14.12.2012 Views

Impact of Chlorine and Monochloramine on Ultraviolet Light ...

Impact of Chlorine and Monochloramine on Ultraviolet Light ...

Impact of Chlorine and Monochloramine on Ultraviolet Light ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

IMPACT OF CHLORINE AND MONOCHLORAMINE ON ULTRAVIOLET<br />

LIGHT DISINFECTION<br />

Banu Örmeci<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil <str<strong>on</strong>g>and</str<strong>on</strong>g> Envir<strong>on</strong>mental Engineering<br />

Duke University, Durham, NC<br />

Gina A. Ishida<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Engineering<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> North Carolina, Chapel Hill, NC<br />

Karl G. Linden<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil <str<strong>on</strong>g>and</str<strong>on</strong>g> Envir<strong>on</strong>mental Engineering<br />

Duke University, Durham, NC<br />

ABSTRACT<br />

Chlorinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> water during treatment upstream <str<strong>on</strong>g>of</str<strong>on</strong>g> the disinfecti<strong>on</strong> process may possibly<br />

influence the effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> ultraviolet (UV) inactivati<strong>on</strong> in three ways: (1) chlorine <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

m<strong>on</strong>ochloramine may absorb UV light <str<strong>on</strong>g>and</str<strong>on</strong>g> interfere with the delivery <str<strong>on</strong>g>of</str<strong>on</strong>g> UV light to the<br />

targeted microorganisms, (2) oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter by chlorine may alter the UV<br />

absorbance, <str<strong>on</strong>g>and</str<strong>on</strong>g> (3) UV irradiati<strong>on</strong> may photo-dechlorinate the active chlorine species.<br />

In this study, degradati<strong>on</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> free chlorine <str<strong>on</strong>g>and</str<strong>on</strong>g> m<strong>on</strong>ochloramine under<br />

m<strong>on</strong>ochromatic <str<strong>on</strong>g>and</str<strong>on</strong>g> polychromatic UV light was determined in raw, treated, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

dei<strong>on</strong>ized water samples. UV absorbance spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> chlorine <str<strong>on</strong>g>and</str<strong>on</strong>g> m<strong>on</strong>ochloramine were<br />

also measured in raw, treated, <str<strong>on</strong>g>and</str<strong>on</strong>g> dei<strong>on</strong>ized water samples. The impact <str<strong>on</strong>g>of</str<strong>on</strong>g> chlorine-based<br />

UV absorbance <strong>on</strong> delivery <str<strong>on</strong>g>of</str<strong>on</strong>g> UV for disinfecti<strong>on</strong> was investigated. The results <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

study indicate that chlorine is degraded during UV disinfecti<strong>on</strong> at typical UV doses<br />

although the extent <str<strong>on</strong>g>of</str<strong>on</strong>g> degradati<strong>on</strong> is dependent up<strong>on</strong> the type <str<strong>on</strong>g>of</str<strong>on</strong>g> chlorine species, the<br />

water quality, <str<strong>on</strong>g>and</str<strong>on</strong>g> the type <str<strong>on</strong>g>of</str<strong>on</strong>g> UV irradiati<strong>on</strong> (m<strong>on</strong>o- or poly-chromatic). The<br />

transmissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> UV irradiati<strong>on</strong> in a 1 cm pathlength is slightly effected by the presence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

chlorine <str<strong>on</strong>g>and</str<strong>on</strong>g> m<strong>on</strong>ochloramine, decreasing the available UV energy by up to 2.25 %.<br />

However, the additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chlorine can serve to decrease the UV absorbance under certain<br />

water quality matrices.<br />

Introducti<strong>on</strong><br />

Prechlorinati<strong>on</strong> is an important tool for maintaining the water quality <str<strong>on</strong>g>and</str<strong>on</strong>g> efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

treatment plant. Although the primary use <str<strong>on</strong>g>of</str<strong>on</strong>g> chlorine is for disinfecti<strong>on</strong>, chlorine can also<br />

be used to c<strong>on</strong>trol the taste <str<strong>on</strong>g>and</str<strong>on</strong>g> odor, remove color <str<strong>on</strong>g>and</str<strong>on</strong>g> turbidity, <str<strong>on</strong>g>and</str<strong>on</strong>g> aid coagulati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

filtrati<strong>on</strong> in a treatment plant. Depending <strong>on</strong> the purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> prechlorinati<strong>on</strong>, chlorine may<br />

be added at various points during the treatment process such as before coagulati<strong>on</strong>,<br />

sedimentati<strong>on</strong>, or filtrati<strong>on</strong>. Prechlorinati<strong>on</strong> doses required to maintain a substantial (1<br />

mg/L) free residual chlorine in water is closely related to water quality <str<strong>on</strong>g>and</str<strong>on</strong>g> increases<br />

when organic <str<strong>on</strong>g>and</str<strong>on</strong>g> inorganic matter c<strong>on</strong>centrati<strong>on</strong> is high in water. Prechlorinati<strong>on</strong> doses<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 16 mg/L have been reported in the literature (White, 1999).<br />

