14.12.2012 Views

Introduction to Rheology

Introduction to Rheology

Introduction to Rheology

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

strain<br />

10<br />

5<br />

0<br />

-5<br />

-10x10 -3<br />

0<br />

2<br />

4<br />

6<br />

time [s]<br />

strain<br />

stress<br />

Introduc)on
<strong>to</strong>
<strong>Rheology</strong>
<br />

D.
Vader,
H.Wyss
<br />

Weitzlab
group
mee)ng
tu<strong>to</strong>rial
<br />

8<br />

10<br />

δ<br />

12<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

stress [Pa]


What
is
rheology?
<br />

• <strong>Rheology</strong>
is
the
study
of
the
flow
of
maBer:
mainly
<br />

liquids
but
also
soE
solids
or
solids
under
condi)ons
in
<br />

which
they
flow
rather
than
deform
elas)cally.
It
<br />

applies
<strong>to</strong>
substances
which
have
a
complex
structure,
<br />

including
muds,
sludges,
suspensions,
polymers,
many
<br />

foods,
bodily
fluids,
and
other
biological
materials.
<br />

Cheese<br />

Foams<br />

Emulsions<br />

Biopolymers


What
is
rheology?
<br />

• The
term
rheology
was
coined
in
1920s,
and
<br />

was
inspired
by
a
Greek
quota)on,
"panta
rei",
<br />

"everything
flows".
<br />

• In
prac)ce,
rheology
is
principally
concerned
<br />

with
extending
the
"classical"
disciplines
of
<br />

elas)city
and
(New<strong>to</strong>nian)
fluid
mechanics
<strong>to</strong>
<br />

materials
whose
mechanical
behavior
cannot
<br />

be
described
with
the
classical
theories.



Basic
concepts
<br />

h<br />

L<br />

area A<br />

area A<br />

F<br />

L + ΔL<br />

F<br />

F<br />

Δx<br />

F


Simple
mechanical
elements
<br />

Elastic solid: force (stress) proportional <strong>to</strong> strain<br />

Viscous fluid: force (stress) proportional <strong>to</strong> strain rate<br />

Viscoelastic material: time scales are important<br />

Fast deformation: solid-like<br />

Slow deformation: fluid-like


Response
<strong>to</strong>
deforma)on
<br />

Step strain<br />

stress<br />

stress<br />

stress<br />

time<br />

time<br />

time<br />

time


Oscilla<strong>to</strong>ry
rheology
<br />

strain<br />

Elastic solid:<br />

Viscous fluid:<br />

10<br />

-5<br />

-10x10 -3<br />

Viscoelastic material, use:<br />

5<br />

0<br />

0<br />

2<br />

4<br />

6<br />

time [s]<br />

strain<br />

stress<br />

8<br />

10<br />

12<br />

-10<br />

Stress and strain are in phase<br />

Stress and strain are out of phase<br />

δ<br />

10<br />

5<br />

0<br />

-5<br />

stress [Pa]


Lissajou
plots
<br />

strain<br />

strain rate [1/s]<br />

10<br />

5<br />

0<br />

-5<br />

-10x10 -3<br />

10<br />

5<br />

0<br />

-5<br />

-10x10 -3<br />

0<br />

0<br />

2<br />

2<br />

4<br />

strain rate<br />

stress<br />

4<br />

6<br />

time [s]<br />

6<br />

time [s]<br />

strain<br />

stress<br />

8<br />

8<br />

10<br />

10<br />

δ<br />

12<br />

12<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

stress [Pa]<br />

stress [Pa]<br />

stress [Pa]<br />

stress [Pa]<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

Lissajou
<br />

G'<br />

-10x10 -3 -5 0 5 10<br />

strain<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

G''/ ω<br />

-10x10 -3 -5 0 5 10<br />

strain rate [1/s]


Strain‐control
vs
stress‐control
<br />

Strain-controlled Stress-controlled<br />

ARES Bohlin, AR-G2, An<strong>to</strong>n Paar


Strain‐control
vs
stress‐control
<br />

• Strain‐controlled
state
typically
considered
<br />

be2er
defined
<br />

• Stress‐controlled
rheometers
have
beBer
<br />

<strong>to</strong>rque
sensi)vity
<br />

• Strain‐controlled
rheometers
can
probe
higher
<br />

frequencies
<br />

• BUT…
nowadays,
feedback
loops
are
fast
<br />

enough
that
most
rheometers
can
operate
OK
<br />

in
both
modes



Rheometer
geometries
<br />

� Cone-plate<br />

• uniform strain / strain-rate<br />

• fixed gap height<br />

� Plate-plate<br />

• non-uniform strain<br />

• adjustable gap height<br />

• good for testing boundary effects like slip<br />

� Couette cell<br />

• good sensitivity for low-viscosity fluids


Linear
viscoelas)city
<br />

Acquire data at constant frequency, increasing stress/strain<br />

strain amplitude γ 0<br />

s<strong>to</strong>rage modulus G’<br />

loss modulus G”


