14.12.2012 Views

Efficient Synthesis of 1,5-Disubstituted Tetrazoles - University of ...

Efficient Synthesis of 1,5-Disubstituted Tetrazoles - University of ...

Efficient Synthesis of 1,5-Disubstituted Tetrazoles - University of ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Efficient</strong> <strong>Synthesis</strong> <strong>of</strong> 1,5-<strong>Disubstituted</strong> <strong>Tetrazoles</strong><br />

Alan R. Katritzky,* Chunming Cai, Nabin K. Meher<br />

Center for Heterocyclic Compounds, Department <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> Florida, Gainesville, FL 32611-7200, USA<br />

Fax: +1(352)3929199<br />

E-mail: katritzky@chem.ufl.edu<br />

Abstract: A general method for the synthesis <strong>of</strong> 1,5 disubstituted<br />

tetrazoles from imidoylbenzotriazoles involves mild reaction<br />

conditions and short reaction time.<br />

Key words: amides, imidoylbenzotriazoles, tetrazoles, phasetransfer<br />

catalysis, sodium azide<br />

1,5-<strong>Disubstituted</strong> tetrazoles are important in biology and<br />

medicine as NAD(P)H oxidase inhibitors, 1a glucokinase<br />

activators, 1b hepatitis C virus (HCV) serine protease NS3<br />

inhibitors, 1c calcitonin gene-related peptide receptor<br />

antagonists and antimigraine agents. 1d 1,5-<strong>Disubstituted</strong><br />

tetrazoles are also useful synthetic intermediates 2a for<br />

synthesis <strong>of</strong> energetic salts, 2b 3,4-dihydro-pyrimidin-<br />

2(1H)-ones, 2c<br />

piericidins, 2d (+)-trans-5allylhexahydroindolizidin-3-ones,<br />

2e<br />

acacetin, 2f (+)strictifolione,<br />

2g vinylsilianes 2h and leucascandrolide A. 2i<br />

The many published preparative methods for 1,5disubstituted<br />

tetrazoles 3 include reactions <strong>of</strong> (i) amides<br />

with PCl5 or triflic anhydride and HN3 or NaN3, 4,5 (ii)<br />

thioamides with trimethylsilyl azide, 6 (iii) imidoyl chlorides<br />

with NaN3, 7 (iv) ketones with NaN3 8 or trimethylsilyl<br />

azide, 9 (v) oximes with HN3, 10 (vi) nitriles with<br />

alkyl chloride and trimethylstannyl azide 11 or with alkyl<br />

azide, 12 (vii) nitrilium triflate with NaN3 13 and (viii)<br />

amidrazones with N2O4 or HNO2 (Scheme 1). 14<br />

Cl<br />

R N R'<br />

R R'<br />

O<br />

R CN<br />

R NHR'<br />

S<br />

R'-N3 R N<br />

R NHR' TMS-N3 R'<br />

+<br />

Lawesson's<br />

(i)<br />

(vi)<br />

reagent<br />

PCl5 or Tf2O R'-Cl/TMS-N3 HN3 or NaN3 or<br />

- OTf<br />

(ii)<br />

R'<br />

(vii) NaN3 (iii)<br />

NaN 3<br />

NaN 3<br />

(iv)<br />

or TMS-N3 O<br />

HN 3<br />

(v)<br />

N-OH<br />

R R'<br />

R<br />

N<br />

N N<br />

N<br />

R'ZnCl<br />

or<br />

R'-B(OH) 2<br />

N N<br />

R<br />

N<br />

H<br />

N<br />

(viii) N 2 O 4<br />

or HNO2 (ix)<br />

R'-X<br />

R<br />

R NHR'<br />

Scheme 1 Literature methods <strong>of</strong> preparation <strong>of</strong> 1,5-disubstituted<br />

tetrazoles<br />

(x)<br />

N<br />

N<br />

H<br />

N-NH 2<br />

Further preparations involving conversion <strong>of</strong> substituted<br />

tetrazoles into 1,5-disubstituted tetrazoles include (ix)<br />

alkylation <strong>of</strong> 5-substituted tetrazoles 15 and (x) coupling<br />

