br />

SFAR 88<br />

Rule<br />

Available<br />

First AD’s<br />

released<br />

33


Flammability Reducti<strong>on</strong><br />

�� Main “Enablers” which made<br />

technology “Breakthrough” possible :<br />

1. Membrane performance at lower ∆P<br />

2. O2 C<strong>on</strong>centrati<strong>on</strong> (9% vs. 12%)<br />

3. Use of simple system OK (single string)<br />

�� FAA focused testing in these areas<br />

34


Breakthrough - Performance<br />

at lower ∆P<br />

�� Performance analysis and subsequent testing showed<br />

Air Separati<strong>on</strong> Module technology would work at low<br />

pressures, 10 to 40 psig versus 50 to 100 psig used<br />

commercially<br />

35


Breakthrough - O C<strong>on</strong>centrati<strong>on</strong><br />

2<br />

�� Testing dem<strong>on</strong>strated that higher O 2<br />

levels provided adequate protecti<strong>on</strong><br />

�� Adequate inerting obtained <strong>on</strong> the ground<br />

with approximately 12% O 2<br />

�� Previous 9% O 2 levels linked to military<br />

combat threats<br />

�� Less Nitrogen needed at altitude<br />

�� 15.5% Oxygen adequate at 40000ft<br />

36


Nitrogen Inerting Test Results<br />

Peak Explosi<strong>on</strong> Pressure (psig)<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

9 10 11 12 13 14 15 16 17 18 19 20 21<br />

%Oxygen in Ullage<br />

Sea-Level Nitrogen Inerting Test Results<br />

Sea-Level Nitrogen Inerting Test Results<br />

Source:Boeing Literature Review, References quoted <strong>on</strong> Chart<br />

AFFDL-TR-78-66 Spark<br />

JTCG/AS-90-T-004 19J<br />

Igniter at -2000ft<br />

JTCG/AS-90-T-004 19J<br />

Igniter at SL<br />

AFFDL-TR-78-66 Table<br />

1 23mm HEI<br />

AFFDL-TR-78-66 Table<br />

1 Spark<br />

37


Breakthrough - Simple System<br />

Shut Off Valve<br />

Existing Bleed Line<br />

Heat<br />

Exchanger<br />

Existing Cooling Inlet<br />

Overboard Exit<br />

Temp c<strong>on</strong>trol valve<br />

Filter<br />

Cooling Air,<br />

Flow reverses <strong>on</strong> Ground<br />

Heater<br />

Waste Flow (O2 rich)<br />

ASM<br />

FAA Simple Inerting System<br />

Check/Shutoff Valve<br />

NEA Flow<br />

Center<br />

Wing<br />

<strong>Tank</strong><br />

High and Low<br />

Flow Orifices<br />

(In comm<strong>on</strong> valve)<br />

Low flow, High Purity NEA for Ground,<br />

Climb and Cruise,<br />

High Flow, Low Purity NEA for Descent<br />

38


FAA Inerting System <strong>on</strong> 747 SP<br />

39


FAA Inerting Installati<strong>on</strong> <strong>on</strong> A320<br />

40


Flight Testing Accomplished<br />

�� FAA R&D Testing (747SP, 737)<br />

�� Boeing 747-400 747 Flight Test<br />

400 Flight Test<br />

�� Engineering and Certificati<strong>on</strong> Data<br />

�� FAA/Airbus A320 Flight Test<br />

�� FAA c<strong>on</strong>cept inerting system installed in A320<br />

cargo compartment<br />

�� Airbus gained familiarity with design c<strong>on</strong>cept and<br />

system performance<br />

�� Boeing 737 & 747 Certificati<strong>on</strong> Testing<br />

�� FAA/NASA 747 Flight Test<br />

�� Initial flights performed in December 2003<br />

41


Balanced Approach<br />

to <strong>Fuel</strong> <strong>Tank</strong> <strong>Safety</strong><br />

�� FAA R&D has shown that Inerting is practical<br />

�� SFAR 88 addressed igniti<strong>on</strong> preventi<strong>on</strong> <strong>on</strong>ly<br />

�� Inerting was not seen as practical at the time SFAR 88 was<br />

issued<br />

�� Balanced Approach - Now Possible<br />

�� Combine igniti<strong>on</strong> preventi<strong>on</strong> & flammability reducti<strong>on</strong> into a<br />

single soluti<strong>on</strong><br />

42


Igniti<strong>on</strong> Preventi<strong>on</strong> Al<strong>on</strong>e<br />

