14.12.2012 Views

summary of alloys - CARO-PROMETA Metallvertriebs GmbH

summary of alloys - CARO-PROMETA Metallvertriebs GmbH

summary of alloys - CARO-PROMETA Metallvertriebs GmbH

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

TECHNOLOGY<br />

Manufacturing, application and processing<br />

<strong>of</strong> copper <strong>alloys</strong><br />

Wieland-Group<br />

<strong>CARO</strong>-<strong>PROMETA</strong><br />

Service and Know-How


CONTENTS<br />

COPPER<br />

The basis <strong>of</strong> our quality Page 2<br />

MANUFACTURING OF<br />

SEMI-FINISHED PRODUCTS<br />

Continuous casting Pages 2 - 4<br />

Pressing and drawing Pages 5 - 8<br />

Spray forming Page 9<br />

MATERIALS<br />

Aluminium bronzes Pages 10 - 17<br />

Tin bronzes Pages 18 - 25<br />

Cast bronzes Pages 26 - 31<br />

Copper zinc <strong>alloys</strong> Pages 32 - 37<br />

Copper nickel <strong>alloys</strong> Pages 38 - 43<br />

PROCESSING<br />

Finished parts Pages 44 - 46<br />

1


2<br />

COPPER<br />

The basis <strong>of</strong> our quality<br />

The main component <strong>of</strong> our products is copper. A multitude <strong>of</strong> conventional and innovative <strong>alloys</strong> are<br />

produced in our foundry. Zinc, tin and nickel, as well as chrome, titanium and silicone are the essential<br />

alloy constituents. We thereby deploy new metals, for example in the form <strong>of</strong> copper cathodes as well as<br />

high-quality secondary raw materials, which emerge from our own production and that <strong>of</strong> customers.<br />

The production <strong>of</strong> semi-finished products can be assigned to the stages:<br />

- Founding and casting<br />

- Hot forming<br />

- Cold forming with intermediate annealing and<br />

- Finishing<br />

This sequence is maintained by almost all manufacturers but mechanical equipment and details <strong>of</strong><br />

processes differ considerably. However, in principle there are also other production processes, and the<br />

industrial application <strong>of</strong> the spray compacting process is relatively new, for example.<br />

Manufacturing <strong>of</strong> semi-finished products<br />

At the beginning <strong>of</strong> the production, the smelting <strong>of</strong> the <strong>alloys</strong> and casting <strong>of</strong> rolled plates or round billets<br />

takes place. Pure metals, recycling materials and sometimes pre-<strong>alloys</strong> as well as remains from<br />

production are used. Pure metals (e.g. cathode copper, pure zinc and pure tin) are acquired direct from the<br />

smelters or refineries. Recycling material (EN 12861) partly comes from dealings with the factory and<br />

sometimes it is delivered back by the customer, for example as shavings from lathing or chads.<br />

The material used first arrives in the metal store where it is sorted, checked, weighed and stored. In order<br />

to avoid impurities in the smelting, visual checks, physical tests and chemical analysis are carried out. The<br />

cost and effort involved in testing are <strong>of</strong>ten considerable, particularly for recycling material. Small pieces <strong>of</strong><br />

material, for example, chads, are separated from the iron parts using magnets. Batches <strong>of</strong> large-sized<br />

pieces <strong>of</strong> material are checked for impurities using a magnetic sensor. In most cases a baling process is<br />

then carried out so that the material can be handled more easily. The composition is identified via liquid<br />

chemical analyses or using automatic analysis equipment. The load for the furnaces is put together from<br />

the materials to be used and weighed out into appropriate batches for transportation. “Pre-<strong>alloys</strong>” are used<br />

for the alloying <strong>of</strong> certain elements, which are also to be introduced into low and closely tolerated<br />

concentration (for example, manganese in white copper).<br />

Smelting is conducted in electrically heated furnaces (induction furnaces). Different <strong>alloys</strong> in our<br />

production range are cast in precisely planned rotation to keep the changeover expense for the furnaces<br />

as low as possible. During the smelting, samples are ladled out from the loads and checked for conformity<br />

with the alloy specifications and freedom from impermissible impurities. All smelting furnaces and prior to<br />

casting, the casting furnaces, are checked. Because the results <strong>of</strong> analysis are available quickly, this<br />

checking is not associated with production losses.


Drawing <strong>of</strong> semi-finished product manufacturing:<br />

Smelting<br />

Continuous<br />

casting<br />

(ASARCO)<br />

Continuous casting<br />

Continuous<br />

Discontinuous<br />

Hot rolling<br />

Extruders<br />

Tube extrusion<br />

Band rolling<br />

Rod drawing<br />

Tube drawing<br />

To cast bolts out <strong>of</strong> copper or copper <strong>alloys</strong>, with few exceptions, we use fully continuous casting<br />

equipment. Continuous as well as discontinuous casting equipment demonstrate considerable<br />

performances. Output <strong>of</strong> around 100 tons per working day and continuous cast can be achieved.<br />

With Asarco casting, the mould is attached directly to the floor <strong>of</strong> the casting furnace, which usually also<br />

serves as the smelting furnace (furnace-hinged mould). This technology is particularly suitable for<br />

manufacturing rods, tubes and pr<strong>of</strong>iles with smaller diameters. High surface quality and good dimensional<br />

precision are thereby achieved. The process is therefore used frequently for <strong>alloys</strong>, which due to high alloy<br />

content (for example, <strong>of</strong> lead or tin) can no longer be formed without chips after casting. Such cast <strong>alloys</strong><br />

are only used for sleeve bearings and other purposes.<br />

Since 1933 the Wieland-Junghans continuous casting process is the only one that has been used for<br />

casting. The smelted material goes from the smelting furnaces to the casting furnaces, and from there,<br />

controlled by a valve in the fore hearth, into the continuous casting equipment. This basically consists <strong>of</strong> a<br />

water-cooled mould, open underneath, with an outlet or lowering mechanism for the existing continuous<br />

cast. The mould sits on a movable table, which makes bobbing movements in the direction <strong>of</strong> the casting<br />

shaft. This reduces the friction between the cast and the mould.<br />

At the start <strong>of</strong> the casting (see fig. a on the next page) the mould is sealed from below via a so-called<br />

starting bar head. After the moulded metal has formed a crust, the starting bar head is slowly lowered until<br />

a short solidified metal cast is formed (fig. b). After that casting takes place at the prescribed speed (fig. c).<br />

The area underneath the mould in the secondary cooling area <strong>of</strong> the continuous cast is also cooled by<br />

spraying with water (see figs. b to d), so that the casting process does not have to be interrupted except<br />

when there is a change <strong>of</strong> alloy. For discontinuous (semi-continuous) casting there is no sawing but the<br />

casting procedure is interrupted once the cast has reached the length required. For both casting<br />

variations, equipment is usually deployed that enables the casting <strong>of</strong> several lengths at the same time.<br />

3


4<br />

a<br />

b<br />

a Closing <strong>of</strong> the mould by the starting bar head<br />

b Pouring in<br />

c<br />

d<br />

c Continuous casting<br />

d Separation<br />

Fig. Precision continuous casting<br />

Emergence <strong>of</strong> the continuous cast (700 °C) from the water-cooled mould


Pressing and drawing<br />

The source material for pressing / drawing products are in continuous cast bolts with diameters between<br />

150mm and 370mm, and lengths from 200mm to 1300mm. They are first pre-formed by hot forming in the<br />

continuous casting process. For this purpose the bolts mainly inductively heated to the forming<br />

temperature (depending on the alloy, between 600°C and 1000°C) and are formed in hydraulic continuous<br />

casting presses using press forces <strong>of</strong> between 10MN and 35MN. The shape <strong>of</strong> the continuous cast is<br />

formed using tools (dies) on the output side <strong>of</strong> the press.<br />

With the continuous casting <strong>of</strong> tubes, the interior shape is made by a mandrel, the point <strong>of</strong> which is pushed<br />

into the die opening. The mandrel is either already bored through or is pierced through (“punched out”) by<br />

the mandrel in the first working cycle. In the pressing process the mandrel supports the forming tube inside<br />

in both cases.<br />

Thick rods, big pr<strong>of</strong>iles and tubes are usually pressed in straight lengths using single-hole dies. On the<br />

other hand, wires with smaller diameters and also simple, light pr<strong>of</strong>iles are <strong>of</strong>ten produced using multi-hole<br />

dies, and the individual lengths are reeled separately into bunches. A horizontal tube casting press is<br />

shown in the figure below. A pre-heated bolt is pushed into the machine and on the left hand side the holder<br />

for the forming tool can be seen. Before the actual pressing out the machine parts, block pick-up and tool<br />

pick-up which are now separated from one another are put together.<br />

Fig. Control side <strong>of</strong> a 32MN tube press<br />

For reasons connected with the process, the material in the continuous casting process is not completely<br />

used up. The bolts are not fully pressed out because otherwise towards the end <strong>of</strong> the pressed length socalled<br />

discontinuities would ensue. The remains <strong>of</strong> the pressing depend on the ratio <strong>of</strong> the bolt diameter to<br />

the product diameter and totals between 5% and 20% <strong>of</strong> the material used.<br />

According to the material and shape <strong>of</strong> the product, they are pressed “directly” or “indirectly”. While, with<br />

direct pressing, the die is pressed directly into the container, with indirect pressing the container moves<br />

with the bolt against the fixed die. Thus, the friction between the press bolt and the pick-up disappears and<br />

the press force required is decreased considerably (to around 30%), and the press speed can be<br />

increased. The material flow arising with indirect continuous casting pressing leads to more even material<br />

properties. These advantages are used in particular for producing wires, for example in the production <strong>of</strong><br />

brass wires and rods.<br />

5


checking<br />

6<br />

heating up tube pressing cooling <strong>of</strong>f<br />

final drawing<br />

straightening<br />

checking<br />

annealing coiling<br />

pre-drawing<br />

cutting to length<br />

tubes in coils tubes in straight lengths<br />

According to the material and shape <strong>of</strong> the product, they are pressed “directly” or “indirectly”. While, with<br />

direct pressing, the die is pressed directly into the container, with indirect pressing the container moves<br />

with the bolt against the fixed die. Thus, the friction between the press bolt and the pick-up disappears and<br />

the press force required is decreased considerably (to around 30%), and the press speed can be<br />

increased. The material flow arising with indirect continuous casting pressing leads to more even material<br />

properties. These advantages are used in particular for producing wires, for example in the production <strong>of</strong><br />

brass wires and rods.<br />

The continuous cast pressed material is then only cold formed up to the end product and depending on the<br />

type <strong>of</strong> product, on different production lines. The pressed tubes are usually re-processed on drum-type<br />

drawing machines. The mandrels required for adjusting the internal diameter are introduced into the front<br />

end <strong>of</strong> the die. Due to their geometry they centre themselves independently <strong>of</strong> the die (“flying” or<br />

“swimming” mandrel).<br />

Should the tube be supplied in straight lengths, the final production process takes place on a special<br />

drawing machine, which continuously draws, directs and cuts to length the material from the coil through a<br />

die. In the other case the tubes are spooled and packed ready for despatch in this format. For both<br />

production variants there is the option <strong>of</strong> including continuous quality checking in the process using eddy<br />

current. Interim annealing operations are not standard for copper due to its excellent forming capacity.<br />

At the end <strong>of</strong> the production, before the straight bending, it can be gently annealed if required. That usually<br />

takes place under protective gas in order to avoid tindering <strong>of</strong> the tubes (bare annealing). Copper tubes for<br />

installation purposes (SANCO tubes) are subject to special treatment, which aims to avoid grease and<br />

carbon deposits and to create a thin oxide layer with the final annealing in the interior <strong>of</strong> s<strong>of</strong>t tubes. Here<br />

the corrosion behaviour is improved with aggressive watering.