1


Prechlorinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> water during the treatment process may possibly influence the<br />

effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> ultraviolet (UV) disinfecti<strong>on</strong>. <str<strong>on</strong>g>Chlorine</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> m<strong>on</strong>ochloramine present in<br />

the prechlorinated water may absorb the UV light <str<strong>on</strong>g>and</str<strong>on</strong>g> interfere with the delivery <str<strong>on</strong>g>of</str<strong>on</strong>g> UV<br />

radiati<strong>on</strong> to the targeted microorganisms. In additi<strong>on</strong>, photooxidants formed during the<br />

photolysis <str<strong>on</strong>g>of</str<strong>on</strong>g> chlorine <str<strong>on</strong>g>and</str<strong>on</strong>g> m<strong>on</strong>ochloramine may further react with organic matter present<br />

in water <str<strong>on</strong>g>and</str<strong>on</strong>g> change the properties <str<strong>on</strong>g>of</str<strong>on</strong>g> UV absorbing c<strong>on</strong>stituents. Other interacti<strong>on</strong>s that<br />

involve chlorine <str<strong>on</strong>g>and</str<strong>on</strong>g> UV disinfecti<strong>on</strong> processes include the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> chlorinati<strong>on</strong> <strong>on</strong> the<br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter in the water (thus UV absorbance) <str<strong>on</strong>g>and</str<strong>on</strong>g> the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> UV at<br />

practical disinfecti<strong>on</strong> doses <strong>on</strong> dechlorinati<strong>on</strong>. Therefore, it is important to underst<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

how chlorine <str<strong>on</strong>g>and</str<strong>on</strong>g> m<strong>on</strong>ochloramine behave under UV irradiati<strong>on</strong>. The objectives <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

research are to determine 1) how the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> chlorine <str<strong>on</strong>g>and</str<strong>on</strong>g> m<strong>on</strong>ochloramine affects<br />

the efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> UV disinfecti<strong>on</strong>, 2) the kinetics <str<strong>on</strong>g>of</str<strong>on</strong>g> chlorine <str<strong>on</strong>g>and</str<strong>on</strong>g> m<strong>on</strong>ochloramine decay<br />

under m<strong>on</strong>ochromatic <str<strong>on</strong>g>and</str<strong>on</strong>g> polychromatic UV light, <str<strong>on</strong>g>and</str<strong>on</strong>g>, 3) the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> water quality <strong>on</strong><br />

the interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> UV absorbance <str<strong>on</strong>g>and</str<strong>on</strong>g> chlorine <str<strong>on</strong>g>and</str<strong>on</strong>g> m<strong>on</strong>ochloramine decay.<br />

Background<br />

<str<strong>on</strong>g>Chlorine</str<strong>on</strong>g> reacts with organic <str<strong>on</strong>g>and</str<strong>on</strong>g> inorganic matter in water by oxidati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> substituti<strong>on</strong><br />

reacti<strong>on</strong>s. One <str<strong>on</strong>g>of</str<strong>on</strong>g> the most important reacti<strong>on</strong>s for chlorine is the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

chloramines in the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> amm<strong>on</strong>ia. This reacti<strong>on</strong> c<strong>on</strong>verts chlorine to m<strong>on</strong>o-, di-,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> trichloramines depending <strong>on</strong> the pH, temperature, c<strong>on</strong>tact time, <str<strong>on</strong>g>and</str<strong>on</strong>g> initial ratio <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

chlorine to amm<strong>on</strong>ia in water. <str<strong>on</strong>g>M<strong>on</strong>ochloramine</str<strong>on</strong>g> is known to be a weaker <str<strong>on</strong>g>and</str<strong>on</strong>g> slower<br />

disinfectant compared to free chlorine, but its use in disinfecti<strong>on</strong> is preferred when<br />

chlorine residuals are difficult to c<strong>on</strong>trol. <str<strong>on</strong>g>M<strong>on</strong>ochloramine</str<strong>on</strong>g> is more effective against<br />

bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilms (LeChevallier et al., 1988), stays in the water distributi<strong>on</strong> system l<strong>on</strong>ger, <str<strong>on</strong>g>and</str<strong>on</strong>g> is<br />

cheaper compared to free chlorine. Both free chlorine <str<strong>on</strong>g>and</str<strong>on</strong>g> m<strong>on</strong>ochloramine form organic<br />

m<strong>on</strong>ochloramines in the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> organic nitrogen (e.g., amino acids <str<strong>on</strong>g>and</str<strong>on</strong>g> proteins).<br />

The reacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> free chlorine with organic nitrogen is instant, whereas m<strong>on</strong>ochloramine<br />

takes several minutes (White, 1999). Presence <str<strong>on</strong>g>of</str<strong>on</strong>g> natural organic matter in water<br />

accelerates the decay <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>ochloramine via oxidati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> reducti<strong>on</strong> reacti<strong>on</strong>s<br />

(Vikesl<str<strong>on</strong>g>and</str<strong>on</strong>g> et al., 1998).<br />

Photochemical reacti<strong>on</strong>s also play an important role in the decay <str<strong>on</strong>g>of</str<strong>on</strong>g> chlorine compounds.<br />

During the photolysis <str<strong>on</strong>g>of</str<strong>on</strong>g> HOCl <str<strong>on</strong>g>and</str<strong>on</strong>g> OCl - , various primary reactive intermediates are<br />

formed which are rapidly c<strong>on</strong>verted into sec<strong>on</strong>dary photooxidants such as OH <str<strong>on</strong>g>and</str<strong>on</strong>g> Cl<br />

radicals (Buxt<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Subhani, 1982; Molina et al., 1980). In the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> organic<br />

material, two chain reacti<strong>on</strong>s have been proposed in which organic solutes <str<strong>on</strong>g>and</str<strong>on</strong>g> HOCl<br />

may act as chain promoters <str<strong>on</strong>g>and</str<strong>on</strong>g> OH <str<strong>on</strong>g>and</str<strong>on</strong>g> Cl radicals as chain carriers (Oliver <str<strong>on</strong>g>and</str<strong>on</strong>g> Carey,<br />

1977; Nowell <str<strong>on</strong>g>and</str<strong>on</strong>g> Hoigne, 1992a). Formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> these radicals increases the degradati<strong>on</strong><br />

rate <str<strong>on</strong>g>of</str<strong>on</strong>g> organic compounds. Nowell <str<strong>on</strong>g>and</str<strong>on</strong>g> Hoigne (1992b) have reported that organic probe<br />

molecules resistant to photolysis decayed when they were exposed to UV or sunlight in<br />

the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> chlorine.<br />

Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> Methods<br />

Three different water samples were used in this study: Raw water, treated water, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

dei<strong>on</strong>ized water. Raw water <str<strong>on</strong>g>and</str<strong>on</strong>g> treated water were taken from the Williams Water<br />