<strong>of</strong> substituted 5-halotetrazoles with organozinc 16 or vinylboronic<br />

acid (Scheme 1). 17<br />

N<br />

N<br />

PAPER<br />

However, many <strong>of</strong> these reported methods suffer from<br />

one or more <strong>of</strong> (i) long reaction time, (ii) use <strong>of</strong> toxic<br />

and/or explosive reagents, (iii) tedious work up and low<br />

yields, (iv) high temperatures (v) formation <strong>of</strong> inseparable<br />

regio-isomers and (vi) use <strong>of</strong> uncommon starting<br />

materials. Thus, a mild and efficient method is required<br />

for the preparation <strong>of</strong> 1,5-disubstituted tetrazoles.<br />

Imidoylbenzotriazoles which are stable to water and<br />

easily prepared 18 are useful substitutes for imidoyl chlorides<br />

and we now report they can be used to synthesize<br />

1,5-disubstituted tetrazoles in high yield under mild<br />

conditions.<br />

Preparation <strong>of</strong> Imidoylbenzotriazoles<br />

Imidoylbenzotriazoles 1a–p (Table 1) were prepared<br />

from corresponding secondary carboxamides 2a–p and<br />

benzotriazoles using method A: oxalyl chloride and<br />

pyridine or method B: thionyl chloride under microwave<br />

(80 W/80 o C) following a literature procedure. 18 Thus,<br />

1a–d were prepared following method A and 1e–o were<br />

prepared following method B. The compound 1p was<br />

prepared using method B, but at 60 W/60 o C (Scheme 2).<br />

Imidoylbenzotriazoles 1h and 1p were novel and were<br />

completely characterized.<br />

R 1<br />

O<br />

N<br />

H<br />

2a-p<br />

R 2<br />

+<br />

BtH<br />

(COCl) 2 /Pyridine<br />

or<br />

SOCl 2<br />

R 1<br />

Bt<br />

MW: 80 W/80 oC 1a-p<br />

Scheme 2 Preparation <strong>of</strong> imidoylbenzotriazoles 1a–p<br />

Preparation <strong>of</strong> 1,5-<strong>Disubstituted</strong> <strong>Tetrazoles</strong><br />

Imidoylbenzotriazoles are stable in water and do not<br />

react with sodium azide at room temperature. Although<br />

the reaction <strong>of</strong> 1-[1-[(4-methylphenyl)imino]ethyl]-1Hbenzotriazole<br />

(1b) with sodium azide in the presence <strong>of</strong><br />

trifluoroacetic acid (1 equiv) to give 5-methyl-1-(4methylphenyl)-1H-tetrazole<br />

(3b) was slow and incomplete,<br />

a catalytic amount (20 mol%) <strong>of</strong> tetrabutylammonium<br />

bromide (TBAB) as phase-transfer catalyst in a<br />

two-phase (methylene chloride and water) system at 20<br />

o C gave complete reaction in 30 min. Column chromatography<br />

on basic alumina using ethyl acetate/hexanes<br />

(1/2) gave 5-methyl-1-(4-methylphenyl)-1H-tetrazole<br />

(3b) in 93% yield.<br />

This method generalized the preparation <strong>of</strong> 1,5disubstituted<br />