heating up<br />

Manufacturing<br />

drawing <strong>of</strong>:<br />

a) Rods<br />

b) Pr<strong>of</strong>iles from easy<br />

to press materials<br />

c) Pr<strong>of</strong>ile rods and pr<strong>of</strong>ile<br />

wires made <strong>of</strong> difficult<br />

to press materials<br />

pressing<br />

heating up pressing<br />

cutting<br />

steeping in<br />

corrosive fluid<br />

cutting in lengths testing drawing<br />

straightening<br />

straightening<br />

drawing<br />

rods chamfered<br />

and sharpened<br />

annealing<br />

steeping in<br />

corrosive fluid<br />

pr<strong>of</strong>ile ends sawed<br />

To manufacture coated copper tubes such as WICU and cuprotherm tubes for the sanitation and heating<br />

industry, floor heating and radiator connection tubes, a coating with a special interior shape is put on the<br />

bare tube. This is done with the help <strong>of</strong> an extruder. The plastic, applied in granules, is then plasticised and<br />

in this condition it encases the tube running around the extruder head. Insulated copper tubes are<br />

produced in straight lengths as well as coils. For tubes made <strong>of</strong> copper <strong>alloys</strong>, for example, brass tubes are<br />

firstly formed into straight lengths using a wire drawing bench. Mandrels are fixed on to the mandrel rods<br />

via which the tubes are pushed. After an appropriate number <strong>of</strong> pulls through dies <strong>of</strong> different diameters,<br />

the tubes must be temporarily annealed to remove the cold solidification. The straightening process at the<br />

end <strong>of</strong> the forming process stages is usually done on roller straightening machines for alloy tubes. An eddy<br />

current test is the norm. To adjust the required hardness condition, final annealing operations may be<br />

required. The oxidised layer resulting from the annealing must be removed by steeping in corrosive fluid.<br />

Bare annealing in protective gas to avoid the formation <strong>of</strong> oxides is only normal for zinc-free materials such<br />

as copper/nickel <strong>alloys</strong>. For other drawn products too such as rods, pr<strong>of</strong>iles and wires, continuous cast<br />

pressed primary material is used. For this drawing machines as well as rolling machines are used. The<br />

final forming usually occurs using drawing, where core lengths and average sizes are worked on using<br />

drawing benches or drum-type drawing machines accordingly.<br />

7


8<br />

heating up pressing calibre rolling<br />

bare annealing pre-drawing<br />

pr<strong>of</strong>ile rolling<br />

sawing<br />

pr<strong>of</strong>ile drawing<br />

straightening<br />

pr<strong>of</strong>ile lengths pr<strong>of</strong>ile wire<br />

annealing<br />

steeping in<br />

corrosive<br />

fluid


Spray Forming<br />

Spray compacting was described in the mid-1960s by A.R.E. Singer. Material benefits are attained which<br />

cannot be achieved using conventional casting techniques:<br />

- Low-segregation, fine-grained structures,<br />

- Isotrope properties,<br />

- Setting <strong>of</strong> metastable conditions,<br />

- Insertion <strong>of</strong> fixed particles.<br />

The process <strong>of</strong> spray compacting can be divided into three stages:<br />

- Spraying <strong>of</strong> smelted material with inert gas,<br />

- Flow <strong>of</strong> drops with fast cooling <strong>of</strong> the drops,<br />

- Compacting <strong>of</strong> the drops on the collector (slow cooling <strong>of</strong> the solidified product).<br />

The smelted material discharged from the casting dispenser is sprayed with a gas jet with the finest<br />

droplets. Nitrogen is used as the spraying gas for copper and copper <strong>alloys</strong>. The drops sprayed, which<br />

have an average diameter <strong>of</strong> approximately 60 µm to 80 µm, meet after a given distance in the defined<br />

aggregate condition (mix <strong>of</strong> still liquid droplets and already solidified particles) in a collector and there they<br />

compact into a firm mass due to their kinetic energy. When sprayed, a very thin, mushy film first forms on<br />

the spray surface, which also solidifies quickly due to the intense discharge <strong>of</strong> heat from the already<br />

solidified areas. It is not a traditional casting structure that forms from this but the sprayed solid has a finegrained<br />

and uniform structure.<br />

In one procedure variant, at the same time as the sprayed drops, firm particles are also injected into the<br />

spray stream and therefore uniformly distributed in the spray so<br />

that compound materials result. For example, oxides, carbides,<br />

nitrides or borides increase the hardness and improve the<br />

resistance to wear and tear. Metallic particles such as powder<br />

particles <strong>of</strong> wolfram, molybdenum and niobium have better<br />

burn-<strong>of</strong>f hardness as well as high thermal and electrical<br />

conductivity with low thermal expansion, as a result.<br />

With materials such as graphite, there is good machinability and<br />

better slide properties, and with metallic or non-metallic short<br />

fibres, greater hardness.<br />

1) Heating furnace<br />

2) Distributor<br />

3) Gas sprayer<br />

4) Bolt<br />

5) Feeder turning unit<br />

6) Dust remover<br />

7) Powder collection container<br />

8) Spray chamber<br />

9


10<br />

ALUMINIUM BRONZES<br />

ABS-Materials<br />

ABS materials are heterogeneous aluminium multi-material bronzes. Added to<br />

these with aluminium content between 8% and 12.5% are nickel and iron.<br />

The optimisation <strong>of</strong> corrosion-resistance achieved through this in aggressive<br />

media with above average mechanical and physical properties, explains the<br />

particular importance <strong>of</strong> these <strong>alloys</strong> inside machines, and in shipbuilding and<br />

apparatus engineering.<br />

Alloys<br />

The addition <strong>of</strong> the alloy elements, iron and nickel, leads to improved technological properties compared<br />

to homogeneous dual material <strong>alloys</strong>. While the excellent corrosion-resistance in aggressive watery<br />

solutions can primarily be traced to the addition <strong>of</strong> nickel, the iron content makes the alloy structure finer<br />

and therefore increases the tensile strength.<br />

The materials therefore correspond to the following standards<br />

EUROPE<br />

GERMANY<br />

FRANCE<br />

UK<br />

ITALY<br />

SPAIN<br />

HUNGARY<br />

CZE<br />

INT<br />

USA<br />

JPN<br />

EN<br />

DIN<br />

Nr.<br />

NF<br />

BS<br />

UNI<br />

UNE<br />

Nr.<br />

MSZ<br />

Nr.<br />

CSN ISO<br />

ISO<br />

ASTM<br />

JIS<br />

Comparisation <strong>of</strong> Standards:<br />

CuAl10Fe3Mn2<br />

CW306G<br />

AB3S<br />

CuAl10Fe3Mn2<br />

2.0936<br />

CuAl10Fe3Mn2<br />

---<br />

---<br />

---<br />

---<br />

---<br />

---<br />

---<br />

---<br />

---<br />

---<br />

CuAl10Ni5Fe4<br />

CW307G<br />

AB4S<br />

CuAl10Ni5Fe4<br />

2.0966<br />

CuAl10Ni5Fe3<br />

CA 104<br />

P-CuAl10Fe5Ni5<br />

CuAl10Fe5Ni5<br />

C-8270<br />

CuAl10Fe4Ni4<br />

AlbzK10-4-4<br />

CuAl10Fe4Ni4<br />

CuAl10Ni5Fe4<br />

C63000<br />

C6301<br />

CuAl11Fe6Ni6<br />

CW308G<br />

AB5S<br />

CuAl11Ni6Fe5<br />

2.0978<br />

CuAl11Ni5Fe5<br />

The choice <strong>of</strong> <strong>alloys</strong> is primarily focused on the hardness properties required. Details on the corrosive<br />

behaviour can be submitted as requested.<br />

---<br />

---<br />

---<br />

---<br />

---<br />

---<br />

---<br />

---<br />

---<br />

---


Properties<br />

- High tensile strength and fatigue strength even at increased temperatures (400ºC)<br />

- Good corrosion-resistance against neutral fluids and acids, watery solutions and sea water<br />

- Good resistance to tindering, erosion and cavitation<br />

- Good heat and electrical conductivity<br />

- Good slide properties at slow speeds with high loads, particularly for thermal load and wear<br />

and tear<br />

- Cost-saving through low processing elements and tolerances, particularly for drawn/pressed<br />

versions<br />

- Few rejects<br />

- No noticeable loss <strong>of</strong> notched impact strength at temperatures up to -196ºC<br />

Applications<br />

- Ships’ axles and tube extruder shafts - Ships’ fittings<br />

- Internal parts <strong>of</strong> high pressure fittings - Screws and worm wheels<br />

hydraulic valves for the highest pressure - Lasts<br />

levels - Pump shafts<br />

- Gear parts - High performance bearings<br />

- Rotor caps and wedges - Sliding block<br />

- Wearing parts - Bolts and screws<br />

- Non-sparking tools - Plastic and glass moulds<br />

Mechanical Properties:<br />

Tensile strength<br />

0,2%-pro<strong>of</strong> stress<br />

Elongation<br />

Hardness<br />

R m<br />

R 0,2<br />

p<br />

A 5<br />

HB<br />

Physical Properties:<br />

Density<br />

Smelting range<br />

Electrical conductivity<br />

Electrical resistance<br />

Heat conductivity<br />

Expansion coefficient<br />

Specific heat<br />

Var. resistance to bending<br />

Permeability<br />

Elasticity module<br />

2<br />

N/mm<br />

2<br />

N/mm<br />

%<br />

min.<br />

ca.<br />

min.<br />

3<br />

g/m<br />

°C<br />

m/Ohm mm²<br />

m/Ohm (20 °C)<br />

W/m . K<br />

6<br />

10 /K<br />

J/g . K (20-100 °C)<br />

-6<br />

10 N/mm² (20 °C)<br />

μ<br />

kN/mm²<br />

ALUMINIUM BRONZES<br />

AB3S / CW306G<br />

CuAl10Fe3Mn2<br />

R590<br />

590<br />

(330)<br />

12<br />

140<br />

R690<br />

690<br />

(510)<br />

6<br />

180<br />

AB3S / CW306G<br />

CuAl10Fe3Mn2<br />

7,6<br />

1040 - 1050<br />

7<br />

-<br />

57<br />

17<br />

-<br />

-<br />

-<br />

120<br />

AB4S / CW307G<br />

CuAl10Ni5Fe4<br />

R680<br />

680<br />

(480)<br />

10<br />

-<br />

R740<br />

740<br />

(530)<br />

8<br />

-<br />

AB4S / CW307G<br />

CuAl10Ni5Fe4<br />

7,5<br />

1050 - 1080<br />

4 - 6<br />

0,2<br />

50<br />

17<br />

0,452<br />

290<br />

< 1,9<br />

117 - 120<br />

AB5S / CW308G<br />

CuAl11Fe6Ni6<br />

R750<br />

750<br />

(450)<br />

10<br />

-<br />

R830<br />

830<br />

(680)<br />

-<br />

-<br />

AB5S / CW308G<br />

CuAl11Fe6Ni6<br />

7,4<br />

1060 - 1080<br />

5<br />

0,2<br />

40<br />

17<br />

0,435<br />

310<br />

< 1,6<br />

127<br />

11


12<br />

ALUMINIUM BRONZES<br />

Processing notes<br />

1. Hot forming:<br />

ABS <strong>alloys</strong> are easy to forge. For this the material should be heated evenly to 940-980ºC. Temperatures<br />

over 980ºC or under 800ºC should not be exceeded / must be reached. The stress relieving annealing<br />

temperature is 680ºC. The parts to be forged should be cooled down in still air. Subsequent heat treatment<br />

is not required. The <strong>alloys</strong> are not suitable for cold forming.<br />

2. Welding and soldering:<br />

The <strong>alloys</strong> may be satisfactorily welded using MIG or WIG and electric arc welding applying electrodes in<br />

the same material and direct current. Resistance welding is also possible.<br />

For hard welding special flux containing fluoride, as well as silver solder with a low melting point<br />

(approximately 650ºC) should be used. For s<strong>of</strong>t welding a solution <strong>of</strong> phosphoric acid in water is<br />

recommended. Copper coating in advance makes this procedure easier.<br />

3. Mechancal processing:<br />

The <strong>alloys</strong> can be processed like a steel <strong>of</strong> the same Hardness. The most advantageous to use for this are<br />

P30 carbides, cutting angle 0º, preliminary work: vc=100-150m/min, f=0.2-0.4mm/U, finished work<br />

vc=200-250m/min, s=0.05-0.10mm. For drilling, a spiral drill sharpened on one side (0.1-0.2mm) is<br />

recommended, fully cooled by using a drilling emulsion. For thread cutting a good lubricant must be used.<br />

High surface quality can be achieved by grinding and diamond turning. In the event that low detornation<br />

(changes in the grain) occurs with the processing, in critical cases stress relieving annealing at 350 ºC for<br />

one hour can be carried out prior to finishing processing.<br />

®<br />

<strong>CARO</strong> Ψpsi <strong>CARO</strong><br />

®<br />

Ψ-AL - The new generation <strong>of</strong> high-strength aluminium bronzes<br />

psi<br />

®<br />

- <strong>CARO</strong> Ψ psi -AL13: Hard with good distension<br />

®<br />

- <strong>CARO</strong> Ψ psi -AL14: Very hard with distension<br />

®<br />

- <strong>CARO</strong> Ψ -AL15: Harder than steel<br />

psi<br />

These high-strength aluminium bronzes are high-end materials, which demonstrate unique mechanical<br />

properties due to their innovative production processes in the field <strong>of</strong> cast bolt production.<br />

They are thereby the subsequent advancement <strong>of</strong> traditional aluminium bronzes.