Treatment Plant, Durham, NC. The raw water was collected from the beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

2


treatment plant prior to any treatment. Treated water was collected from the top <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

settling tank after the coagulati<strong>on</strong>-flocculati<strong>on</strong> process <str<strong>on</strong>g>and</str<strong>on</strong>g> before the s<str<strong>on</strong>g>and</str<strong>on</strong>g> filtrati<strong>on</strong>. In<br />

the treatment plant, chlorine was injected into the pipes during the transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> water from<br />

the settling tanks to the s<str<strong>on</strong>g>and</str<strong>on</strong>g> filters, therefore settled water, having no chlorine, was<br />

chosen over chlorinated filtered water to be used in this research. The third water sample<br />

was dei<strong>on</strong>ized water (Hydro, Research Triangle Park, NC). Unlike treated water <str<strong>on</strong>g>and</str<strong>on</strong>g> raw<br />

water, dei<strong>on</strong>ized water did not c<strong>on</strong>tain any organic <str<strong>on</strong>g>and</str<strong>on</strong>g> inorganic matter <str<strong>on</strong>g>and</str<strong>on</strong>g> served as a<br />

c<strong>on</strong>trol in the experiments.<br />

Water samples having an initial free chlorine <str<strong>on</strong>g>and</str<strong>on</strong>g> m<strong>on</strong>ochloramine c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 4 to<br />

5 mg/L were prepared from fresh household bleach (5.25% sodium hypochlorite, Clorox)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g>100 mg/L m<strong>on</strong>ochloramine stock soluti<strong>on</strong>. <str<strong>on</strong>g>M<strong>on</strong>ochloramine</str<strong>on</strong>g> stock soluti<strong>on</strong> was<br />

prepared by adding 0.37 mL Clorox to 100 mL 0.01 M pH 9.5 buffer <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.081g. NH4Cl<br />

to 100 mL 0.01 M pH 9.5 buffer, <str<strong>on</strong>g>and</str<strong>on</strong>g> combining these two mixtures slowly. Free chlorine<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> combined chlorine c<strong>on</strong>centrati<strong>on</strong>s were determined using a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> DPD<br />

ferrous titrimetric <str<strong>on</strong>g>and</str<strong>on</strong>g> DPD colorimetric methods (APHA, 1998).<br />

Samples that c<strong>on</strong>tained chlorine or m<strong>on</strong>ochloramine were exposed to m<strong>on</strong>ochromatic <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

polychromatic UV irradiati<strong>on</strong> in a collimated beam apparatus <str<strong>on</strong>g>and</str<strong>on</strong>g> the decrease in the<br />

chlorine <str<strong>on</strong>g>and</str<strong>on</strong>g> m<strong>on</strong>ochloramine c<strong>on</strong>centrati<strong>on</strong>s were measured over the durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

experiments. The UV doses used ranged between 0 <str<strong>on</strong>g>and</str<strong>on</strong>g> 1500 mJ/cm 2 in increments <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

100 mJ/cm 2 . The intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> the incident irradiati<strong>on</strong> was altered by adjusting the distance<br />

between the sample <str<strong>on</strong>g>and</str<strong>on</strong>g> the UV lamps such that the exposure time was the same for a<br />

particular UV dose under either lamp. Each dose <str<strong>on</strong>g>of</str<strong>on</strong>g> 100 mJ/cm 2 corresp<strong>on</strong>ded to an<br />

exposure time <str<strong>on</strong>g>of</str<strong>on</strong>g> approximately 4 minutes, thus the complete experiment took<br />

approximately 1 hour to complete. UV dose (mJ/cm 2 ) was calculated as the product <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the UV irradiance (mW/cm 2 ) multiplied by the exposure time (s). Samples <str<strong>on</strong>g>of</str<strong>on</strong>g> 300 mL<br />

were placed in a crystallizati<strong>on</strong> dish, <str<strong>on</strong>g>and</str<strong>on</strong>g> stirred c<strong>on</strong>tinuously with a magnetic stirrer<br />

during the irradiati<strong>on</strong> to achieve a well-mixed sample that was homogenous with respect<br />

to water c<strong>on</strong>stituents <str<strong>on</strong>g>and</str<strong>on</strong>g> properties. A sample volume <str<strong>on</strong>g>of</str<strong>on</strong>g> 5 mL was withdrawn from the<br />

petri dish after each dose <str<strong>on</strong>g>of</str<strong>on</strong>g> 100 mJ/cm 2 to determine the residual chlorine or<br />

m<strong>on</strong>ochloramine c<strong>on</strong>centrati<strong>on</strong> in the sample. The large size dish with a wide mouth<br />

(125x65 mm) was chosen to minimize the change in the depth <str<strong>on</strong>g>of</str<strong>on</strong>g> the water during the<br />

exposure experiments. The depth <str<strong>on</strong>g>of</str<strong>on</strong>g> the 300 mL water sample was reduced from 2.6 cm<br />

to 2.1 cm after 15 withdrawals <str<strong>on</strong>g>of</str<strong>on</strong>g> 5 mL samples at the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment. The<br />

incident irradiati<strong>on</strong> was measured using a radiometer with a germicidal UV detector (IL<br />

1700 SED 240/G/W, Internati<strong>on</strong>al <strong>Light</strong>, Newbury Port, MA) calibrated over the entire<br />

germicidal range to st<str<strong>on</strong>g>and</str<strong>on</strong>g>ards traceable to the Nati<strong>on</strong>al Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> St<str<strong>on</strong>g>and</str<strong>on</strong>g>ards <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Technology (NIST). Absorbance spectra scans <str<strong>on</strong>g>of</str<strong>on</strong>g> samples c<strong>on</strong>taining 1, 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> 5 mg/L<br />

chlorine or m<strong>on</strong>ochloramine were measured using a Varian Cary 100 Bio UV-visible<br />

spectrophotometer (Varian Analytical Instruments, Walnut Creek, CA) from 200 nm to<br />