tetrazoles with diverse substituents (aliphatic,<br />

aromatic or heteroaromatic) in the starting imidoylbenzotriazole.<br />

The progress <strong>of</strong> reaction was monitored<br />

by thin layer chromatography. The 1,5-<br />

N<br />

R 2<br />

1204


disubstituted tetrazoles prepared in high yields (90–94%,<br />

Scheme 3, Table 2) were fully characterized by 1 H and<br />

13 C NMR spectroscopy. Novel compounds gave satisfactory<br />

elemental analysis; melting points <strong>of</strong> all known<br />

compounds were compared with the literature and found<br />

satisfactory except 3k, which may be due to the difference<br />

in crystallizing solvents. The molecular formula for<br />

3k was supported by satisfactory elemental analysis.<br />

Table 1 Preparation <strong>of</strong> Imidoylbenzotriazoles 1a–p<br />

a Isolated yield.<br />

R 1<br />

Bt<br />

1a-p<br />

N<br />

R 2<br />

NaN 3 /TFA<br />

TBAB (20 mol%)<br />

CH 2 Cl 2 /H 2 O, r.t.<br />

R 1<br />

R 2<br />

N<br />

N N<br />

3a-p<br />

Scheme 3 Preparation <strong>of</strong> 1,5-disubstituted tetrazoles 3a–p<br />

Imidoylbenzotriazoles Lit. 18<br />

Entry R 1<br />

R 2<br />

Yield (%) a Mp ( o C) Mp ( o C) Yield (%)<br />

a Me Ph 1a (68) 107–108 106–108 75<br />

b Me p-Tolyl 1b (65) 112–113 113–115 65<br />

c Bn p-Tolyl 1c (63) 125–126 124–126 62<br />

d PhCH2CH2 p-Tolyl 1d (62) Oil Oil 65<br />

e Ph Ph 1e (85) 129–130 129–131 88<br />

f Ph Bn 1f (90) 109–110 108–110 93<br />

g p-Tolyl p-Tolyl 1g (85) 138–140 138–140 82<br />

h p-Tolyl Me 1h (85) 95–98 New -<br />

i p-Methoxyphenyl Bn 1i (82) 114–116 115–118 78<br />

j p-Chlorophenyl p-Tolyl 1j (90) 119–120 118–120 90<br />

k p-Nitrophenyl Ph 1k (86) 182–184 183–185 88<br />

l p-Nitrophenyl Bn 1l (85) 118–120 117–119 86<br />

m 2-Furyl p-Tolyl 1m (80) 121–124 120–123 84<br />

n 2-Furyl Cyclohexyl 1n (90) Oil Oil 95<br />

o 2-Thienyl p-Tolyl 1o (87) 134–135 133–135 91<br />

p p-Tolyl CH2CO2Et 1p (86) 119–121 New -<br />

Table 2 Preparation <strong>of</strong> 1,5-disubstituted tetrazoles 3a–p<br />

PAPER<br />

Entry R 1,5-<strong>Disubstituted</strong> tetrazoles Lit.<br />

1<br />

R 2<br />

Yield (%) a Mp ( o C) Mp ( o C) Yield (%)<br />

a Me Ph 3a (90) 95–97 98–99 63 8b<br />

b Me p-Tolyl 3b (93) 101–103 106 96 19<br />

c Bn p-Tolyl 3c (94) 92–94 New -<br />

d<br />

e<br />

PhCH2CH2<br />

Ph<br />

p-Tolyl<br />

Ph<br />

3d (92)<br />

3e (90)<br />

Oil<br />

141–143<br />

New<br />

144–145<br />

-<br />

85 17b<br />

f Ph Bn 3f (95) 88–90 90–91 79 20<br />

g p-Tolyl p-Tolyl 3g (92) 142–144 148 b 21<br />

h p-Tolyl Me 3h (92) 113–115 117–118 30 22<br />

i p-Methoxyphenyl Bn 3i (94) 106–108 c 97 17a<br />

j p-Chlorophenyl p-Tolyl 3j (90) 132–134 New -<br />

k p-Nitrophenyl Ph 3k (90) 144–146 177–178 95 8b<br />

l p-Nitrophenyl Bn 3l (93) 131–133 New -<br />

m 2-Furyl p-Tolyl 3m (92) 118–120 c -<br />

n 2-Furyl Cyclohexyl 3n (94) 58–60 New -<br />

o 2-Thienyl p-Tolyl 3o (92) 115–117 c -<br />

p p-Tolyl<br />

a<br />

Isolated yield.<br />

b<br />

Yield not available in the literature<br />

c<br />

Found in literature with no characterization<br />

CH2CO2Et 3p (90) Oil New -<br />

pounds. This method can be performed in aqueous solution<br />

without decomposition and requires a shorter reaction<br />

time, thus <strong>of</strong>fers advantages over other methods.<br />

This transformation has also been studied in different<br />

solvents. Thus, the reaction <strong>of</strong> 1e was carried out in acetonitrile/water<br />

and THF/water under the standardized<br />

conditions to obtain tetrazole 3e in 90% yield.<br />

Herein we presented a general, mild and convenient<br />

method <strong>of</strong> preparation <strong>of</strong> 1,5-disubstituted tetrazoles<br />