®<br />

<strong>CARO</strong> Ψ psi -Examples <strong>of</strong> applications<br />

Properties<br />

- Forming technology<br />

- Deep drawing technology<br />

- Bearing technology<br />

- Pr<strong>of</strong>ile rolling<br />

Thanks to the spraying procedure this produces<br />

a homogeneous structure with identical grain sizes <strong>of</strong> 60µm.<br />

Left: traditional cast bolt<br />

Right sprayed bolt<br />

Even hardness pr<strong>of</strong>ile<br />

While with traditional production procedures the<br />

mechanical properties based on the nonhomogeneous<br />

textural structure could vary<br />

®<br />

considerably, <strong>CARO</strong> Ψpsi-AL materials guarantee<br />

the same rigidity and hardness properties at each<br />

and every point <strong>of</strong> the part.<br />

ALUMINIUM BRONZES<br />

Homogeneous structures<br />

Spray compacting enables absolutely homogeneous<br />

textural structures in contrast with cast material. This<br />

is the result <strong>of</strong> the uniform cooling <strong>of</strong> the spray bolt.<br />

Due to the thus reduced segregation, materials can<br />

be pressed from these bolts, which traditionally from<br />

one cast bolt could not be further processed.<br />

HB 413<br />

HB 413<br />

HB 415<br />

HB 412<br />

HB 419<br />

Primary material for forming tools with high hardness and<br />

even distribution <strong>of</strong> rigidity<br />

13


14<br />

ALUMINIUM BRONZES<br />

Advantages<br />

- A machinability up to 30% better is achieved due to the homogeneity, despite extreme<br />

hardness and rigidity.<br />

- Minimising tool costs.<br />

- The lower wear and tear on tools due to the unique machinability leads to considerable<br />

savings in tool costs.<br />

- Excellent wear resistance.<br />

- Premature wear and tear on surfaces <strong>of</strong> below average quality is prevented.<br />

- Precise cutting edges.<br />

- The processed surfaces are smooth and the cutting edges precise and without any flaws on<br />

the surface.<br />

Large flaws on the cutting edges with<br />

traditionally produced material.<br />

Mechanical Properties <strong>of</strong> <strong>CARO</strong>Ψpsi: Tensile strength<br />

Yield strength<br />

Elongation<br />

Hardness<br />

Compressive strength<br />

R m<br />

R 0,2<br />

p<br />

A 5<br />

HB<br />

2<br />

N/mm<br />

2<br />

N/mm<br />

%<br />

2<br />

N/mm<br />

Physikalische Eigenschaften <strong>CARO</strong>Ψpsi: electrical<br />

Conductivity<br />

Heat Conductivity Room temperature<br />

Heat Conductivity 300 °C<br />

Density<br />

E-module<br />

Melting range<br />

Heat forming<br />

m/Ohm mm²<br />

%IACS<br />

W/m . K<br />

W/m . K<br />

3<br />

g/cm<br />

kN/mm²<br />

°C<br />

°C<br />

ca. 900<br />

ca. 350<br />

ca. 5<br />

> 250<br />

>1150<br />

4<br />

7<br />

35<br />

68<br />

7,2<br />

60<br />

1035 - 1045<br />

620 - 730<br />

Barely any flaws with <strong>CARO</strong>Ψpsi<br />

AL13 AL14 AL15<br />

-<br />

-<br />

-<br />

> 320<br />

> 1200<br />

3<br />

6<br />

30<br />

60<br />

7,0<br />

75<br />

1035 - 1045<br />

620 - 730<br />

-<br />

-<br />

-<br />

> 360<br />

> 1300<br />

AL13 AL14 AL15<br />

3<br />

6<br />

26<br />

50<br />

7,0<br />

90<br />

1020 - 1040<br />

620 - 730


We stock a comprehensive range <strong>of</strong> highperformance<br />

aluminium bronzes in different<br />

delivery conditions precisely suited to your<br />

application.<br />

AB3S<br />

CuAl10Fe3Mn2<br />

AB4S<br />

CuAl10Ni5Fe4<br />

AB5S<br />

CuAl11Fe6Ni6<br />

<strong>CARO</strong> psi<br />

CuAl13Fe4,5Mn1,25Co1,25<br />

<strong>CARO</strong> psi<br />

CuAl14Fe4,5Mn1,25Co1,25<br />

<strong>CARO</strong> psi<br />

CuAl15Fe4,5Mn1,25Co1,25<br />

Delivered formats:<br />

Material: Programme:<br />

Description Material number<br />

CuAl10Fe5Ni5-C<br />

CuAl8<br />

CuAl8Fe3<br />

CuAl9Mn2<br />

CuAl9Ni3Fe2<br />

CuAl10Fe2<br />

CuAl11Fe6Ni6<br />

® ΨAL13<br />

® ΨAL14<br />

® ΨAL15<br />

CW306G<br />

CW307G<br />

CW308G<br />

CC333G<br />

---<br />

CW303G<br />

---<br />

CW304G<br />

CC331G<br />

CC334G<br />

---<br />

---<br />

---<br />

ALUMINIUM BRONZES<br />

Tubes<br />

Round bars<br />

x<br />

Flat bars<br />

Square bars<br />

Hexagonal bars<br />

Wire<br />

Pr<strong>of</strong>ile<br />

Sheets / blank cuts<br />

x x x x x<br />

x<br />

x x<br />

x x x x<br />

x<br />

x x<br />

Other materials supplied on request x ... from stock ... on request<br />

15


16<br />

ALUMINIUM BRONZES<br />

SUMMARY OF ALLOYS<br />

Description<br />

Material no.<br />

Material description<br />

Old material no.<br />

Old material description<br />

Brief description<br />

Condition<br />

Standard<br />

Chemical composition *<br />

Copper Cu<br />

Aluminium Al<br />

Tin Sn<br />

Zinc Zn<br />

Nickel Ni<br />

Iron Fe<br />

Manganese Mn<br />

Lead Pb<br />

Silicon Si<br />

Phosphorous P<br />

Tellurium Te<br />

Titanium Ti<br />

Chrome Cr<br />

Cobalt Co<br />

Other total<br />

* Weight %<br />

Mechanical properties<br />

2<br />

Tensile strength RM N/mm<br />

2<br />

0,2 % tensile yield strength Rp N/mm<br />

Elongation A5 %<br />

Hardness HB 2,5 / 62,5<br />

2<br />

Compressive strength N/mm<br />

Physical Properties<br />

.<br />

Heat conductivity W/m K<br />

Electrical conductivity MS/m<br />

2<br />

E-module N/mm<br />

3<br />

Density g/cm<br />

-6<br />

Heat expansion coefficient 10 /K<br />

Cast structure<br />

CC333G<br />

CuAl10Fe5Ni5<br />

2.0975<br />

CuAl10Ni<br />

R650<br />

EN 1982<br />

76,0 - 83,0<br />

8,5 - 10,5<br />

0,1<br />

0,5<br />

4,0 - 6,0<br />

4,0 - 5,5<br />

3,0<br />

0,03<br />

0,1<br />

650<br />

280<br />

13<br />

150<br />

60<br />

4 - 6<br />

110 - 128<br />

7,6<br />

CW306G<br />

CuAl10Fe3Mn2<br />

2.0936<br />

CuAl10Fe3Mn2<br />

AB3S<br />

R590 R690<br />

EN 12163 - M -<br />

Balance<br />

9,0 - 11,0<br />

0,1<br />

0,5<br />

1,0<br />

2,0 - 4,0<br />

1,5 - 3,5<br />

0,05<br />

0,2<br />

0,2<br />

590 690<br />

(330) (510)<br />

12 6<br />

(140) (180)<br />

57<br />

7<br />

120<br />

7,6


Wrought alloy structure<br />

CW307G<br />

CuAl10Ni5Fe4<br />

2.0966<br />

CuAl10Ni5Fe4<br />

AB4S<br />

R680 R740<br />

EN 12163<br />

Balance<br />

8,5 - 11,0<br />

0,1<br />

0,4<br />

4,0 - 6,0<br />

3,0 - 5,0<br />

1,0<br />

0,05<br />

0,2<br />

0,2<br />

680 740<br />

(480) (530)<br />

10 8<br />

(170) (200)<br />

50<br />

4-6<br />

117-120<br />

7,5<br />

17<br />

CW308G<br />

CuAl11Fe6Ni6<br />

2.0978<br />

CuAl11Fe6Ni6<br />

AB5S<br />

R750 R830<br />

EN 12163<br />

Balance<br />

10,5 - 12,5<br />

0,1<br />

0,5<br />

5,0 - 7,0<br />

5,0 - 7,0<br />

1,5<br />

0,05<br />

0,2<br />

0,2<br />

750 830<br />

(450) (680)<br />

10 -<br />

(190) (230)<br />

40<br />

5<br />

127<br />

7,4<br />

17<br />

CuAl13Fe4,5Mn<br />

1,25Co1,25<br />

®<br />

<strong>CARO</strong> ΨAl13<br />

psi<br />

Balance<br />

13<br />

4,5<br />

1,25<br />

1,25<br />

ca. 900<br />

ca. 350<br />

ca. 5<br />

>250<br />

>1150<br />

35<br />

4<br />

60<br />

7,2<br />

Spray formed structure<br />

CuAl14Fe4,5Mn<br />

1,25Co1,25<br />

<strong>CARO</strong><br />

®<br />

ΨAl14<br />

psi<br />

no standard<br />

Balance<br />

14<br />

4,5<br />

1,25<br />

1,25<br />

-<br />

-<br />

-<br />

>320<br />

>1200<br />

30<br />

3<br />

75<br />

7<br />

CuAl15Fe4,5Mn<br />

1,25Co1,25<br />

®<br />

<strong>CARO</strong> ΨAl15<br />

psi<br />

Balance<br />

15<br />

4,5<br />

1,25<br />

1,25<br />

-<br />

-<br />

-<br />

>360<br />

>1300<br />

26<br />

3<br />

90<br />

7<br />

17


18<br />

TIN BRONZES<br />

The special material <strong>CARO</strong>BRONZE<br />

®<br />

The phosphorous tin bronze, <strong>CARO</strong>BRONZE , has assumed an excellent position for many decades<br />

among the usual sleeve bearing materials on the market. Its effectiveness as a slide material that is<br />

capable <strong>of</strong> withstanding a high level <strong>of</strong> stress has been proven again and<br />

again in comparative running tests and in practice, for more than eighty<br />

years.<br />

The alloy:<br />

The difference in DIN EN 12449 for<br />

the first time (see below) between<br />

CuSn8 and CuSn8P is based on the<br />

s p e c i a l s l i d e p r o p e r t i e s o f<br />

®<br />

<strong>CARO</strong>BRONZE / CuSn8P in the<br />

semi-fluid friction range. <strong>CARO</strong>-<br />

®<br />

BRONZE (CuSn8P) covers CuSn8<br />

with outstanding slide properties.<br />

The phosphorous content on the one<br />

hand brings about the elimination <strong>of</strong><br />

wear processes (see chart) and<br />

facilitates lubricant film adhesion on<br />

the other hand (please find details on<br />

these test series in our notebook<br />

1/1979).<br />

The special material properties are based on the synergy <strong>of</strong> alloy purity,<br />

high phosphorous content and specific wrought alloy forming and heat<br />

®<br />

treatment. <strong>CARO</strong>BRONZE allows the design <strong>of</strong> thin-walled and small<br />