400 nm.<br />

Turbidity (Hach Company, Hach 2100N, Lovel<str<strong>on</strong>g>and</str<strong>on</strong>g>, CO), pH (Cole Parmer Instrument<br />

Company, pH 100 series, Vern<strong>on</strong> Hills, IL), total carb<strong>on</strong>, total organic carb<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

3


inorganic carb<strong>on</strong> (Apollo 9000, Tekmar-Pohrmann, Cincinnati, OH) in the treated <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

raw water were initially determined before starting the experiments.<br />

Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

The degradati<strong>on</strong> rates <str<strong>on</strong>g>of</str<strong>on</strong>g> the chlorine <str<strong>on</strong>g>and</str<strong>on</strong>g> m<strong>on</strong>ochloramine were determined after the UV<br />

exposure <str<strong>on</strong>g>and</str<strong>on</strong>g> compared. In additi<strong>on</strong>, absorbance spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> representative c<strong>on</strong>centrati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> chlorine <str<strong>on</strong>g>and</str<strong>on</strong>g> m<strong>on</strong>ochloramine applied in a typical prechlorinati<strong>on</strong> process were<br />

determined in raw, treated, <str<strong>on</strong>g>and</str<strong>on</strong>g> dei<strong>on</strong>ized water samples.<br />

Figure 1a illustrates the decay <str<strong>on</strong>g>of</str<strong>on</strong>g> free chlorine in the dei<strong>on</strong>ized water after exposure to<br />

m<strong>on</strong>ochromatic <str<strong>on</strong>g>and</str<strong>on</strong>g> polychromatic UV light. An identical sample was kept in the dark<br />

over the durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment. The chlorine c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>trol sample that<br />

was kept in the dark did not show a significant change. Dei<strong>on</strong>ized water does not c<strong>on</strong>tain<br />

any organic or inorganic matter, therefore c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chlorine or m<strong>on</strong>ochloramine<br />

by chemical oxidati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> substituti<strong>on</strong> reacti<strong>on</strong>s is unlikely to occur. In additi<strong>on</strong>, since<br />

the sample was kept in the dark, photolysis cannot take place. The samples that were<br />

exposed to m<strong>on</strong>ochromatic <str<strong>on</strong>g>and</str<strong>on</strong>g> polychromatic UV light exhibited a gradual linear decay<br />

in chlorine with increasing UV dose. The free chlorine decay rate under m<strong>on</strong>ochromatic<br />

UV was slightly higher than the decay rate under polychromatic UV light. The decay <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

m<strong>on</strong>ochloramine in dei<strong>on</strong>ized water under the same c<strong>on</strong>diti<strong>on</strong>s is presented in Figure 1b.<br />

The m<strong>on</strong>ochloramine c<strong>on</strong>centrati<strong>on</strong> was steady in the dark, <str<strong>on</strong>g>and</str<strong>on</strong>g> under m<strong>on</strong>ochromatic<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> polychromatic UV light, m<strong>on</strong>ochloramine exhibited a higher decay rate than free<br />

chlorine. <str<strong>on</strong>g>M<strong>on</strong>ochloramine</str<strong>on</strong>g> also decayed linearly under m<strong>on</strong>ochromatic <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

polychromatic UV light, however m<strong>on</strong>ochromatic UV was more effective in degrading<br />

m<strong>on</strong>ochloramine than the polychromatic UV light. The decreases are attributed to the<br />

photochemical reacti<strong>on</strong>s induced by UV light.<br />

The decay <str<strong>on</strong>g>of</str<strong>on</strong>g> free chlorine in the treated water is shown in Figure 2a. The decay rates <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

chlorine under m<strong>on</strong>ochromatic <str<strong>on</strong>g>and</str<strong>on</strong>g> polychromatic UV irradiati<strong>on</strong> were much higher<br />

compared to the decay rates in dei<strong>on</strong>ized water. In fact, all <str<strong>on</strong>g>of</str<strong>on</strong>g> the chlorine was c<strong>on</strong>sumed<br />

after receiving a dose <str<strong>on</strong>g>of</str<strong>on</strong>g> 800 mJ/cm 2 with polychromatic UV <str<strong>on</strong>g>and</str<strong>on</strong>g> 1100 mJ/cm 2 with<br />

m<strong>on</strong>ochromatic UV light in the treated water. Polychromatic UV was more effective in<br />

decaying the chlorine compared to the m<strong>on</strong>ochromatic UV light. Free chlorine exhibited<br />

an exp<strong>on</strong>ential decay in the dark in which chlorine c<strong>on</strong>sumpti<strong>on</strong> was rapid in the first 10<br />

minutes <str<strong>on</strong>g>and</str<strong>on</strong>g> then leveled <str<strong>on</strong>g>of</str<strong>on</strong>g>f. In c<strong>on</strong>trast, m<strong>on</strong>ochloramine c<strong>on</strong>sumpti<strong>on</strong> was insignificant<br />

in the dark (Figure 2b). <str<strong>on</strong>g>M<strong>on</strong>ochloramine</str<strong>on</strong>g> decayed slower than free chlorine under<br />

m<strong>on</strong>ochromatic <str<strong>on</strong>g>and</str<strong>on</strong>g> polychromatic UV light. In the treated water, m<strong>on</strong>ochromatic UV<br />

was more effective in decaying m<strong>on</strong>ochloramine, <str<strong>on</strong>g>and</str<strong>on</strong>g> polychromatic UV was more<br />

effective in decaying free chlorine.<br />

4


Free chlorine (mg/L)<br />

<str<strong>on</strong>g>M<strong>on</strong>ochloramine</str<strong>on</strong>g> (mg/L)<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