with variable substituents on the nitrogen atom. The<br />

starting imidoylbenzotriazoles easily be prepared from<br />

readily available amides, are stable and crystalline com-<br />

Melting points are uncorrected. Reactions under microwave<br />

irradiation were conducted in heavy-walled pyrex<br />

tubes sealed with aluminum crimp caps fitted with a<br />

silicon septum or in round bottomed flasks equipped<br />

with a reflux condenser. Microwave heating was carried<br />

out with a single mode cavity Discover Microwave Synthesizer<br />

(CEM Corporation, NC, USA), producing continuous<br />

irradiation at 2450 MHz. Purification by column<br />

N<br />

1205


chromatography was carried out using basic alumina. 1 H<br />

NMR (300 MHz) and 13 C NMR (75 MHz) spectra were<br />

recorded in CDCl3 (with TMS for 1 H and chlor<strong>of</strong>orm-d<br />

for 13 C as the internal reference).<br />

Characterization <strong>of</strong> Imidoyl benzotriazoles<br />

N-[1H-1,2,3-Benzotriazol-1-yl(4methylphenyl)methylene]-N-methylamine<br />

(1h)<br />

Yellow microcrystals (from chlor<strong>of</strong>orm); mp 95–98 o C;<br />

yield: 1.06 g (85%).<br />

1 H NMR: δ = 2.44 (s, 3H), 3.39 (s, 3H), 7.29 (d, J = 8.1<br />

Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 7.42 (t, J = 7.6 Hz,<br />

1H), 7.56 (t, J = 7.7 Hz, 1H), 8.09 (d, J = 8.2 Hz, 1H),<br />

8.37 (d, J = 8.3 Hz, 1H).<br />

13 C NMR: δ = 21.4, 38.8, 114.9, 119.6, 124.9, 127.2,<br />

128.0, 128.5, 129.2, 131.7, 140.3, 146.2, 156.0.<br />

Anal. Calcd for C15H14N4: C, 71.98; H, 5.64; N, 22.38.<br />

Found: C, 72.30; H, 5.61; N, 22.68.<br />

Ethyl 2-{[(E)-1H-1,2,3-benzotriazol-1-yl(4methylphenyl)methylidene]amino}acetate<br />