(space-saving) sleeve bearing bushes that can withstand high stresses.<br />

The completed measurements required are largely achieved by cold<br />

drawing with very low processing elements.<br />

The proportion <strong>of</strong> phosphorous that<br />

is decisive for the slide properties, the high tin content and the purity <strong>of</strong> <strong>CARO</strong>BRONZE are controlled<br />

separately and maintained within tight limits.<br />

The standard analysis (chemical composition) is: Sn circa 8.1%<br />

P circa 0.3%<br />

Cu the remainder<br />

®<br />

<strong>CARO</strong>BRONZE<br />

EUROPE<br />

GERMANY<br />

FRANCE<br />

GBR<br />

ITALY<br />

SPAIN<br />

INT<br />

USA<br />

HUN<br />

CZE<br />

JPN<br />

thereby conforms to the following national and international standards:<br />

EN<br />

DIN<br />

NF<br />

BS<br />

UNI<br />

UNE<br />

ISO<br />

ASTM<br />

MSZ<br />

CSN<br />

JIS<br />

Wear coefficient<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

®<br />

Wear-resistance <strong>of</strong> different sleeve bearing materials<br />

<strong>CARO</strong>BRONZE<br />

Alloy<br />

CuSn8<br />

Comparisation <strong>of</strong> standards:<br />

Produkt standard<br />

17662<br />

A 51-111<br />

2874<br />

2527-1<br />

37-103-1<br />

4382<br />

vol. 02.01<br />

710-1<br />

423096-1<br />

Produkt standard<br />

G-CuSn12<br />

G-CuPb15Sn<br />

CuSn8P<br />

CuSn8<br />

CuSn8P<br />

Pb104<br />

CuSn8<br />

CuSn8P<br />

CuSn8P<br />

C52100<br />

CuSn8<br />

C52100<br />

C5212<br />

G-CuSn7ZnPb<br />

CW459K<br />

2.1030<br />

C-7150<br />

Bz8


Application and properties:<br />

Material properties:<br />

- Excellent slide properties<br />

- High wear strength<br />

- High load-bearing capacity<br />

- High fatigue strength<br />

- Impervious to impact and shock stress<br />

- High resistance to erosion and cavitation<br />

- Corrosion and seawater resistant<br />

- Good heat conductivity<br />

- Good temperature resistance<br />

--> High-performance slide materials<br />

for the highest demands in load<br />

acceptance, slide speed and<br />

wear-resistance for semi-fluid<br />

friction and hydrodynamics.<br />

Mechanical and physical properties<br />

Areas <strong>of</strong> application:<br />

- Particularly suitable for thin-walled (space-saving)<br />

sleeve bearing bushes<br />

- Spindle nuts, cogs, worm wheels and pinions<br />

- Corrosion-resistant and wear-resistant designed part<br />

such as bolts, screws, spindles and nuts<br />

- Piston pumps and compressors<br />

- Construction and agricultural machinery<br />

- Hydraulics and pneumatics<br />

- Motors and gears<br />

- Vehicle and rail coach construction<br />

- Mining machinery<br />

- Pressure and tool machinery<br />

- Injection moulding machinery<br />

- Precision engineering<br />

<strong>CARO</strong>BRONZE can be produced in a wide spectrum <strong>of</strong> mechanical properties due to the wrought alloy<br />

forming and thermal treatment. The delivered conditions range from R390 to R700.<br />

For the most popular applications, the condition R450 or R460 is used, which we keep in stock. We can<br />

also conduct factory acceptance tests according to Brinell hardness, as required (e.g. hardness 125<br />

according to DIN EN 12163).<br />

The delivered conditions can be detailed as follows:<br />

Mechanical Properties:<br />

Tensile strength Rm Brinell hardness HB<br />

Elongation A5 0,2%-Pro<strong>of</strong> stress<br />

A5 Mechanical Properties:<br />

Tensile strength<br />

Brinell hardness<br />

Elongation A 5<br />

0,2%-Pro<strong>of</strong> stress<br />

R p<br />

R m<br />

HB<br />

A 5<br />

R p<br />

2<br />

N/mm<br />

2,5/62,5<br />

%<br />

2<br />

N/mm<br />

2<br />

N/mm<br />

2,5/62,5<br />

%<br />

2<br />

N/mm<br />

min.<br />

min.<br />

min.<br />

min.<br />

min.<br />

min.<br />

460<br />

-<br />

30<br />

280<br />

Tubes according to DIN EN 12449 CW459K<br />

R460 R550 R620 R700 H130 H165 H180<br />

390<br />

-<br />

45<br />

260<br />

Round rods according to DIN EN 12163 CW459K<br />

The solidity and hardness to be achieved are dependent upon each dimension. The values may be<br />

requested via a data sheet.<br />

550<br />

-<br />

12<br />

480<br />

450<br />

-<br />

26<br />

280<br />

620<br />

-<br />

5<br />

540<br />

550<br />

-<br />

15<br />

430<br />

TIN BRONZES<br />

700<br />

-<br />

-<br />

-<br />

620<br />

-<br />

-<br />

550<br />

-<br />

125-160<br />

-<br />

-<br />

700<br />

-<br />

-<br />

-<br />

-<br />

160-190<br />

-<br />

-<br />

-<br />

125-160<br />

-<br />

-<br />

-<br />

min.175<br />

-<br />

-<br />

R390 R450 R550 R620 R700 H125 H160<br />

-<br />

160-190<br />

-<br />

-<br />

19


20<br />

TIN BRONZES<br />

The degree <strong>of</strong> hardness to be achieved is influenced by the diameter and wall thickness. With a wall<br />

thickness <strong>of</strong> up to 11mm, the conditions R460 and R550, tube outer diameter up to 120 or 110mm are<br />

available.<br />

The solidity condition R460 combines good values for yield strength and tensile strength with high<br />

distension values. If special requirements for impact and shock stress are required, the solidity conditions<br />

R550 and R630 can be used.<br />

Physical Properties:<br />

Elasticity module<br />

Length equalisation coefficient<br />

Heat conductivity<br />

Density<br />

Processing notes<br />

in kN/mm<br />

-6<br />

in 10 /K<br />

W/m . K<br />

3<br />

kg/dm<br />

2<br />

®<br />

<strong>CARO</strong>BRONZE<br />

®<br />

<strong>CARO</strong>BRONZE rods and tubes are precisely cold drawn with small diameter tolerances and are<br />

extremely suitable for processing on machines.<br />

®<br />

As a homogeneous, tough material with a high level <strong>of</strong> solidity, <strong>CARO</strong>BRONZE is not one <strong>of</strong> the copper<br />

<strong>alloys</strong> that is easy to machine and forms long flowing shavings when turned. The choice <strong>of</strong> cutting material<br />

and cutting geometry are therefore <strong>of</strong> the greatest importance to achieve the processing result.<br />

Recommendation for tool and cutting data<br />

Cut True rake<br />

Open surface<br />

115<br />

17<br />

59<br />

8,8<br />

Werkzeugspitze<br />

Tool point for<br />

für Feindrehen:<br />

fine tuning:


1.) TURNING<br />

a) Rough turning and rough machining<br />

Turning steel with carbide turning plate (carbide K10).<br />

Clearance angle a + 4 ° up to + 7 °<br />

Sharpening angle b + 78 ° up to + 84 °<br />

Front rake angle c + 2 ° up to + 5 °<br />

The front rake angle is the most important <strong>of</strong> all tool angles. Large front rake angles facilitate the chip flow<br />

and reduce cutting power and edge temperature. Small rake angles increase the cutting wedge and allow<br />

turning at higher speeds. The cutting power increases, however, so that the smallest front rake angle is<br />

used for the final processing procedure with low cutting depth.<br />

Edge rounding Edge radius r = 0,3 - 0,8 mm<br />

Cutting speed: using carbide 350 - 400 m / min<br />

Feed rate: 0,3 - 0,45 mm / U<br />

b) Fine turning and smoothing<br />

Carbide K10 (with the usual aluminium geometry) or diamond<br />

Cutting depth 0.05 0.15mm at the diameter<br />

Cutting speed: 500 600m/min<br />

Feed rate:


22<br />

TIN BRONZES<br />

6.) WELDING AND SOLDERING<br />

®<br />

<strong>CARO</strong>BRONZE can be welded but changes in the structure in the area <strong>of</strong> the welding seam cannot be<br />

avoided. Hard soldering is therefore preferable. Corrosion-resistant and fixed connections can be<br />

achieved, particularly with silver solder.<br />

®<br />

Special material: :<br />

<strong>CARO</strong>PA<br />

For thick-walled parts, for which for technical forming reasons <strong>CARO</strong>BRONZE can no longer be<br />

produced, we <strong>of</strong>fer tubes made <strong>of</strong> <strong>CARO</strong>PA. These tubes correspond to <strong>CARO</strong>BRONZE with regard to<br />

purity, phosphoric content and alloy composition, but due to their thick walls they are not subject to the<br />

same intensive wrought alloy forming.<br />

The mechanical properties are comparable to those <strong>of</strong> <strong>CARO</strong>BRONZE R390. The physical properties<br />

correspond to the values <strong>of</strong> <strong>CARO</strong>BRONZE mentioned above.<br />