LP-UV MP-UV Dark (a)<br />

LP-UV MP-UV Dark (b)<br />

0 300 600 900 1200 1500<br />

Dose (mJ/cm 2 )<br />

Figure 1. The decay <str<strong>on</strong>g>of</str<strong>on</strong>g> (a) free chlorine <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) m<strong>on</strong>ochloramine in dei<strong>on</strong>ized (DI) water<br />

after exposure to m<strong>on</strong>ochromatic 254 nm (LP-) <str<strong>on</strong>g>and</str<strong>on</strong>g> polychromatic (MP-) UV light<br />

Organic <str<strong>on</strong>g>and</str<strong>on</strong>g> inorganic matter present in treated water may be involved in a variety <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

chemical <str<strong>on</strong>g>and</str<strong>on</strong>g> photochemical reacti<strong>on</strong>s in the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> chlorine. Possible reacti<strong>on</strong>s<br />

include: chlorine decay in natural waters due to reacti<strong>on</strong>s with organic (amino acids <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

proteins) <str<strong>on</strong>g>and</str<strong>on</strong>g> inorganic (amm<strong>on</strong>ia, nitrites, nitrates) nitrogen; chlorine reacting with<br />

amm<strong>on</strong>ia <str<strong>on</strong>g>and</str<strong>on</strong>g> organic nitrogen to form chloramines <str<strong>on</strong>g>and</str<strong>on</strong>g> organochloramines respectively;<br />

chlorine reacti<strong>on</strong>s with inorganic i<strong>on</strong>s, such as Fe <str<strong>on</strong>g>and</str<strong>on</strong>g> S, c<strong>on</strong>tribute to the chlorine decay<br />

as well. The rapid decrease in free chlorine in the c<strong>on</strong>trol sample (dark, Figure 2) is<br />

attributed to the chlorine dem<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the water sample. The free chlorine decay rates in<br />

treated water are presented in Table 1. Decay rates in treated water under m<strong>on</strong>ochromatic<br />

(K= -0.0038 mg.cm 2 /mJ.L) <str<strong>on</strong>g>and</str<strong>on</strong>g> polychromatic (K= -0.0056 mg.cm 2 /mJ.L) UV light were<br />

much higher compared to the decay rates in dei<strong>on</strong>ized water (K= -0.0012 mg.cm 2 /mJ.L<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> K= -0.0009 mg.cm 2 /mJ.L). Natural water c<strong>on</strong>tains various organic <str<strong>on</strong>g>and</str<strong>on</strong>g> inorganic<br />

species, including humic substances, algae, <str<strong>on</strong>g>and</str<strong>on</strong>g> suspended particles, that can have a<br />

substantial influence <strong>on</strong> the photolysis <str<strong>on</strong>g>of</str<strong>on</strong>g> chlorine (Nowell <str<strong>on</strong>g>and</str<strong>on</strong>g> Hoigne, 1992a; Nowell<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Hoigne, 1992b). Presence <str<strong>on</strong>g>of</str<strong>on</strong>g> these c<strong>on</strong>stituents changes the reacti<strong>on</strong> rates <str<strong>on</strong>g>of</str<strong>on</strong>g> direct<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> indirect photolysis by absorbing, scattering, <str<strong>on</strong>g>and</str<strong>on</strong>g> attenuating UV light. UV light is<br />

primarily absorbed by dissolved organic matter <str<strong>on</strong>g>and</str<strong>on</strong>g> organic particles in water<br />

(Schwarzenbach et al., 1993). Absorbance <str<strong>on</strong>g>of</str<strong>on</strong>g> light by organic c<strong>on</strong>stituents may enhance<br />

5


the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> indirect photolysis <str<strong>on</strong>g>and</str<strong>on</strong>g> initiate a series <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong>s that eventually c<strong>on</strong>sume<br />

chlorine. On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, organic <str<strong>on</strong>g>and</str<strong>on</strong>g> inorganic matter in water may scatter <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

attenuate UV light <str<strong>on</strong>g>and</str<strong>on</strong>g> decrease the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> direct photolysis. Miller <str<strong>on</strong>g>and</str<strong>on</strong>g> Zepp (1979)<br />

have dem<strong>on</strong>strated that suspended sediments can change the photolysis rates through<br />

scattering <str<strong>on</strong>g>and</str<strong>on</strong>g> light attenuati<strong>on</strong>. Sorbed species <strong>on</strong> particles may also alter the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

photochemical reacti<strong>on</strong>s (Miller <str<strong>on</strong>g>and</str<strong>on</strong>g> Zepp, 1979b) since a compound in sorbed state may<br />

behave differently than its dissolved state. Overall, the increase due to the indirect<br />

photolysis rate is likely to be more significant than the decrease due to the direct<br />

photolysis rate which explains the higher decay rates observed in treated water.<br />

Free chlorine (mg/L)<br />

<str<strong>on</strong>g>M<strong>on</strong>ochloramine</str<strong>on</strong>g> (mg/L)<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

LP-UV MP-UV dark (a)<br />

LP-UV MP-UV dark<br />

0 300 600 900 1200 1500<br />

Dose (mJ/cm 2 )<br />

Figure 2. The decay <str<strong>on</strong>g>of</str<strong>on</strong>g> (a) free chlorine <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) m<strong>on</strong>ochloramine in treated water after<br />

exposure to m<strong>on</strong>ochromatic 254 nm (LP-) <str<strong>on</strong>g>and</str<strong>on</strong>g> polychromatic (MP-) UV light<br />

6<br />

(b)


Table 1.<br />

Decay rates <str<strong>on</strong>g>of</str<strong>on</strong>g> free chlorine <str<strong>on</strong>g>and</str<strong>on</strong>g> m<strong>on</strong>ochloramine in DI, treated,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> raw water under LP <str<strong>on</strong>g>and</str<strong>on</strong>g> MP UV irradiati<strong>on</strong>.<br />