(Not Balanced Approach)<br />

Attempting to “plug” all the holes in <strong>on</strong>e layer exceeds<br />

what is realistically possible.<br />

HAZARD<br />

Igniti<strong>on</strong> Preventi<strong>on</strong> Layer<br />

Holes due to:<br />

- Design issues<br />

-Aging systems<br />

- Improper Maintenance,<br />

Rework, modificati<strong>on</strong>s, etc<br />

-Unknown unknowns<br />

Flammability Layer<br />

(High Flam <strong>Tank</strong> shown)<br />

Hole due to:<br />

- High exposure to flammable<br />

vapors<br />

For over 40 years, we have been trying to<br />

prevent tank explosi<strong>on</strong>s by plugging all the<br />

holes in this layer, which is nearly<br />

impossible.<br />

ACCIDENT<br />

43


Fault Tree: Current <strong>Fuel</strong> <strong>Tank</strong> System<br />

Unbalanced Fault Tree<br />

FQIS<br />

shorts<br />

‘OR’ Gate<br />

Pump<br />

Arc<br />

‘AND’ Gate<br />

<strong>Tank</strong> Explosi<strong>on</strong><br />

Igniti<strong>on</strong> Source Ullage Flammable<br />

Pump<br />

FOD<br />

Pump<br />

Level<br />

Burn thru<br />

Sensors<br />

Lightning (many)<br />

Densitometer Valves Electrostatic<br />

}<br />

etc.<br />

44


Balanced Approach with<br />

Flammability Reducti<strong>on</strong><br />

Flammability Reducti<strong>on</strong> significantly reduces hole size in<br />

flammability layer, virtually eliminating future accidents.<br />

HAZARD<br />

Igniti<strong>on</strong> Preventi<strong>on</strong> Layer<br />

- Some holes eliminated (e.g.<br />

design changes to preclude<br />

single failures)<br />

- Other holes reduced in size<br />

(human factors/ maintenance<br />

issues, unknowns, etc.)<br />

SFAR 88<br />

Flammability Layer<br />

-Reducing flammability<br />

exposure significantly reduces<br />

holes (flammability reducti<strong>on</strong>)<br />

-Small holes remain due to<br />

system performance, dispatch<br />

relief, system reliability, etc.<br />

Flammability Reducti<strong>on</strong> / Low Flammability<br />

ACCIDENT<br />

ACCIDENT<br />

PREVENTED!<br />

45


Reduced Flammability NPRM<br />

�� On Feb 17 th<br />

2004,<br />

th 2004,<br />

The FAA Administrator, Mari<strong>on</strong> C.Blakey,<br />

announced that the FAA was proceeding with<br />

a Notice of Proposed Rule Making (NPRM) to<br />

require reducti<strong>on</strong> of flammability in high<br />

flammability tanks of U.S. commercial jet<br />

transports<br />

46


Summary<br />

�� Flammability exposure is a major factor in<br />

fuel tank explosi<strong>on</strong> risk<br />

�� Simple Inerting System is now practical<br />

�� Igniti<strong>on</strong> Preventi<strong>on</strong> still major protecti<strong>on</strong><br />

strategy<br />

�� Balanced Approach of Igniti<strong>on</strong> Preventi<strong>on</strong> and<br />

Reduced Flammability can provide a<br />

substantial improvement in fuel tank safety<br />

�� FAA is moving forward to implement a<br />

reduced flammability strategy to complement<br />

the igniti<strong>on</strong> preventi<strong>on</strong> strategy<br />

47


Implementati<strong>on</strong> Plans<br />

�� Propose producti<strong>on</strong> “cut-in” “cut in” of flammability<br />

reducti<strong>on</strong> means (FRM) <strong>on</strong> high flammability<br />

tanks (Boeing & Airbus CWTs) CWTs<br />

�� Propose retrofit of FRM <strong>on</strong> existing fleet with<br />

high flammability tanks (Boeing and Airbus<br />

CWTs) CWTs<br />

�� Propose revisi<strong>on</strong> to FAR 25 to include<br />

flammability limits<br />

48


Federal Aviati<strong>on</strong><br />

Administrati<strong>on</strong><br />

Thank You for<br />

Your Attenti<strong>on</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!