TOLERANZANGABEN<br />

®<br />

<strong>CARO</strong>BRONZE<br />

Tubes<br />

Precision press fit tubes<br />

Round bars<br />

Square bars<br />

Hexagonal bars<br />

Standard tolerances<br />

Measurements AD / SW ID<br />

- 50 mm<br />

- 120 mm<br />

> 120 mm<br />

> 15 mm<br />

15 - 30 mm<br />

30 - 40 mm<br />

40 - 50 mm<br />

0 / + IT11<br />

0 / + IT12<br />

0 / + IT13<br />

+ 0,02 / + 0,04<br />

+ 0,03 / + 0,06<br />

+ 0,04 / + 0,07<br />

+ 0,04 / + 0,08<br />

h 10<br />

h 11<br />

h 11<br />

®<br />

<strong>CARO</strong>PA Standard tolerances<br />

Measurements AD / SW<br />

Tubes - 100 mm 0 / + IT12<br />

CuSn6 Standard tolerances<br />

Sheets DIN 1731<br />

- IT 11 / 0<br />

- IT 12 / 0<br />

- IT 13 / 0<br />

- IT 11 / 0<br />

- IT 11 / 0<br />

- IT 11 / 0<br />

- IT 11 / 0


We stock a comprehensive range <strong>of</strong> highperformance<br />

bronzes in different delivery<br />

conditions precisely suited to your application.<br />

<strong>CARO</strong>BRONZE R450 / R460<br />

CuSn8P<br />

<strong>CARO</strong>BRONZE R550<br />

CuSn8P<br />

<strong>CARO</strong>BRONZE R620<br />

CuSn8P<br />

<strong>CARO</strong>BRONZE R730<br />

CuSn8P<br />

<strong>CARO</strong>BRONZE M<br />

CuSn8<br />

<strong>CARO</strong>PA<br />

CuSn8P<br />

CuSn8PPb<br />

CuSn6<br />

CuSn5<br />

<strong>CARO</strong>444<br />

CuSn4Pb4Zn4<br />

CuSn5Pb1<br />

Delivered formats:<br />

Material: Programme:<br />

Description Material number<br />

CW459K<br />

CW459K<br />

CW459K<br />

CW459K<br />

CW453K<br />

---<br />

CW460K<br />

CW452K<br />

CW451K<br />

CW456K<br />

CW458K<br />

x x<br />

x<br />

TIN BRONZES<br />

x x x<br />

Other materials supplied on request x ... from stock ... on request<br />

Tubes<br />

Round bars<br />

Flat bars<br />

Square bars<br />

Hexagonal bars<br />

Wire<br />

Pr<strong>of</strong>ile<br />

Sheets / blank cuts<br />

x<br />

23


24<br />

TIN BRONZES<br />

SUMMARY OF ALLOYS<br />

Description<br />

Material no.<br />

Material description<br />

Old material no.<br />

Old material description<br />

Brief description<br />

Condition<br />

Standard<br />

Chemical composition *<br />

Copper Cu<br />

Aluminium Al<br />

Tin Sn<br />

Zinc Zn<br />

Nickel Ni<br />

Iron Fe<br />

Manganese Mn<br />

Lead Pb<br />

Silicon Si<br />

Phosphorous P<br />

Tellurium Te<br />

Titanium Ti<br />

Chrome Cr<br />

Cobalt Co<br />

Other total<br />

* Weight %<br />

Mechanical properties<br />

2<br />

Tensile strength RM N/mm<br />

2<br />

0,2 % tensile yield strength Rp N/mm<br />

Elongation A5 %<br />

Hardness HB 2,5 / 62,5<br />

2<br />

Compressive strength N/mm<br />

Physical Properties<br />

.<br />

Heat conductivity W/m K<br />

Electrical conductivity MS/m<br />

2<br />

E-module N/mm<br />

3<br />

Density g/cm<br />

-6<br />

Heat expansion coefficient 10 /K<br />

Cast structure<br />

-<br />

CuSn8P<br />

®<br />

<strong>CARO</strong>PA<br />

GC -<br />

Balance<br />

-<br />

7,5 - 8,5<br />

bis 0,3<br />

bis 0,3<br />

bis 0,1<br />

0,05<br />

0,2 -0,4<br />

390<br />

260<br />

45<br />

-<br />

58<br />

7<br />

115<br />

8,8<br />

CW456K<br />

CuSn4Pb4<br />

<strong>CARO</strong>444<br />

R450<br />

EN 12164<br />

Balance<br />

-<br />

3,5 - 4,5<br />

3,5 - 4,5<br />

bis 0,2<br />

bis 0,1<br />

3,5 - 4,5<br />

0,01 - 0,4<br />

bis 0,2<br />

450<br />

350<br />

10<br />

150<br />

80<br />

8,5<br />

118<br />

8,8<br />

CW456K<br />

CuSn4Pb4<br />

<strong>CARO</strong>444<br />

R550<br />

EN 12164<br />

Balance<br />

-<br />

3,5 - 4,5<br />

3,5 - 4,5<br />

bis 0,2<br />

bis 0,1<br />

3,5 - 4,5<br />

0,01 - 0,4<br />

bis 0,2<br />

550<br />

500<br />

5<br />

180<br />

80<br />

8,5<br />

118<br />

8,8<br />

CW456K<br />

CuSn4Pb4<br />

<strong>CARO</strong>444<br />

R640<br />

EN 12164<br />

Balance<br />

-<br />

3,5 - 4,5<br />

3,5 - 4,5<br />

bis 0,2<br />

bis 0,1<br />

3,5 - 4,5<br />

0,01 - 0,4<br />

bis 0,2<br />

640<br />

580<br />

-<br />

200<br />

80<br />

8,5<br />

118<br />

8,8<br />

CW4<br />

CuS<br />

2.10<br />

CuS<br />

R50<br />

DIN EN<br />

Bala<br />

5,5 -<br />


52K<br />

n6<br />

20<br />

n6<br />

0 R560<br />

1652 DIN EN 1652<br />

0<br />

450<br />

190<br />

8<br />

5<br />

ce<br />

7,5<br />

2<br />

2<br />

1<br />

2<br />

0,04<br />

CW452K<br />

CuSn6<br />

2.1020<br />

CuSn6<br />

Balance<br />

5,5 - 7,5<br />


26<br />

CAST BRONZES<br />

<strong>CARO</strong>CAST-EN / Precision continuous casting<br />

<strong>CARO</strong>CAST-EN is manufactured in the continuous casting process. This process enables the<br />

manufacture <strong>of</strong> tubes, rods and simple pr<strong>of</strong>iles. By controlling the smelted material with precisely set<br />

casting parameters, there are advantages compared with conventional casting processes. Precision<br />

continuous casting semi-finished products have therefore prevailed in machine, vehicle and apparatus<br />

engineering as a high quality, cost-saving primary material for the manufacturing <strong>of</strong> sleeve bearings, worm<br />

wheels, corrosion-resistant machine components and fittings in the fields <strong>of</strong> sanitation and heating.<br />

<strong>CARO</strong>CAST-EN <strong>of</strong>fers the following advantages in contrast to<br />

traditional cast bronzes:<br />

- Even, fine-grained cast structures, and compared to sand<br />

casting or moulding considerably fewer porosities or<br />

segregations. Far fewer defects.<br />

- Very smooth and clean surfaces for casting, low<br />

measurement tolerances.<br />

- Low processing additives, similarly pressed material<br />

therefore low material loss and short processing times and<br />

low costs.<br />

- Very good for machining. On machines the use <strong>of</strong> multi-range collets (DIN 6343) is<br />

recommended. Extended collets have proven themselves as multi-spindle machines.<br />

- Long lifetime for cutting tools as no hard cast skin.<br />

- Easy to recycle.<br />

The fine and even structure formation with continuous casting is particularly advantageous, which<br />

contributes to the excellent slide and failsafe properties. This particularly applies to the lead distribution.<br />

Moreover, the mechanical properties are more favourable with continuous casting than with other casting<br />

processes such as sand casting or moulding, due to the special structure formation. In many cases lower<br />

tin content is required to maintain the same properties.<br />

Composition, mechanical properties and other requirements are now set out in the European standard,<br />

EN 1982 and continuous casting is denoted GC. We test the HB hardness at our check point. Tensile<br />

strength and distension requirements must be arranged separately.<br />

<strong>CARO</strong>CAST-EN is manufactured according to the latest European standards. These standards are<br />

described by leading manufacturers in mechanical engineering and the automobile industry in the new<br />

technical drawings. The purity <strong>of</strong> the alloy composition is at the forefront <strong>of</strong> this.<br />

Based on the problems increasingly emerging with radioactively contaminated cast bronzes (munitions<br />

dumps) all materials we use are checked for radiation.<br />

<strong>CARO</strong>CAST-EN is stocked in the following <strong>alloys</strong>:<br />

- CuSn7Zn4Pb7-C<br />

- CuSn12-C


EUROPE<br />

GERMANY<br />

FRANCE<br />

GBR<br />

ITALY<br />

SPAIN<br />

INT<br />

USA<br />

JPN<br />

EN<br />

DIN<br />

NF<br />

BS<br />

UNI<br />

UNE<br />

ISO<br />

ASTM<br />

JIS<br />

CuSn7Zn4Pb7<br />

GC-CuSn7ZnPb<br />

CuSn7Pb6Zn4<br />

-<br />

G-CuSn7Zn4Pb6<br />

CuSn7Zn4Pb6<br />

CuSn7Pb7Zn3<br />

C93200<br />

Mechanical properties:<br />

Tensile strength<br />

Brinell hardness<br />

Elongation A 5<br />

0,2% Pro<strong>of</strong> stress<br />

R m<br />

HB<br />

A 5<br />

R p<br />

Physical properties:<br />

-<br />

2<br />

N/mm<br />

2,5/62,5<br />

%<br />

2<br />

N/mm<br />

Density<br />

Heat expansion coefficient (20-300°C)<br />

Heat conductivity (20°C)<br />

Electrical conductivity (20°C)<br />

Elasticity mode<br />

Comparisation <strong>of</strong> standards:<br />

ca.<br />

ca.<br />

ca.<br />

min.<br />

CC492K<br />

2.1090.04<br />

CuSn12-C<br />

GC-CuSn12<br />

CuSn12<br />

PB2<br />

G-CuSn12<br />

CuSn12<br />

-<br />

C92500<br />

PBC2C<br />

260 / 300*<br />

70<br />

12 / 30*<br />

120 / 140*<br />

CC483K<br />

2.1052.04<br />

CuSn7Pb15-C<br />

GC-CuPb15Sn<br />

-<br />

300 / 350*<br />

90<br />

6 / 25*<br />

150 / 170*<br />

LB1<br />

G-CuSn8Pb15<br />

CuSn8Pb15<br />

CuPb15Sn8<br />

C93800<br />

LBC4C<br />

CC496K<br />

200 / 200*<br />

65<br />

8 / 15*<br />

90 / 150*<br />

2.1182.04<br />

CuSn7Zn4Pb7-C CuSn12-C CuSn7Pb15C<br />

g/cm³<br />

6<br />

10 /K<br />

W/m. K<br />

m/Ohm mm²<br />

kN/mm²<br />

CAST BRONZES<br />

Our comprehensive stock and our 24-hour service round <strong>of</strong>f our customer-orientated spectrum <strong>of</strong><br />

services. You can also test how efficient we are for finished parts and benefit from our technical<br />

consultancy for machining and sleeve bearing design.<br />

8,9<br />

18,5<br />

63<br />

7,7<br />

93<br />

8,9<br />

18,5<br />

55<br />

6,3<br />

95<br />

*) Wieland Qualität<br />

CuSn7Zn4Pb7-C CuSn12-C CuSn7Pb15C<br />

9,1<br />

18,8<br />

59<br />

7,0<br />

85<br />

27


28<br />

CAST BRONZES<br />

Applications and properties:<br />

Alloy: Properties: Application:<br />

EN CuSn7Zn4Pb7-C CC492K<br />

DIN GC-CuSn7ZnPb 2.1090.04<br />

Copper / tin / zinc / lead<br />

(red bronze)<br />

EN CuSn12-C CC483K<br />

DIN GC-CuSn12 2.1052.04<br />

Copper / tin<br />

(tin bronze)<br />

EN CuSn7Pb15-C CC496K<br />

DIN GC-CuPb15Sn 2.1182.04<br />

Copper / tin / lead<br />

(lead bronze)<br />

Proven standard alloy for all<br />

s l e e v e b e a r i n g s u s e d i n<br />

mechanical engineering with<br />

medium stress. Very good slide<br />

and failsafe properties as well as<br />

high wear and tear stability.<br />

CuSn7ZnPb7-C can also be used<br />

where sand cast tin bronze is<br />

usually used and is more costeffective<br />

than this.<br />

Part <strong>of</strong> the copper / tin cast alloy<br />

group, this material has the<br />

highest wear and tear stability <strong>of</strong><br />

the continuous cast materials as<br />

well as good slide properties. As a<br />

result <strong>of</strong> the high tin content,<br />

CuSn12-C is harder than<br />

CuSn7Zn4Pb7-C, which should<br />

be taken into account when<br />

selecting the shaft material.<br />

CuSn12-C is the standard alloy<br />

among the copper / tin cast <strong>alloys</strong>.<br />

Recommended for sleeve<br />

bearings and hard shafts and to<br />

be avoided for edge pressing,<br />

particularly if the admissible high<br />

loads and slide speeds are to be<br />

exploited.<br />

Standard alloy under the copper /<br />

tin / lead / cast <strong>alloys</strong>, which<br />

demonstrates excellent failsafe<br />

properties and is largely<br />

impervious to edge pressing. It is<br />

also used in many cases for main<br />

spindles in tool machines, as no<br />

superficially hardened spindles<br />

are used here.<br />

Bearings for lifting gears,<br />

supplementary bearings in<br />

machine tools, piston bolt bushes<br />

for a load <strong>of</strong> up to 50N/mm2, valve<br />

and push fit rings, guide bushings<br />

in hydraulic cylinders, abrasive<br />

rings, bearings in packaging<br />

machines and electro-motors,<br />

general bearings in machine and<br />

apparatus engineering. The use<br />

<strong>of</strong> normal (unhardened) shaft<br />

material is permitted.<br />

A large area <strong>of</strong> deployment for this<br />

material is in water-carrying<br />

connection elements and fittings.<br />

Main spindle bearings in machine<br />

tools for which the highest<br />

precision is required, such as fine<br />

turning machines, grinding<br />

machines and gears, piston bolt<br />

bushes, press bearings, highly<br />

stressed spindle nuts and fast<br />

running worm wheels.<br />

Textile machines and pump<br />

engineering. CuSn7Pb15-C can<br />

be used for “water lubricating”<br />

especially in pump engineering.