Sample M<strong>on</strong>ochromatic Polychromatic Dark<br />

(LP-UV) (MP-UV)<br />

DI Free chlorine K= -0.0012 K= -0.0009 K= -0.00003<br />

Treated<br />

Raw<br />

<str<strong>on</strong>g>M<strong>on</strong>ochloramine</str<strong>on</strong>g> K= -0.0018 K= -0.0012 K= -0.00006<br />

Free chlorine K= -0.0038 K= -0.0056 K= -0.0008<br />

<str<strong>on</strong>g>M<strong>on</strong>ochloramine</str<strong>on</strong>g> K= -0.0018 K= -0.0012 K= -0.0002<br />

Free chlorine K= -0.0068 K= -0.0084 K= -0.0015<br />

<str<strong>on</strong>g>M<strong>on</strong>ochloramine</str<strong>on</strong>g> K= -0.0017 K= -0.0011 K= -0.0003<br />

* Unit <str<strong>on</strong>g>of</str<strong>on</strong>g> decay coefficient K is mg-cm 2 /mJ-L<br />

Presence <str<strong>on</strong>g>of</str<strong>on</strong>g> natural organic matter in water accelerates the decay <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>ochloramine as<br />

well. Vikesl<str<strong>on</strong>g>and</str<strong>on</strong>g> et al. (1998) reported that natural organic matter directly reacts with<br />

m<strong>on</strong>ochloramine by redox <str<strong>on</strong>g>and</str<strong>on</strong>g> substituti<strong>on</strong> reacti<strong>on</strong>s, <str<strong>on</strong>g>and</str<strong>on</strong>g> the role <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter as an<br />

acid catalyst is negligible. This might explain the slightly higher rates <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>ochloramine<br />

decay in the dark in treated <str<strong>on</strong>g>and</str<strong>on</strong>g> raw water compared to dei<strong>on</strong>ized water. As in the case<br />

with chlorine, UV irradiati<strong>on</strong> also increased the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>ochloramine decay. However,<br />

unlike chlorine, m<strong>on</strong>ochloramine decay rate did not show a significant change between<br />

treated <str<strong>on</strong>g>and</str<strong>on</strong>g> raw water samples under UV exposure. As illustrated in Table 1,<br />

m<strong>on</strong>ochloramine decay coefficient was approximately -0.0002 mg.cm 2 /mJ.L in the dark,<br />

-0.0018 mg.cm 2 /mJ.L under m<strong>on</strong>ochromatic UV, <str<strong>on</strong>g>and</str<strong>on</strong>g> –0.0012 mg.cm 2 /mJ.L under<br />

polychromatic UV regardless <str<strong>on</strong>g>of</str<strong>on</strong>g> the organic <str<strong>on</strong>g>and</str<strong>on</strong>g> inorganic c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> the water. This is<br />

as expected because m<strong>on</strong>ochloramine is relatively stable compared to free chlorine.<br />

The characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> waters used in this study are illustrated in Table 2. In raw water,<br />

which c<strong>on</strong>tained more organic <str<strong>on</strong>g>and</str<strong>on</strong>g> inorganic matter compared to the first two samples,<br />

the chlorine degradati<strong>on</strong> was fastest (Figure 3a). The free chlorine exhibited an<br />

exp<strong>on</strong>ential decay in the dark as was the case with treated water, however the decay rate<br />

was faster. Polychromatic UV was again more effective than m<strong>on</strong>ochromatic UV light in<br />

the degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> free chlorine. The chlorine c<strong>on</strong>centrati<strong>on</strong> in the sample dropped to 0<br />

mg/L following doses <str<strong>on</strong>g>of</str<strong>on</strong>g> 400 mJ/cm 2 with polychromatic UV, <str<strong>on</strong>g>and</str<strong>on</strong>g> 700 mJ/cm 2 with<br />

m<strong>on</strong>ochromatic UV irradiati<strong>on</strong>. M<strong>on</strong>ochromatic UV 254 nm light, <strong>on</strong> the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, was<br />

more effective for the degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>ochloramine (Figure 3b). The decay rates <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

m<strong>on</strong>ochloramine in raw water under m<strong>on</strong>ochromatic <str<strong>on</strong>g>and</str<strong>on</strong>g> polychromatic UV light were<br />

very similar to the decay rates <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>ochloramine in treated water.<br />

7


Table 2.<br />

Water quality characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> waters used in the study<br />

Sample pH Turbidity TOC IC<br />

(NTU) (ppm) (ppm)<br />

DI 6.48 0.10 0.25 0.79<br />

Treated Water 7.00 2.44 3.33 0.83<br />

Raw Water 7.13 9.61 5.86 0.86<br />

The absorbance spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> free chlorine <str<strong>on</strong>g>and</str<strong>on</strong>g> m<strong>on</strong>ochloramine are illustrated in Figure 4a<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> 4b respectively. The absorpti<strong>on</strong> maximum <str<strong>on</strong>g>of</str<strong>on</strong>g> free chlorine is somewhere around 290<br />

nm which falls in the range <str<strong>on</strong>g>of</str<strong>on</strong>g> polychromatic UV light from the medium pressure UV<br />

lamp output. The absorpti<strong>on</strong> maximum <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>ochloramine, <strong>on</strong> the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, is<br />

approximately 246 nm, close to the low pressure UV lamp output at 254 nm, therefore<br />

when decay rates are based <strong>on</strong> delivered UV energy, m<strong>on</strong>ochromatic UV 254 irradiati<strong>on</strong><br />

proves more effective than polychromatic UV light in the photochemical degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

m<strong>on</strong>ochloramine. The UV absorbance spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> dei<strong>on</strong>ized, treated <str<strong>on</strong>g>and</str<strong>on</strong>g> raw water<br />

samples dosed at 5 mg/L free chlorine or m<strong>on</strong>ochloramine are presented in Figure 4a <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

b. Free chlorine absorbance maximum at approximately 290 nm was most visible in<br />