(1p)<br />

Colorless needles (from chlor<strong>of</strong>orm/hexanes); mp 119–<br />

121 o C; yield: 2.72 g (86%).<br />

1 H NMR: δ = 1.32 (t, J = 7.2 Hz, 3H), 2.46 (s, 3H), 4.27<br />

(q, J = 7.2 Hz, 2H), 4.40 (s, 2H), 7.31–7.38 (m, 4H),<br />

7.45–7.51 (m, 1H), 7.61–7.67 (m, 1H), 8.11 (d, J = 8.1<br />

Hz, 1H), 8.66 (d, J = 8.4 Hz, 1H).<br />

13 C NMR: δ = 14.2, 21.6, 53.2, 61.2, 115.6, 119.7, 125.4,<br />

126.8, 128.7, 129.2, 129.5, 132.1, 141.1, 146.4, 157.7,<br />

170.1.<br />

Anal. Calcd for C18H18N4O2: C, 67.07; H, 5.63; N,<br />

17.38. Found: C, 67.24; H, 5.70; N, 17.41.<br />

General Procedure for the Preparation <strong>of</strong> 1,5-<br />

<strong>Disubstituted</strong> <strong>Tetrazoles</strong><br />

To a mixture <strong>of</strong> methylene chloride and water (10<br />

mL/10mL) was added imidoylbenzotriazole (1a–p) (0.50<br />

mmol), sodium azide (0.065 g, 1.0 mmol), tetrabutylammonium<br />

bromide (0.032 g, 0.10 mmol) and<br />

trifluoroacetic acid (0.06 g, 0.50 mmol). The reaction<br />

mixture was stirred for half an hour (for entry k, table 2,<br />

the reaction time was 12 h) under room temperature. The<br />

organic layer was separated and the water layer was<br />

washed methylene chloride (10 mL). Purification <strong>of</strong> the<br />

combined organic layer by column chromatography on<br />

basic alumina with ethyl acetate/hexanes (1/2) as eluent<br />

gave pure 1,5-disubstituted tetrazoles (3a–p).<br />

5-Methyl-1-phenyl-1H-tetrazole (3a)<br />

Colorless needles (from chlor<strong>of</strong>orm/hexanes); mp 95–97<br />

o C (lit. 8b mp 98–99 o C); yield: 0.072 g (90%).<br />

1<br />

H NMR: δ = 2.63 (s, 3H), 7.46–7.49 (m, 2H), 7.59–7.63<br />

(m, 3H).<br />

13<br />

C NMR: δ = 9.8, 124.6, 130.0, 130.4, 133.9, 151.5.<br />

5-Methyl-1-(4-methylphenyl)-1H-tetrazole (3b)<br />

Colorless needles (from chlor<strong>of</strong>orm/hexanes); mp 101–<br />

103 o C (Lit. 19 mp 106 o C); yield: 0.081 g (93%).<br />

PAPER<br />

1<br />

H NMR: δ = 2.47 (s, 3H), 2.60 (s, 3H), 7.32–7.42 (m,<br />

4H).<br />

13<br />

C NMR: δ = 9.7, 21.2, 124.3, 130.4, 131.2, 140.6,<br />

151.5.<br />

5-Benzyl-1-(4-methylphenyl)-1H-tetrazole (3c)<br />

White microcrystals (from chlor<strong>of</strong>orm); mp 92–94 o C;<br />

yield: 0.118 g (94%).<br />

1 H NMR: δ = 2.44 (s, 3H), 4.25 (s, 2H), 7.06–7.11 (m,<br />

2H), 7.12–7.18 (m, 2H), 7.22–7.26 (m, 3H), 7.27–7.33<br />

(m, 2H).<br />

13 C NMR: δ = 21.2, 29.4, 124.9, 127.4, 128.4, 128.8,<br />

130.2, 131.0, 134.2, 140.9, 153.8.<br />

Anal. Calcd for C15H14N4: C, 71.98; H, 5.64; N, 22.38.<br />

Found: C, 72.26; H, 5.76; N, 22.42.<br />

1-(4-Methylphenyl)-5-(2-phenylethyl)-1H-tetrazole<br />

(3d)<br />

Colorless oil; yield: 0.126 g (95%).<br />

1 H NMR: δ = 2.43 (s, 3H), 3.14 (s, 4H), 7.02–7.07 (m,<br />

4H), 7.20–7.30 (m, 5H).<br />

13 C NMR: δ = 21.2, 25.6, 33.4, 124.8, 126.6, 128.3,<br />

128.6, 130.2, 130.9, 139.3, 140.7, 154.5.<br />