Quality from the manufacturer. As WIELAND Group<br />

company we largely manage products from our<br />

own production.<br />

<strong>CARO</strong>CAST<br />

CuSn7Zn4Pb7<br />

<strong>CARO</strong>CAST<br />

CuSn12<br />

<strong>CARO</strong>CAST<br />

CuSn7Pb15<br />

<strong>CARO</strong>CAST<br />

CuSn11Pb2<br />

<strong>CARO</strong>CAST<br />

CuSn12Ni2<br />

<strong>CARO</strong>CAST<br />

CuSn10Pb10<br />

<strong>CARO</strong>CAST<br />

CuSn5Pb20<br />

<strong>CARO</strong>CAST<br />

CuSn5Zn5Pb5<br />

<strong>CARO</strong>CAST<br />

CuSn10<br />

Formats supplied:<br />

Material: Programme:<br />

Description Material number<br />

CC493K<br />

CC483K<br />

CC496K<br />

CC482K<br />

CC484K<br />

CC495K<br />

CC497K<br />

CC491K<br />

CC480K<br />

CAST BRONZES<br />

x x x x<br />

x x x x<br />

Other materials supplied on request x ... from stock ... on request<br />

Tubes<br />

Round bars<br />

Flat bars<br />

Square bars<br />

Hexagonal bars<br />

Wire<br />

Pr<strong>of</strong>ile<br />

Sheets / blank cuts<br />

29


30<br />

CAST BRONZES<br />

SUMMARY OF ALLOYS<br />

Description<br />

Material no.<br />

Material description<br />

Old material no.<br />

Old material description<br />

Brief description<br />

Condition<br />

Standard<br />

Chemical composition *<br />

Copper Cu<br />

Aluminium Al<br />

Tin Sn<br />

Zinc Zn<br />

Nickel Ni<br />

Iron Fe<br />

Manganese Mn<br />

Lead Pb<br />

Silicon Si<br />

Phosphorous P<br />

Tellurium Te<br />

Titanium Ti<br />

Chrome Cr<br />

Cobalt Co<br />

Other total<br />

* Weight %<br />

Mechanical properties<br />

2<br />

Tensile strength RM N/mm<br />

2<br />

0,2 % tensile yield strength Rp N/mm<br />

Elongation A5 %<br />

Hardness HB 2,5 / 62,5<br />

2<br />

Compressive strength N/mm<br />

Physical Properties<br />

.<br />

Heat conductivity W/m K<br />

Electrical conductivity MS/m<br />

2<br />

E-module N/mm<br />

3<br />

Density g/cm<br />

-6<br />

Heat expansion coefficient 10 /K<br />

CC483K<br />

CuSn12<br />

2.1052<br />

CuSn12<br />

<strong>CARO</strong>CAST - EN<br />

EN 1982<br />

85,0 - 88,5<br />

bis 0,01<br />

11,0 - 13,0<br />

bis 0,5<br />

bis 2,0<br />

bis 0,2<br />

0,2<br />

0,7<br />

0,01<br />

0,06<br />

300<br />

150<br />

6<br />

90<br />

55<br />

6,3<br />

95<br />

8,9<br />

18,5


Aluminiumbronzen<br />

Cast structure<br />

CC493K<br />

CuSn7Zn4Pb7<br />

2.1090<br />

CuSn7ZnPb<br />

<strong>CARO</strong>CAST - EN<br />

EN 1982<br />

81,0 - 88,5<br />

bis 0,01<br />

6,0 - 8,0<br />

2,0 - 5,0<br />

bis 2,0<br />

bis 0,2<br />

5,0 - 8,0<br />

0,01<br />

260<br />

120<br />

12<br />

70<br />

63<br />

7,7<br />

93<br />

8,9<br />

18,5<br />

CC496K<br />

CuSn7Pb15<br />

2.1182<br />

CuPb15Sn<br />

<strong>CARO</strong>CAST - EN<br />

EN 1982<br />

74,0 - 80,0<br />

bis 0,01<br />

6,0 - 8,0<br />

bis 2,0<br />

0,5 - 2,0<br />

bis 0,25<br />

0,2<br />

13,0 - 17,0<br />

0,01<br />

0,1<br />

200<br />

90<br />

8<br />

65<br />

59<br />

7<br />

85<br />

9,1<br />

18,8<br />

31


32<br />

COPPER / ZINC ALLOYS<br />

Brass and special brass<br />

CuZn37Mn3Al2PbSi (CW713R)<br />

CuZn35Ni3Mn2AlPB (CW710R)<br />

EUROPE<br />

GERMANY<br />

FRANCE<br />

UK<br />

ITALY<br />

SPAIN<br />

SWISS<br />

SWEDEN<br />

INT<br />

USA<br />

JPN<br />

EN<br />

DIN<br />

Nr.<br />

NF<br />

BS<br />

UNI<br />

UNE<br />

Nr.<br />

SN / VSM<br />

SIS<br />

ISO<br />

ASTM<br />

JIS<br />

The most common copper / zinc <strong>alloys</strong> contain 5 to 45% zinc as well as copper.<br />

To improve the machinability, copper / zinc <strong>alloys</strong> may contain lead as well as<br />

copper and zinc.<br />

Multi-material <strong>alloys</strong>, generally speaking known as “special brass”, contain<br />

other alloy elements such as aluminium, iron, manganese, nickel, silicone and<br />

tin, which mainly serve to increase solidity as well as improving the slide<br />

properties and corrosion-resistance.<br />

Comparisation <strong>of</strong> standards:<br />

CuZn37Mn3Al2PbSi<br />

CW713R<br />

CuZn40Al2<br />

2.0550<br />

---<br />

CZ 135, CZ114**<br />

CuZn36Al1Fe1Mn1Pb**<br />

CuZn37Al2Fe2Mn2Pb**<br />

P-OTS2/3 **<br />

CuZn36Mn3Al2Si1Fe<br />

C-6660<br />

CuZn40Al2<br />

---<br />

CuZn37Mn3AlPb2Si<br />

C67400**<br />

---<br />

CuZn35Ni3Mn2AlPb<br />

CW710R<br />

CuZn35Ni2<br />

2.0540<br />

*) The tolerance ranges <strong>of</strong> standardised <strong>alloys</strong> in countries outside Europe are not equal to the specifications according to<br />

EN in all cases.<br />

**) Limited comparability due to wide analytical spread.<br />

---<br />

---<br />

---<br />

---<br />

---<br />

---<br />

---<br />

---<br />

---<br />

CuZn21Si3<br />

UNS C69300<br />

®<br />

<strong>CARO</strong> BRASS<br />

---<br />

---<br />

---<br />

---<br />

---<br />

---<br />

---<br />

---<br />

---<br />

---


Properties<br />

CuZn37Mn3Al2PbSi CuZn37Mn3Al2PbSi is a<br />

construction material with high solidity, good<br />

viscosity, very good flow and slide properties, and<br />

good stability against weather influences.<br />

A typical microstructure contains circa 3.9%<br />

MnFe-silicone as a carrier for wear and tear<br />

Applications<br />

- Construction parts <strong>of</strong> all types<br />

- Shims<br />

- Synchronised rings<br />

- Valve ducts<br />

- Bearing bushes<br />

- Selector forks<br />

Special notes and remarks<br />

Mechanical properties:<br />

Tensile strength<br />

0.2% Pro<strong>of</strong> stress<br />

Elongation<br />

Hardness<br />

R m<br />

R 0,2<br />

p<br />

A 5<br />

HB<br />

2<br />

N/mm<br />

2<br />

N/mm<br />

%<br />

min.<br />

approx<br />

min.<br />

approx<br />

M<br />

---<br />

---<br />

---<br />

---<br />

CuZn35Ni3Mn2AlPb is a construction material<br />

with medium to high solidity properties. Due to ist<br />

alloy additives it demonstrates an increased<br />

corrosionresistance.<br />

Applications<br />

CuZn37Mn3Al2PbSi<br />

EN 12164/EN 12165<br />

R540 S R590 S<br />

min. 540 min. 590<br />

approx 280 approx 320<br />

min. 15 min. 12<br />

approx 150 approx 160<br />

- Apparatus engineering<br />

- Shipbuilding<br />

- Machine and apparatus<br />

engineering<br />

With simultaneous presence <strong>of</strong> mechanical tensions and corrosive media (particularly environments<br />

containing ammonia) there is a risk <strong>of</strong> stress crack corrosion.<br />

®<br />

<strong>CARO</strong> BRASS CuZn21Si3<br />

Mechanical properties:<br />

Tensile strength<br />

0.2% Pro<strong>of</strong> stress<br />

Elongation<br />

Hardness<br />

R m<br />

R 0,2<br />

p<br />

A 5<br />

HB<br />

2<br />

N/mm<br />

2<br />

N/mm<br />

%<br />

min.<br />

approx<br />

min.<br />

approx<br />

COPPER / ZINC ALLOYS<br />

< 10 mm<br />

min. 700<br />

min. 450<br />

10<br />

---<br />

10-30 mm<br />

min. 650<br />

min. 400<br />

18<br />

---<br />

CuZn35Ni3Mn2AlPb<br />

EN 12163/EN12165<br />

M<br />

---<br />

---<br />

---<br />

---<br />

CuZn21Si3<br />

®<br />

<strong>CARO</strong> BRASS<br />

30-40 mm<br />

min. 600<br />

min. 350<br />

20<br />

---<br />

R490 S<br />

mind. 490<br />

approx 300<br />

mind. 20<br />

min. 120, max. 150<br />

®<br />

<strong>CARO</strong> BRASS is a lead-free, highly resistant special brass with good corrosion-resistance as well as very<br />

good machinability. The material is suitable for the manufacture <strong>of</strong> turning and die forged parts. By adding<br />

silicone the start-up resistance increases and the impermeability to tension crack corrosion and<br />