dei<strong>on</strong>ized water, <str<strong>on</strong>g>and</str<strong>on</strong>g> gradually decreased in the filtered <str<strong>on</strong>g>and</str<strong>on</strong>g> raw water. However, the<br />

absorbance spectra peak <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>ochloramine at approximately 246 nm did not change<br />

noticeably between the samples. The absorbance spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> free chlorine in dei<strong>on</strong>ized,<br />

treated, <str<strong>on</strong>g>and</str<strong>on</strong>g> raw water changes as the organic <str<strong>on</strong>g>and</str<strong>on</strong>g> inorganic matter c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> the water<br />

sample increases. Absorbance spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>ochloramine, in c<strong>on</strong>trast, does not seem to<br />

be affected by the organic <str<strong>on</strong>g>and</str<strong>on</strong>g> inorganic matter c<strong>on</strong>tent, <str<strong>on</strong>g>and</str<strong>on</strong>g> indicating that the rate <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

m<strong>on</strong>ochloramine decay is not influenced as much by water quality parameter changes.<br />

Table 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> Table 4 illustrate the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> chlorine <str<strong>on</strong>g>and</str<strong>on</strong>g> m<strong>on</strong>ochloramine UV absorbance<br />

respectively, <strong>on</strong> average m<strong>on</strong>ochromatic UV irradiance in a batch completely mixed<br />

sample with depth <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 cm. The initial dosed chlorine or m<strong>on</strong>ochloramine c<strong>on</strong>centrati<strong>on</strong><br />

was 5 mg/L. Additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chlorine <str<strong>on</strong>g>and</str<strong>on</strong>g> m<strong>on</strong>ochloramine increases the UV absorbance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the water samples slightly, <str<strong>on</strong>g>and</str<strong>on</strong>g> therefore decreases the average UV 254nm irradiance<br />

received by the water body. However, in raw water where the organic matter<br />

c<strong>on</strong>centrati<strong>on</strong> is high, chlorine additi<strong>on</strong> appears to decrease the absorbance <str<strong>on</strong>g>of</str<strong>on</strong>g> the water<br />

sample, thus improving UV transmissi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> increasing the average irradiance. This is<br />

likely due to chlorine oxidizing the organic matter present in the raw water sample.<br />

8


Free chlorine (mg/L)<br />

<str<strong>on</strong>g>M<strong>on</strong>ochloramine</str<strong>on</strong>g> (mg/L)<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

LP-UV MP-UV dark (a)<br />

LP-UV MP-UV dark<br />

0 300 600 900 1200 1500<br />

Dose (mJ/cm 2 )<br />

Figure 3. The decay <str<strong>on</strong>g>of</str<strong>on</strong>g> (a) free chlorine <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) m<strong>on</strong>ochloramine in raw water after<br />

exposure to m<strong>on</strong>ochromatic 254 nm (LP-) <str<strong>on</strong>g>and</str<strong>on</strong>g> polychromatic (MP-) UV light<br />

9<br />

(b)


Absorbance (1/cm)<br />

Absorbance (1/cm)<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

DI Treated Raw (a)<br />

DI Treated Raw (b)<br />

200 250 300 350<br />

Wavelength (nm)<br />

Figure 4. The absorbance spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> (a) free chlorine <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) m<strong>on</strong>ochloramine following a<br />

dose <str<strong>on</strong>g>of</str<strong>on</strong>g> 5 mg/L free chlorine or m<strong>on</strong>ochloramine into DI, treated, <str<strong>on</strong>g>and</str<strong>on</strong>g> raw waters.<br />

10


Table 3.<br />

The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> chlorine UV absorbance <strong>on</strong> average LP- UV 254 nm irradiance in a 1 cm<br />

batch sample with an initial dose c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 5 mg/L.<br />

Sample A254 %T254 I avg.<br />

11<br />

mW/cm 2<br />

DI 0.0133 96.98 0.4260<br />

DI with chlorine 0.0190 95.72 0.4192<br />

Treated 0.0117 97.34 0.4277<br />

Treated with chlorine 0.0137 96.89 0.4252<br />

Raw 0.0095 97.84 0.4302<br />

Raw with chlorine 0.0006 99.86 0.4404<br />

∆ I avg. (%)<br />

-0.68<br />

-0.25<br />

Table 4.<br />

The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>ochloramine UV absorbance <strong>on</strong> average LP- UV 254 nm irradiance in a<br />

1 cm batch sample with an initial dose c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 5 mg/L.<br />

Sample A254 %T254 I avg.<br />

mW/cm 2<br />

DI 0.0133 96.98 0.4260<br />

DI with<br />

m<strong>on</strong>ochloramine<br />

0.0341 92.45 0.4035<br />

Treated 0.0117 97.34 0.4277<br />

Treated with<br />

m<strong>on</strong>ochloramine<br />

0.0302 93.28 0.4078<br />

Raw 0.0095 97.84 0.4302<br />

Raw with<br />

m<strong>on</strong>ochloramine<br />

0.0257 94.25 0.4125<br />

1.02<br />

∆ I avg. (%)<br />

-2.25<br />

-1.99<br />

-1.77


C<strong>on</strong>clusi<strong>on</strong>s<br />

1- <str<strong>on</strong>g>Chlorine</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> m<strong>on</strong>ochloramine in water decay steadily when exposed to<br />

m<strong>on</strong>ochromatic <str<strong>on</strong>g>and</str<strong>on</strong>g> polychromatic UV light. However, total decay <str<strong>on</strong>g>of</str<strong>on</strong>g> chlorine <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

m<strong>on</strong>ochloramine are relatively small in the UV dose range that is generally applied for<br />

disinfecti<strong>on</strong> (15-130 mJ/cm 2 ).<br />

2- The decay rate <str<strong>on</strong>g>of</str<strong>on</strong>g> free chlorine under m<strong>on</strong>ochromatic <str<strong>on</strong>g>and</str<strong>on</strong>g> polychromatic UV<br />

light is closely related to the water quality. The decay rate <str<strong>on</strong>g>of</str<strong>on</strong>g> chlorine increases with<br />

increased c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> organic <str<strong>on</strong>g>and</str<strong>on</strong>g> inorganic matter in water.<br />