Anal. Calcd for C16H16N4: C, 72.70; H, 6.10; N, 21.20.<br />

Found: C, 73.04; H, 6.26; N, 21.11.<br />

1,5-Diphenyl-1H-tetrazole (3e)<br />

Colorless needles (from chlor<strong>of</strong>orm/hexanes); mp 141–<br />

143 o C (lit. 17b mp: 144–145 o C); yield: 0.100 g (90 %).<br />

1 H NMR: δ = 7.39–7.43 (m, 4H), 7.48–7.58 (m, 6H).<br />

13 C NMR: δ = 123.6, 125.3, 128.4, 128.9, 129.0, 129.9,<br />

130.4, 131.3, 153.6.<br />

1-Benzyl-5-phenyl-1H-tetrazole (3f)<br />

White microcrystals (from chlor<strong>of</strong>orm/hexanes); mp 88–<br />

90 o C (lit. 20 mp 90-91 o C); yield: 0.112 g (95%).<br />

1 H NMR: δ = 5.62 (s, 2H), 7.14–7.17 (m, 2H), 7.32–7.36<br />

(m, 3H), 7.47–7.59 (m, 5H).<br />

13 C NMR: δ = 51.3, 123.6, 127.1, 128.7, 128.8, 129.1,<br />

131.3, 133.8, 154.6.<br />

1,5-Bis(4-methylphenyl)-1H-tetrazole (3g)<br />

Colorless needles (from chlor<strong>of</strong>orm/hexanes); mp 142–<br />

144 o C (lit. 21 mp 148 o C); yield: 0.115 g (92%).<br />

1 H NMR: δ = 2.38 (s, 3H), 2.45 (s, 3H), 7.20 (d, J = 8.0<br />

Hz, 2H), 7.27 (d, J = 8.5 Hz, 2H), 7.31 (d, J = 8.5 Hz,<br />

2H), 7.45 (d, J = 8.1 Hz, 2H).<br />

13 C NMR: δ = 21.3, 21.5, 120.7, 125.1, 128.7, 129.6,<br />

130.4, 132.1, 140.6, 141.6, 153.6.<br />

1-Methyl-5-(4-methylphenyl)-1H-tetrazole (3h)<br />

Colorless needles (from chlor<strong>of</strong>orm/hexanes); mp 113–<br />

115 o C (lit. 22 mp 117–118 o C); yield: 0.080 g (92%).<br />

1 H NMR: δ = 2.46 (s, 3H), 4.17 (s, 3H), 7.37 (d, J = 8.0<br />

Hz, 2H), 7.64 (d, J = 8.1 Hz, 2H).<br />

13 C NMR: δ = 21.4, 35.0, 120.7, 128.4, 129.9, 141.7,<br />

154.4.<br />

1206


1-Benzyl-5-(4-methoxyphenyl)-1H-tetrazole (3i)<br />

Colorless needles (from chlor<strong>of</strong>orm/hexanes); mp 106–<br />

108 o C (Lit. 17a no NMR data and melting point were<br />

reported in this paper); yield: 0.125 g (94%).<br />

1 H NMR: δ = 3.86 (s, 3H), 5.61 (s, 2H), 6.96–7.04 (m,<br />

2H), 7.15–7.18 (m, 2H), 7.34–7.38 (m, 3H), 7.51–7.58<br />

(m, 2H).<br />

13 C NMR: δ = 51.2, 55.4, 114.6, 115.6, 127.0, 128.6,<br />

129.1, 130.3, 134.0, 154.5, 161.8.<br />

Anal. Calcd for C15H14N4O: C, 67.65; H, 5.32; N, 21.04.<br />

Found: C, 67.86; H, 5.32; N, 21.40.<br />

5-(4-Chlorophenyl)-1-(4-methylphenyl)-1H-tetrazole<br />

(3j)<br />

Colorless needles (from chlor<strong>of</strong>orm); mp: 132–134 o C;<br />

yield: 0.122 g (90 %).<br />

1 H NMR: δ = 2.47 (s, 3H), 7.26 (d, J = 8.5 Hz, 2H), 7.34<br />

(d, J = 8.3 Hz, 2H), 7.39 (d, J = 8.7 Hz, 2H), 7.52 (d, J<br />

= 8.7 Hz, 2H).<br />

13 C NMR: δ = 21.3, 122.1, 125.1, 129.3, 130.1, 130.6,<br />

131.8, 137.6, 141.1, 152.7.<br />

Anal. Calcd for C14H11 N4: C, 62.11; H, 4.10; N, 20.70.<br />

Found: C, 62.50; H, 4.04; N, 21.07.<br />

5-(4-Nitrophenyl)-1-phenyl-1H-tetrazole (3k)<br />

Colorless needles (from ethyl acetate/hexanes); mp 145–<br />

147 o C (Lit. 8b mp 179–181 o C); yield: 0.120 g (90%).<br />