dezincification decreases.<br />

40-70 mm<br />

min. 530<br />

min. 300<br />

20<br />

---<br />

33


34<br />

COPPER / ZINC ALLOYS<br />

Physical properties:<br />

Electrical conductivity MS/m<br />

% IACS<br />

Heat conductivity<br />

Density<br />

E-module<br />

W/m. K<br />

3<br />

g/cm<br />

2<br />

kN/mm<br />

Processing properties:<br />

Machinability<br />

CuZn39Pb3 = 100%<br />

Cold forming capability<br />

Hot forming capability<br />

CuZn37Mn3Al2PbSi<br />

40%<br />

7,8<br />

13,4<br />

63<br />

8,1<br />

93<br />

CuZn37Mn3Al2PbSi<br />

poor<br />

very good<br />

CuZn35Ni3Mn2AlPb<br />

5,7<br />

9,8<br />

46<br />

8,3<br />

100<br />

CuZn35Ni3Mn2AlPb<br />

50 %<br />

average<br />

good<br />

CuZn21Si3<br />

®<br />

<strong>CARO</strong> BRASS<br />

4,5<br />

7,8<br />

33<br />

8,25<br />

ca. 85<br />

CuZn21Si3<br />

®<br />

<strong>CARO</strong> BRASS<br />

80 %<br />

good<br />

very good


Ensure your production process with tried-andtested<br />

quality from our comprehensive range.<br />

CuZn37Mn3Al2PbSi<br />

CuZn35Ni3Mn2AlPb<br />

CuZn31Si1<br />

CuZn25Al5Mn4Fe3-C<br />

CuZn34Mn3Al2Fe1-C<br />

CuZn35Mn2Al1Fe1-C<br />

CuZn39Pb3<br />

®<br />

<strong>CARO</strong> BRASS<br />

Delivered formats:<br />

Material: Programme:<br />

Description Material number<br />

COPPER / ZINC ALLOYS<br />

CW713R<br />

CW710R<br />

CW708R<br />

CC762S<br />

CC764S<br />

CC765S<br />

---<br />

---<br />

x x x x<br />

x<br />

x x<br />

Other materials supplied on request x ... from stock ... on request<br />

Tubes<br />

Round bars<br />

Flat bars<br />

Square bars<br />

Hexagonal bars<br />

Wire<br />

Pr<strong>of</strong>ile<br />

Sheets / blank cuts<br />

35


36<br />

COPPER / ZINC ALLOYS<br />

SUMMARY OF ALLOYS<br />

Description<br />

Material no.<br />

Material description<br />

Old material no.<br />

Old material description<br />

Brief description<br />

Condition<br />

Standard<br />

Chemical composition *<br />

Copper Cu<br />

Aluminium Al<br />

Tin Sn<br />

Zinc Zn<br />

Nickel Ni<br />

Iron Fe<br />

Manganese Mn<br />

Lead Pb<br />

Silicon Si<br />

Phosphorous P<br />

Tellurium Te<br />

Titanium Ti<br />

Chrome Cr<br />

Cobalt Co<br />

Other total<br />

* Weight %<br />

Mechanical properties<br />

2<br />

Tensile strength RM N/mm<br />

2<br />

0,2 % tensile yield strength Rp N/mm<br />

Elongation A5 %<br />

Hardness HB 2,5 / 62,5<br />

2<br />

Compressive strength N/mm<br />

Physical Properties<br />

.<br />

Heat conductivity W/m K<br />

Electrical conductivity MS/m<br />

2<br />

E-module N/mm<br />

3<br />

Density g/cm<br />

-6<br />

Heat expansion coefficient 10 /K<br />

CW708R<br />

CuZn31Si1<br />

2.0490<br />

CuZn31Si1<br />

R460S<br />

EN 12163<br />

66,0 - 70<br />

-<br />

-<br />

Balance<br />

0,5<br />

bis 0,4<br />

-<br />

bis 0,8<br />

0,7 - 1,3<br />

-<br />

min. 460<br />

approx. 250<br />

min. 22<br />

approx. 115 - 145<br />

71<br />

8,9<br />

108<br />

8,4<br />

CW708R<br />

CuZn31Si1<br />

2.0490<br />

CuZn31Si1<br />

R530S<br />

EN 12163<br />

66,0 - 70<br />

-<br />

-<br />

Balance<br />

0,5<br />

bis 0,4<br />

-<br />

bis 0,8<br />

0,7 - 1,4<br />

-<br />

min. 530<br />

approx. 330<br />

min. 12<br />

approx. 140<br />

71<br />

8,9<br />

108<br />

8,4<br />

C<br />

CW7<br />

CuZn35Ni<br />

2.05<br />

CuZn<br />

R49<br />

EN 1<br />

58,0 -<br />

0,3 -<br />

- 0<br />

Bala<br />

2,0 -<br />

- 0<br />

1,5 -<br />

0,2 -<br />

0,<br />

min.<br />

approx<br />

min<br />

approx. 1<br />

4<br />

5,<br />

10<br />

8,


opper / zinc (Special brass)<br />

10R<br />

3Mn2AlPb<br />

40<br />

35Ni2<br />

0S<br />

2163<br />

60,0<br />

1,3<br />

,5<br />

nce<br />

3,0<br />

,5<br />

2,5<br />

0,8<br />

1<br />

490<br />

. 300<br />

. 20<br />

20 - 150<br />

6<br />

7<br />

0<br />

3<br />

Wrought alloy structure<br />

CW713R<br />

CuZn37Mn3Al2PbSi<br />

2.0550<br />

CuZn40Al2<br />

R540S<br />

EN 12164<br />

57,0 - 59,0<br />

1,3 - 2,3<br />

- 0,4<br />

Balance<br />

- 1,0<br />

- 1,0<br />

1,5 - 3,0<br />

0,2 - 0,8<br />

0,3 - 1,3<br />

min.540<br />

approx. 280<br />

min. 15<br />

approx. 150<br />

63<br />

7,8<br />

93<br />

8,1<br />

CW713R<br />

CuZn37Mn3Al2PbSi<br />

2.0550<br />

CuZn40Al2<br />

R590S<br />

EN 12164<br />

57,0 - 57<br />

1,3 - 2,3<br />

- 0,4<br />

Balance<br />

- 1,0<br />

- 1,0<br />

1,5 - 3,0<br />

0,2 - 0,8<br />

0,3 - 1,3<br />

min.590<br />

approx. 320<br />

min. 12<br />

approx. 160<br />

63<br />

7,8<br />

93<br />

8,1<br />

®<br />

<strong>CARO</strong> BRASS<br />

-<br />

-<br />

-<br />

CuZn21Si3<br />

76<br />

Balance<br />

3,0<br />

0,03<br />

< 10 mm<br />

700<br />

450<br />

10<br />

33<br />

7,8<br />

85<br />

8,25<br />

37


38<br />

COPPER NICKEL ALLOYS<br />

®<br />

<strong>CARO</strong>DUR<br />

®<br />

<strong>CARO</strong>DUR materials are beryllium-free, environmentally friendly<br />

thermally curable <strong>alloys</strong> based on CuNi. The annealing (thermal curing) in<br />

combination with a solidification caused by cold forming, gives the<br />

materials high solidity and hardness, high wear-resistance and high<br />

fatigue strength. The mechanical properties are also heat-resistant to a<br />

great degree.<br />

The option <strong>of</strong> carrying out the curing as required on the semi-finished<br />

product as well as the finished part, or the manufacturing process at any<br />

stage, explains the increasing significance <strong>of</strong> these materials in the fields<br />

<strong>of</strong> die casting, welding, electrical and sleeve bearing engineering as well<br />

as mechanical engineering and chemical apparatus engineering.<br />

Cu<br />

Ni<br />

Si<br />

Composition Material description<br />

Standard values in weight %<br />

Rest<br />

2,0<br />

0,5<br />

CW111C CuNi2Si<br />

DIN* CuNi2Si - 2.0855<br />

UNI* CuNi2Si<br />

ISO CuNi2Si<br />

UNE* Cu Ni2Si C-9435<br />

ASTM C64700<br />

*) Unique national standards<br />

®<br />

<strong>CARO</strong>DUR materials can be supplied in the “cured” (annealed) condition as well as in the “curable”<br />

(solution annealed) condition. According to requirements with regard to the mechanical properties and<br />

measurement tolerances, the semi-finished products can only be supplied pressed or pressed and drawn.<br />

CuNi1Si<br />

CuNi2Si<br />

CuNi3Si<br />

-<br />

-<br />

EU<br />

CW109C<br />

CW111C<br />

Properties<br />

-<br />

-<br />

-<br />

GERMANY<br />

EN DIN NR.<br />

<strong>CARO</strong>DUR 1<br />

<strong>CARO</strong>DUR 2<br />

<strong>CARO</strong>DUR 3<br />

<strong>CARO</strong>DUR DC<br />

®<br />

<strong>CARO</strong> ΨNi7<br />

psi<br />

Comparisation <strong>of</strong> <strong>alloys</strong><br />

CuNi1,5Si<br />

CuNi2Si<br />

-<br />

-<br />

-<br />

2.0853<br />

2.0855<br />

-<br />

-<br />

-<br />

ITALY<br />

-<br />

CuNi2Si<br />

-<br />

-<br />

-<br />

SPAIN<br />

UNE NR.<br />

37-103-1<br />

CuNi2Si<br />

Physical properties Processing properties<br />

Electrical conductivity<br />

Heat conductivity<br />

Density<br />

MS/m<br />

.<br />

W/m K 3<br />

g/cm<br />

17 - 23<br />

160<br />

8,8<br />

UNI<br />

-<br />

-<br />

-<br />

C-9430<br />

C-9435<br />

Machinability average<br />

Cold forming capability good<br />

Hot forming capability very good<br />

-<br />

-<br />

-<br />

INT<br />

ISO<br />

-<br />

C64700<br />

-<br />

-<br />

-<br />

USA<br />

-<br />

C64700<br />

C18000<br />

-<br />

-


Mechanical properties:<br />

Tensile strength<br />

0.2% Pro<strong>of</strong> stress<br />

Elongation<br />

Hardness<br />

R m<br />

R 0,2<br />

p<br />

A 5<br />

HB<br />

Material properties:<br />

- Excellent cold and hot forming capability<br />

- Very good corrosion-resistance<br />

- High solidity and hardness attainable<br />

through annealing<br />

- Resistance against tension crack corrosion<br />

- Good electrical conductivity<br />

®<br />

<strong>CARO</strong>DUR -DC / <strong>CARO</strong> :<br />

® ΨNi7 in particular<br />

- Good slide properties<br />

- Wear-resistance<br />

- High fatigue strength<br />

- Excellent thermo-technical properties<br />

®<br />

Further information about our <strong>CARO</strong>DUR -DC special material can be found in our special brochure.<br />

Fields <strong>of</strong> application<br />

- Bearing and collar bushing - Valve guide bushings<br />

- Guide bushings and rails - Sliding elements<br />

- Heat stressed bearings - (High-strength) screws<br />

- Relay screws - Wearing electrical contact elements<br />

- Catenary clamps - Fittings for copper tube ducts<br />

- Die forged parts<br />

<strong>CARO</strong>DUR <strong>CARO</strong><br />

®<br />

®<br />

-DC / ΨNi7 psi in particular:<br />

- Die casting pistons<br />

- Antechamber nozzles<br />

2<br />

N/mm<br />

2<br />

N/mm<br />

%<br />

psi<br />

*) for aluminium and magnesium <strong>alloys</strong><br />

COPPER NICKEL ALLOYS<br />

R600<br />

> 600<br />

(> 510)<br />

> 6<br />

> 190<br />

Heat Wärmeleitfähigkeit<br />

conductivity<br />

(W/m. K)<br />

250<br />

<strong>CARO</strong>DUR-DC<br />

200<br />

150<br />

100<br />

50<br />

0<br />

R640<br />

640<br />

590<br />

10<br />

> 190<br />

Stahl/steel/acieer<br />

100 200 300 400 500<br />

Temperatur Temperature (°C) (°C)<br />

<strong>CARO</strong> ® ΨNi7<br />

psi<br />

ca. 880<br />

ca. 800<br />

ca. 8<br />

ca. 290<br />

39


40<br />

COPPER NICKEL ALLOYS<br />

Fields <strong>of</strong> application<br />

Processing notes:<br />

1. Forming:<br />

<strong>CARO</strong>DUR ®<br />

-DC or <strong>CARO</strong> psi is used in aluminium die<br />

casting machines in particular and also replaces CuCoBe<br />

and CuBe in particular.<br />

® ΨNi7<br />

In sleeve bearing technology bearing bushes and guide<br />

valve bushes as well as guide rails and sliding elements are<br />

®<br />

manufactured using <strong>CARO</strong>DUR by preference.<br />

In plastic engineering <strong>CARO</strong>DUR or is<br />

used as a substitute material for CuCoBe (spray nozzles).<br />

®<br />

<strong>CARO</strong> ®<br />

ΨNi7<br />

psi<br />

®<br />

In general mechanical engineering <strong>CARO</strong>DUR fulfils the<br />

special requirements for corrosion and weather resistance,<br />

e.g. for highly stressed screws.<br />

®<br />

In railway engineering <strong>CARO</strong>DUR is used in the form <strong>of</strong><br />

clamps for electrical catenary, feeders and earthing.<br />

®<br />

<strong>CARO</strong>DUR materials are good for cold forming and excellent for hot forming. The recommended delivery<br />

condition for semi-finished products, which are processed through cold forming, can be pressed, cured or<br />

drawn and cured according to the type and scope <strong>of</strong> the shaping and the requirements for the end product.<br />

For heat forming please use pressed material. The processing temperature is approximately by 880 - 900<br />

°C.<br />

2. Machine processing:<br />

The cured condition is the most suitable for this. If the parts are formed first and mechanically processed at<br />

the end, then the thermal curing can be conducted expediently after forming and before the machining<br />

processing.<br />

3. Curing:<br />

For curing, tensile strength, yield strength and hardness as well as electrical conductivity increase. We<br />

recommend the curing temperature for particular applications be checked with us (guide value<br />

approximately 450°C).<br />

In the “cured” delivered condition, no heat treatment should be carried out on the products.