Typical
pro<strong>to</strong>col
<br />

• Limits
of
linear
viscoelas)c
regime
in
desired
<br />

frequency
range
using
amplitude
sweeps
<br />


=>
yield
stress/strain,
cri)cal
stress/strain
<br />

• Test
for
)me
stability,
i.e
)me
sweep
at
constain
<br />

amplitude
and
frequency
<br />

• Frequency
sweep
at
various
strain/stress
<br />

amplitudes
within
linear
regime
<br />

• Study
non‐linear
regime



Nonlinear
rheology
(of
biopolymers)
<br />

• “Unlike
simple
polymer
gels,
many
biological
materials—<br />

including
blood
vessels,
mesentery



Oscilla<strong>to</strong>ry
strain
sweeps
(collagen
gels)



Lissajou
plots
from
the
G2
Raw
data
<strong>to</strong>ol
<br />

Lissajou
plot,
1%
strain



Nonlinear Lissajou plot<br />

stress [Pa]
<br />

4
<br />

2
<br />

0
<br />

-2
<br />

-4
<br />

-40x10
 -3
<br />

-20
 0
 20
 40
<br />

strain



Nonlinear Lissajou plot<br />

stress [Pa]
<br />

4
<br />

2
<br />

0
<br />

-2
<br />

-4
<br />

-40x10
 -3
<br />

RAW DATA
<br />

σ
' (elastic stress)
<br />

fit <strong>to</strong> 
σ
'
<br />

-20
 0
 20
 40
<br />

strain



2.4mg/mL
cone‐plate



2.4mg/mL
cone‐plate



MIT
LAOS
MATLAB
package



Creep‐ringing



Creep‐ringing
<br />

• Norman
&
Ryan’s
work
here
(fibrin,
jamming)
<br />

• Good
tu<strong>to</strong>rial
by
Ewoldt
&
McKinley
(MIT)



Creep‐ringing
results
<br />

I:
bulk
proper)es



More
nonlinear
rheology
<br />

• Stress/strain
ramps
with
constant
rate
<br />

• Pre‐stress
measurements,
i.e.
small
stress
<br />

oscilla)ons
around
a
constant
(pre‐)stress
<br />

• Pre‐strain
measurements
<br />

• Transient
responses
in
LAOS
(talk
<strong>to</strong>
Stefan)
<br />

• Fourier
domain
analysis
<br />

• SRFS
(talk
<strong>to</strong>
Hans)
 Linear behavior


Origin
of
nonlinear
behavior
<br />

• Distribu)on
of
length‐scales
/
inhomogenei)es
<br />

• Rearrangement
of
par)cles
/
filaments
<br />

• Non‐affine
mo)on
<br />

• How
do
we
find
out?
<br />

Observation at the microscopic scale:<br />

• Microrheology<br />

• Microscopy


Microrheology
basics
<br />

• General
idea:
look
at
the
thermally‐driven
<br />

mo)on
of
micron‐sized
par)cles
embedded
in
a
<br />

material
<br />

• Mean‐square
displacement
of
par)cles
as
a
<br />

func)on
of
)me
provides
microscopic
<br />

informa)on
on
local
elas)c
and
viscous
material
<br />

proper)es
as
a
func)on
of
frequency
<br />

• Mason
and
Weitz,
PRL,
1995



Short
and
long
)mescales
<br />

Short time scales:<br />

diffusive<br />

r: position vec<strong>to</strong>r<br />

D: diffusion constant<br />

τ: lag time<br />

kT: thermal energy<br />

a: particle size<br />

η: viscosity<br />

What about intermediate times?<br />

Long time scales:<br />

spring-like<br />

K: effective springconstant,<br />

linked <strong>to</strong><br />

elastic properties


Generalized
S<strong>to</strong>kes‐Einstein
<br />

Take Laplace transform of η(τ) numerically, <strong>to</strong> get η(s) – with s=iω.<br />

From earlier, we know:<br />

We can then get the generalized complex modulus, by analytically extending:<br />

i.e.


2‐point
vs
1‐point
microrheology
<br />

2-point microrheology calculates a<br />

mean-square displacement from<br />

the correlated pair-wise motion of<br />

particles, rather than the singleparticle<br />

MSD.<br />

Black: bulk rheology<br />

Red: 2-point microrheology<br />

Blue: 1-point microrheology<br />

Open symbols: G”


Other
considera)ons
<br />

• Non‐linear
regime
non‐trivial,
but
more
<br />

interes)ng.
<br />

• Surface
effects
can
be
important.
<br />

• Imaging
<strong>to</strong>
figure
out
mechanisms.
<br />

• Richness
of
effects,
mechanisms,
)me‐,
length‐
<br />

and
energy‐
scales
present
in
soE
maBer
/
<br />

complex
fluids.
<br />

• More
<strong>to</strong>
explore
on
Weitzlab
webpage.
<br />

• More
at
ComplexFluids
mee)ngs.


Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!