1 H NMR: δ = 7.46–7.51 (m, 2H), 7.53–7.61 (m, 3H),<br />

7.62–7.67 (m, 2H), 8.36–8.42 (m, 2H).<br />

13 C NMR: δ = 122.9, 125.3, 125.8, 129.0, 129.4, 131.9,<br />

139.1, 148.3, 153.8.<br />

Anal. Calcd for C13H9N5O2: C, 58.43; H, 3.40; N, 26.22.<br />

Found: C, 58.77; H, 3.15; N, 26.38.<br />

1-Benzyl-5-(4-nitrophenyl)-1H-tetrazole (3l)<br />

Colorless needles (from chlor<strong>of</strong>orm/hexanes); mp 131–<br />

133 o C; yield: 0.131 g (93%).<br />

1 H NMR: δ = 5.68 (s, 2H), 7.14–7.16 (m, 2H), 7.37–7.39<br />

(m, 3H), 7.79 (d, J = 8.9 Hz, 2H), 8.36 (d, J = 8.9 Hz,<br />

2H).<br />

13 C NMR: δ = 51.8, 124.2, 127.0, 129.1, 129.4, 129.8,<br />

130.0, 133.2, 149.4, 152.9.<br />

Anal. Calcd for C14H11N5O2: C, 59.78; H, 3.94; N, 24.90.<br />

Found: C, 60.11; H, 3.80; N, 25.27.<br />

5-(2-Furyl)-1-(4-methylphenyl)-1H-tetrazole (3m)<br />

Colorless needles (from chlor<strong>of</strong>orm/hexanes); novel<br />

(appeared in catalog, but no characterization data could<br />

be found in literature); mp 118–120 o C; yield: 0.104 g<br />

(92%).<br />

1 H NMR: δ = 2.48 (s, 3H), 6.49–6.51 (m, 1H), 6.75–6.83<br />

(m, 1H), 7.32–7.39 (m, 4H), 7.54 (s, 1H).<br />

13 C NMR: δ = 21.3, 112.0, 115.0, 125.5, 130.2, 131.6,<br />

138.9, 141.2, 145.7, 146.6.<br />

Anal. Calcd for C12H14N4O: C, 63.71; H, 4.46; N, 24.76.<br />

Found: C, 63.96; H, 4.35; N, 25.11.<br />

5-(2-Furyl)-1-cyclohexyl-1H-tetrazole (3n)<br />

PAPER<br />

White microcrystals (from chlor<strong>of</strong>orm); mp 58–60 o C;<br />

yield: 0.103 g (94%).<br />

1 H NMR: δ = 1.20–1.48 (m, 3H), 1.65–1.77 (m, 1H),<br />

1.80–2.15 (m, 6H), 4.70–4.80 (m, 1H), 6.58 (dd, J = 3.5,<br />

1.9 Hz, 1H), 7.12–7.18 (m, 1H), 7.58–7.77 (m, 1H).<br />

13 C NMR: δ = 24.8, 25.2, 32.7, 59.0, 112.1, 114.5, 139.7,<br />

145.2, 145.6.<br />

Anal. Calcd for C11H14N4O: C, 60.53; H, 6.47; N, 25.67.<br />

Found: C, 60.88; H, 6.74; N, 25.71.<br />

1-(4-Methylphenyl)-5-thien-2-yl-1H-tetrazole (3o)<br />

Colorless needles (from chlor<strong>of</strong>orm); mp 115–117 o C;<br />

yield: 0.111 g (92%); novel (appears in catalog, but no<br />

characterization data could be found in literature).<br />

1 H NMR: δ = 2.51 (s, 3H), 7.02–7.07 (m, 1H), 7.24–7.29<br />

(m, 1H), 7.32–7.44 (m, 4H), 7.49–7.53 (m, 1H).<br />

13 C NMR: δ = 21.4, 124.3, 128.0, 130.4, 130.5, 130.6,<br />

131.4, 141.7, 149.8.<br />

Anal. Calcd for C12H10N4S: C, 59.48; H, 4.16; N, 23.12.<br />

Found: C, 59.82; H, 4.07; N, 23.20.<br />

Ethyl 2-[5-(4-methylphenyl)-1H-1,2,3,4-tetrazol-1yl]acetate<br />

(3p)<br />

Pale yellow oil; yield: 0.111 g (90%).<br />

1 H NMR: δ = 1.24 (t, J = 7.2 Hz, 3H), 2.43 (s, 3H), 4.24<br />

(q, J = 7.2 Hz, 2H), 5.22 (s, 2H), 7.34 (d, J = 8.1 Hz,<br />

2H), 7.54 (d, J = 8.4 Hz, 2H).<br />

13 C NMR: δ = 13.7, 21.2, 48.5, 62.5, 120.1, 128.2,<br />

129.8, 141.8, 155.0, 165.4.<br />

Anal. Calcd for C12H14N4O2: C, 58.53; H, 5.73; N,<br />

22.75. Found: C, 58.85; H, 5.92; N, 21.92.<br />