Our beryllium-free materials combine the best<br />

physical and mechanical properties with<br />

productivity.<br />

<strong>CARO</strong>DUR 1<br />

CuNiSi<br />

<strong>CARO</strong>DUR 2<br />

CuNi2Si<br />

<strong>CARO</strong>DUR 3<br />

CuNi3Si<br />

<strong>CARO</strong>DUR-DC<br />

CuNi2Si+Cr<br />

CuCr1Zr<br />

CuZr<br />

<strong>CARO</strong><br />

®<br />

ΨNi7<br />

psi<br />

Material: Programme:<br />

CW109C<br />

CW111C<br />

---<br />

---<br />

CW106C<br />

CW120C<br />

---<br />

Delivered formats:<br />

Description Material number<br />

COPPER NICKEL ALLOYS<br />

x x x x<br />

Other materials supplied on request x ... from stock ... on request<br />

Tubes<br />

Round bars<br />

Flat bars<br />

Square bars<br />

Hexagonal bars<br />

Wire<br />

Pr<strong>of</strong>ile<br />

Sheets / blank cuts<br />

41


42<br />

COPPER NICKEL ALLOYS<br />

SUMMARY OF ALLOYS<br />

Description<br />

Material no.<br />

Material description<br />

Old material no.<br />

Old material description<br />

Brief description<br />

Condition<br />

Standard<br />

Chemical composition *<br />

Copper Cu<br />

Aluminium Al<br />

Tin Sn<br />

Zinc Zn<br />

Nickel Ni<br />

Iron Fe<br />

Manganese Mn<br />

Lead Pb<br />

Silicon Si<br />

Phosphorous P<br />

Tellurium Te<br />

Titanium Ti<br />

Chrome Cr<br />

Cobalt Co<br />

Other total<br />

* Weight %<br />

Mechanical properties<br />

2<br />

Tensile strength RM N/mm<br />

2<br />

0,2 % tensile yield strength Rp N/mm<br />

Elongation A5 %<br />

Hardness HB 2,5 / 62,5<br />

2<br />

Compressive strength N/mm<br />

Physical Properties<br />

.<br />

Heat conductivity W/m K<br />

Electrical conductivity MS/m<br />

2<br />

E-module N/mm<br />

3<br />

Density g/cm<br />

-6<br />

Heat expansion coefficient 10 /K<br />

CW109C<br />

CuNi1Si<br />

2.0853<br />

CuNi1,5Si<br />

®<br />

<strong>CARO</strong>DUR -1<br />

R590<br />

EN 12163<br />

Balance<br />

-<br />

-<br />

-<br />

1,3<br />

0,5<br />

>590<br />

>540<br />

>12<br />

180<br />

160<br />

17 - 23<br />

140<br />

8,8<br />

CW111C<br />

CuNi2Si<br />

2.0855<br />

CuNi2Si<br />

®<br />

<strong>CARO</strong>DUR -2<br />

R640<br />

EN 12163<br />

Balance<br />

-<br />

-<br />

-<br />

2,0<br />

0,5<br />

>640<br />

>590<br />

>10<br />

190<br />

160<br />

17 - 23<br />

140<br />

8,8<br />

Wrought alloy<br />

CA<br />

a<br />

0


CuNi3Si<br />

-<br />

-<br />

®<br />

RODUR -3<br />

R580<br />

Balance<br />

2,4 - 2,6<br />

,55 - 0,70<br />

>580<br />

>470<br />

approx. 8<br />

ca. 210<br />

200<br />

25 - 30<br />

135<br />

8,9<br />

Copper / nickel<br />

-<br />

CuNi2Si+Cr<br />

-<br />

-<br />

®<br />

<strong>CARO</strong>DUR -DC<br />

-<br />

Balance<br />

-<br />

-<br />

-<br />

2,2<br />

0,5<br />

0,5<br />

>600<br />

>550<br />

>6<br />

190<br />

160<br />

17 - 23<br />

140<br />

8,8<br />

Sprühgefüge<br />

CuNi7Mn2<br />

®<br />

<strong>CARO</strong> ΨNi7<br />

psi<br />

Balance<br />

ca. 7<br />

ca. 1,8<br />

ca. 1<br />

approx. 880<br />

approx. 800<br />

approx. 8<br />

approx. 290<br />

150<br />

43


44<br />

FINISHED PARTS<br />

In machining, sleeve bearings are made from rods and primary tube material in modern factories via<br />

turning, cutting and grinding operations, which are also supplied to internationally known customers. Our<br />

spectrum <strong>of</strong> services includes:<br />

®<br />

<strong>CARO</strong><br />

SLEEVE BEARINGS<br />

We specialise in the manufactured <strong>of</strong> high-precision finished parts made <strong>of</strong> high quality materials from our<br />

own semi-finished product works.<br />

We manufacture:<br />

- According to DIN ISO 4379 / DIN 1850<br />

- According to drawing / details<br />

- In all part sizes<br />

- In almost all dimensions<br />

- From most bearing materials<br />

Typical fields <strong>of</strong> application:<br />

- Large diesel engines<br />

- Automotive fields<br />

- Printing machines<br />

- Gears / compressors / pumps<br />

- General machine engineering<br />

Our order-related manufacturing <strong>of</strong> all solid sleeve bearings is particularly flexible and cost-effective with<br />

regard to version format, tolerance and choice <strong>of</strong> material. We are happy to give advice in all sleeve<br />

bearing matters. Please contact our technical <strong>of</strong>fice or complete the questionnaire attached.<br />

®<br />

<strong>CARO</strong><br />

SLEEVE BEARINGS AND<br />

SLIDING ELEMENTS WITH SOLID LUBRICATIONS<br />

Our sleeve bearings and sliding elements with solid lubricants are<br />

maintenance-free, self-lubricating bearings, which we supply ready to<br />

install according to customer requirements. The solid lubricants jointly<br />

developed and patented by us are particularly suitable for medium to high<br />

loads, and at the same time low sliding speeds; oscillating movements and<br />

intermittent operation as well as applications in which oils and greases are<br />

not required.<br />

®<br />

<strong>CARO</strong>PLUS - solid lubricants in drill holes<br />

®<br />

<strong>CARO</strong> FSW - solid lubricants in grooves<br />

ø d4 -0,2<br />

ø d3 e7<br />

DIN 509-E<br />

x<br />

1x45°<br />

R1.25<br />

ø 0,01 A<br />

f<br />

k±0,05<br />

x<br />

S2 -0,5/-1<br />

x<br />

l1<br />

A<br />

t<br />

c2<br />

b1 c1<br />

R1.25<br />

2,5<br />

1x45°<br />

ø d1 F8<br />

ø d3 e7<br />

ø d3 k6<br />

ø 0,01 A<br />

Festschmierst<strong>of</strong>f<br />

solid lubricant


<strong>CARO</strong><br />

®<br />

®<br />

<strong>CARO</strong> valve guides made <strong>of</strong> the materials <strong>CARO</strong>BRONZE and<br />

®<br />

<strong>CARO</strong>DUR are distinguished due to their very good sliding<br />

properties, high resistance to wear and tear and good heat<br />

conductivity. The guide valves are supplied according to your<br />

requirements, made from other materials if required and ready to<br />

install.<br />

®<br />

<strong>CARO</strong><br />

In the field <strong>of</strong> sintered bearings we supply sleeve bearings, and filter and<br />

mouldings in different sintered materials. We stock a range <strong>of</strong> items in the<br />

®<br />

CARINT quality according to ISO 2795. Parts according to other<br />

manufacturing standards are produced based on orders.<br />

®<br />

<strong>CARO</strong><br />

®<br />

<strong>CARO</strong> TEC<br />

®<br />

<strong>CARO</strong> VAK<br />

®<br />

<strong>CARO</strong> MAG<br />

®<br />

<strong>CARO</strong> SLEEVE<br />

®<br />

<strong>CARO</strong> LUB<br />

VALVE GUIDES<br />

SINTERED BEARINGS<br />

DIE CASTING TECHNOLOGY<br />

Patented components:<br />

- COMPACT Die cast pistons for horizontal cold chamber machines<br />

- Vacuum pistons<br />

- Magnesium pistons<br />

- Filling chambers for horizontal cold chamber machines<br />

- Piston rods, with integrated lubrication as an option<br />

- Quick-action coupling, optional with muffling unit<br />

For detailed information, please ask for our separate die cast brochure.<br />

®<br />

<strong>CARO</strong>VAK<br />

®<br />

<strong>CARO</strong>TEC -KOMPAKT<br />

®<br />

<strong>CARO</strong>LUB<br />

FINISHED PARTS<br />

®<br />

<strong>CARO</strong>SLEEVE<br />

45


46<br />

Please tear out or copy the questionnaire<br />

Simply send to <strong>CARO</strong>-<strong>PROMETA</strong> <strong>Metallvertriebs</strong> <strong>GmbH</strong> senden:<br />

by e-Mail info@caro-prometa.de or fax +49 (0) 91 29 / 40 06 33<br />

QUESTIONNAIRE<br />

for interpreting <strong>CARO</strong> sleeve bearings<br />

Company: ...........................................................................................................................<br />

Contact / dept.: ...........................................................................................................................<br />

Phone / Fax: ...........................................................................................................................<br />

E-mail: ...........................................................................................................................<br />

Application:<br />

Type <strong>of</strong> machine / equipment: ..............................................................................................................<br />

� Drawing / sketch attached: ..............................................................................................................<br />

Location / type / description: ..............................................................................................................<br />

� Drawing / sketch attached: ..............................................................................................................<br />

Dimensions: (with tolerances)<br />

Bearing: Inner-Ø .................mm Tol. ............... Shaft-Ø .................mm Tol. .............<br />

Outer-Ø .................mm Tol. ............... Material ......................................................<br />

Width ..................mm Tol. ............... Surface Ra/Rt/Rz ........................by<br />

Condition ....................................................................<br />

(hardened for use, nitrate or chrome-plated, etc.)<br />

Hardness ....................................................................<br />

Casing: Design ...................................................<br />

Material ...................................................<br />

Dimensions ...................................................<br />

Operating conditions:<br />

Bearing load radial .........................N static, revolving, alternating, distending,<br />

axial .........................N jolting<br />

Operation speed: Turning direction:<br />

n=........................1/min � constant � alternating � oscillating<br />

� Piston turns � bearing turns � Running time ...........................................................s/min/h<br />

� continuous � intermittent � Rest time ...................................s/min/h<br />

� Lifting movement � swivel angle +/- ....... °<br />

Lift ...............mm � Frequency ...................1/s<br />

Temperature:<br />

Bearing temperature .........°C Casting temperature ..........°C Ambient temperature .........°C<br />

Environmental conditions: ...............................................................................................................<br />

e.g. flying sand, dust, tinder, moisture, corrosive atmosphere, surface leakage<br />

Contact for the <strong>CARO</strong>-sleeve bearing with � Lubricant ................................................<br />

� Feed medium ..................................................................................<br />

� Other ...........................................................................................<br />

Further details / requirements: .............................................................................................................<br />

..................................................................................................................................................................<br />

..................................................................................................................................................................<br />

..................................................................................................................................................................


NOTES<br />

47


48<br />

NOTES


NOTES<br />

49


Directions Düsseldorf<br />

Direction<br />

Airport<br />

A44<br />

A73<br />

A52<br />

Mönchengladbach<br />

A52<br />

Motorway<br />

exit<br />

Düsseldorf<br />

Rath<br />

Düsseldorf<br />

Centre<br />

Nürnberg<br />

Nürnberg<br />

Heilbronn<br />

A6<br />

Essen<br />

Wieland-Group<br />

A52<br />

Motorway interchange<br />

Düsseldorf-Nord<br />

Broichh<strong>of</strong>street<br />

Motorway interchange<br />

Nürnberg Süd<br />

Wendelstein<br />

Sperbersloher Str.<br />

Am Schüttenh<strong>of</strong><br />

Motorway exit Röthenbach Sankt Wolfgang<br />

Wendelstein Wendelstein<br />

Motorway exit<br />

Schwabach<br />

Wendelstein Altorf<br />

In der Gibitzen<br />

A6<br />

Tunnelröhre<br />

chla<br />

s g<br />

A<br />

A73<br />

m Ko<br />

A44<br />

Am Schüttenh<strong>of</strong> 5<br />

D - 40472 Düsseldorf<br />

Theodorstreet eneonLescrtli<br />

Eishockey-<br />

DOME<br />

DÜSSELDORF<br />

Directions Wendelstein<br />

Theodorstreet<br />

hl-<br />

Motorway exit Wendelstein;<br />

Röthenbach bei St. Wolfgang<br />

Wilhelm-Maisel-Str. 20a<br />

D - 90530 Wendelstein<br />

Ratingen<br />

Röthenbach<br />

b. Sankt Wolfgang<br />

Reichenwaldallee<br />

Sperbersloher Str.<br />

Bauh<strong>of</strong><br />

Wilhelm-Maisel-Street<br />

A9<br />

A9<br />

Motorway<br />

interchange<br />

Ratingen<br />

Berlin<br />

A6<br />

Motorway interchange<br />

Nürnberg Ost<br />

AD<br />

Nürnberg Feucht<br />

München<br />

Feucht<br />

A3<br />

A3<br />

A3<br />

Oberhausen<br />

e-Mail: info@caro-prometa.de<br />

Homepage: www.caro-prometa.de<br />

Köln<br />

<strong>CARO</strong>-<strong>PROMETA</strong><br />

<strong>Metallvertriebs</strong> <strong>GmbH</strong><br />

Am Schüttenh<strong>of</strong> 5<br />

D-40472 Düsseldorf<br />

Postfach 330468<br />

D-40437 Düsseldorf<br />

Tel: +49 (0)211 9654 0<br />

Fax: +49 (0)211 9654 200<br />

<strong>CARO</strong>-<strong>PROMETA</strong><br />

<strong>Metallvertriebs</strong> <strong>GmbH</strong><br />

Wilhelm-Maisel-Str. 20a<br />

D-90530 Wendelstein<br />

Postfach 1247<br />

D-90524 Wendelstein<br />

Tel: +49 (0) 9129 4006 0<br />

Fax: +49 (0) 9129 4006 33<br />

<strong>CARO</strong>-<strong>PROMETA</strong><br />

© <strong>CARO</strong>-<strong>PROMETA</strong> <strong>Metallvertriebs</strong> <strong>GmbH</strong> - 08/2008 - Faults and changes with restriction.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!