3- In c<strong>on</strong>trast, the decay rate <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>ochloramine under m<strong>on</strong>ochromatic <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

polychromatic UV light does not seem to be affected significantly by the water quality.<br />

The decay rate remains same under exposure to a given UV light source regardless <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

organic <str<strong>on</strong>g>and</str<strong>on</strong>g> inorganic matter c<strong>on</strong>centrati<strong>on</strong> in water.<br />

4- M<strong>on</strong>ochromatic UV light is more effective in degrading m<strong>on</strong>ochloramine, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

polychromatic UV light is more effective in degrading free chlorine.<br />

5- The UV absorbance <str<strong>on</strong>g>of</str<strong>on</strong>g> free chlorine <str<strong>on</strong>g>and</str<strong>on</strong>g> m<strong>on</strong>ochloramine are relatively small<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> their presence is unlikely to significantly influence the effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> UV<br />

disinfecti<strong>on</strong> or the delivery <str<strong>on</strong>g>of</str<strong>on</strong>g> UV light to the targeted microorganisms at typical UV<br />

doses applied for disinfecti<strong>on</strong>.<br />

12


REFERENCES<br />

APHA, American Public Health Associati<strong>on</strong>, American Water Works Associati<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

the Water Envir<strong>on</strong>ment Federati<strong>on</strong> (1995) St<str<strong>on</strong>g>and</str<strong>on</strong>g>ard Methods for the Examinati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Water <str<strong>on</strong>g>and</str<strong>on</strong>g> Wastewater. 19 th Ed., Washingt<strong>on</strong>, D.C.<br />

Buxt<strong>on</strong>, G. V., <str<strong>on</strong>g>and</str<strong>on</strong>g> Subhani, M. S. (1972) Radiati<strong>on</strong> chemistry <str<strong>on</strong>g>and</str<strong>on</strong>g> photochemistry <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

oxychlorine i<strong>on</strong>s – II. Photodecompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aqueous soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> hypochlorite<br />

i<strong>on</strong>s. Trans. Faraday. Soc., 68, 958-969.<br />

LeChevallier, M. W., Cawth<strong>on</strong>, C. D., <str<strong>on</strong>g>and</str<strong>on</strong>g> Lee, R. G. (1988) Inactivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilm<br />

Bacteria. Appl. Envir<strong>on</strong>. Microbiol., 54(10), 2492-2499.<br />

Miller, G. C., <str<strong>on</strong>g>and</str<strong>on</strong>g> Zepp, R. G. (1979a) Photoreactivity <str<strong>on</strong>g>of</str<strong>on</strong>g> aquatic pollutants sorbed <strong>on</strong><br />

suspended sediments. Envir<strong>on</strong>. Sci. Technol., 13, 853-860.<br />

Miller, G. C., <str<strong>on</strong>g>and</str<strong>on</strong>g> Zepp, R. G. (1979b) Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> suspended sediments <strong>on</strong> photolysis rates<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> dissolved pollutants. Wat. Res., 13, 459-543.<br />

Molina, M. J., Ishiwata, T., <str<strong>on</strong>g>and</str<strong>on</strong>g> Molina, L. T. (1980) Producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> OH radical from<br />

photolysis <str<strong>on</strong>g>of</str<strong>on</strong>g> HOCl at 307-309 nm. J. Phys. Chem., 84, 821-826.<br />

Nowell, L. H., <str<strong>on</strong>g>and</str<strong>on</strong>g> Hoigne, J. (1992a) Photolysis <str<strong>on</strong>g>of</str<strong>on</strong>g> aqueous chlorine at sunlight <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

ultraviolet wavelengths – I. Degradati<strong>on</strong> kinetics. Wat. Res., 26(5), 593-598.<br />

Nowell, L. H., <str<strong>on</strong>g>and</str<strong>on</strong>g> Hoigne, J. (1992b) Photolysis <str<strong>on</strong>g>of</str<strong>on</strong>g> aqueous chlorine at sunlight <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

ultraviolet wavelengths – II. Hydroxyl radical producti<strong>on</strong>. Wat. Res., 26(5), 599-<br />

605.<br />

Oliver, B. G., <str<strong>on</strong>g>and</str<strong>on</strong>g> Carey, J. H. (1977) Photochemical producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chlorinated organics<br />

in aqueous soluti<strong>on</strong>s c<strong>on</strong>taining chlorine. Envr. Sci. Technol., 19, 1206-1213.<br />

Schwarzenbach, R. P., Gschwend, P. M., <str<strong>on</strong>g>and</str<strong>on</strong>g> Imboden, D. M. (1993) Envir<strong>on</strong>mental<br />

Organic Chemistry, Wiley, New York, N.Y., USA.<br />

Vikesl<str<strong>on</strong>g>and</str<strong>on</strong>g>, P. J., Ozekin, K., <str<strong>on</strong>g>and</str<strong>on</strong>g> Valentine, R. L. (1998) Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> natural organic matter<br />

<strong>on</strong> m<strong>on</strong>ochloramine decompositi<strong>on</strong>: Pathway Elucidati<strong>on</strong> through the use <str<strong>on</strong>g>of</str<strong>on</strong>g> mass<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> redox balances. Envir<strong>on</strong>. Sci. Technol., 32(10), 1409-1416.<br />

White, G. C. (1999) H<str<strong>on</strong>g>and</str<strong>on</strong>g>book <str<strong>on</strong>g>of</str<strong>on</strong>g> chlorinati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> alternative disinfectants, Wiley, New<br />

York, N.Y., USA.<br />

13

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!