References<br />

(1) (a) Seki, M.; Tarao, Y.; Yamada, K.; Nakao, A.; Usui, Y.;<br />

Komatsu, Y. PCT Int. Appl. WO 2005-JP2974, 2005;<br />

Chem. Abstr. 2005, 143, 266938. (b) Nonoshita, K.; Ogino,<br />

Y.; Ishikawa, M.; Sakai, F.; Nakashima, H.; Nagae, Y.; Tsukahara,<br />

D.; Arakawa, K.; Nishimura, T.; Eiki, J. PCT Int.<br />

Appl. WO 2004-JP19843, 2005; Chem. Abstr. 2005, 143,<br />

153371. (c) Miao, Z.; Sun, Y.; Nakajima, S.; Tang, D.; Wu,<br />

F.; Xu, G.; Or, Y. S.; Wang, Z. U.S. Pat. Appl. Publ. US<br />

2005153877, 2005; Chem. Abstr. 2005, 143, 153709. (d)<br />

Luo, G.; Chen, L.; Degnan, A. P.; Dubowchik, G. M.; Macor,<br />

J. E.; Tora, G. O.; Chaturvedula, P. V. PCT Int. Appl.<br />

WO 2004-US40721, 2005; Chem. Abstr. 2005, 143, 78091.<br />

(2) (a) Brigas, A. F. In Science <strong>of</strong> <strong>Synthesis</strong>, Vol 13; Storr, R.<br />

C.; Gilchrist, T. L., Eds.; Thieme: Stuttgart, 2004, 861. (b)<br />

Liotta, C. L.; Pollet, P.; Belcher, M. A.; Aronson, J. B.;<br />

Samanta, S.; Griffith, K. N. U.S. Pat. Appl. Publ. US<br />

2005269001, 2005; Chem. Abstr. 2004, 144, 37926. (c)<br />

Frija, L. M. T.; Khmelinskii, I. V.; Cristiano, M. L. S. Tetrahedron<br />

Lett. 2005, 46, 6757. (d) Schnermann, M. J.;<br />

Boger, D. L. J. Am. Chem. Soc. 2005, 127, 15704. (e) Potts,<br />

D.; Stevenson, P. J.; Thompson, N. Tetrahedron Lett. 2000,<br />

41, 275. (f) Quintin, J.; Lewin, G. J. Nat. Prod. 2004, 67,<br />

1624. (g) Enders, D.; Lenzen, A.; Muller, M. <strong>Synthesis</strong><br />

2004, 1486. (h) Jankowski, P.; Plesniak, K.; Wicha, J. Org.<br />

Lett. 2003, 5, 2789. (i) Fettes, A; Carreira, E. M. Angew.<br />

Chem. Int. Ed. 2002, 41, 4098.<br />

1207


(3) (a) Koldobskii, G. I. Russ. J. Org. Chem. 2006, 42, 469. (b)<br />

Butler, R. N., Comprehensive Heterocyclic Chemistry II,<br />

Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V., Eds.;<br />

Oxford: Pergamon, 1996, Vol 4, p. 621.<br />

(4) (a) Zabrocki, J.; Dunbar, J. B., Jr.; Marshall, K. W.; Toth,<br />

M. V.; Marshall, G. R. J. Org. Chem. 1992, 57, 202. (b)<br />

LeTiran, A.; Stables, J. P.; Kohn, H. Bioorg. Med. Chem.<br />

2001, 9, 2693.<br />

(5) (a) Xiao, J.; Zhang, X.; Wang, D.; Yuan, C. J. Fluorine<br />

Chem. 1999, 99, 83. (b) Hegarty, A. F.; Tynan, N. M.; Fergus,<br />

S. J. Chem. Soc., Perkin Trans. 2 2002, 7, 1328. (c)<br />

Thomas, E. W. <strong>Synthesis</strong> 1993, 767.<br />

(6) Lehnh<strong>of</strong>f, S.; Ugi, I. Heterocycles 1995, 40, 801.<br />

(7) Artamonova, T. V.; Zhivich, A. B.; Dubinskii, M. Y.; Koldobskii,<br />

G. I. <strong>Synthesis</strong> 1996, 1428.<br />

(8) (a) Tokes, Adrienne L.; Litkei, Gyorgy. Synth. Commun.<br />

1993, 23, 895. (b) Suzuki, H.; Hwang, Y. S.; Nakaya, C.;<br />

Matano, Y. <strong>Synthesis</strong> 1993, 1218. (c) El-Ahl, A. S.; Elmorsy,<br />

S. S.; Soliman, H.; Amer, F. A. Tetrahedron Lett.<br />

1995, 36, 7337.<br />

(9) (a) Nishiyama, K.; Watanabe, A. Chem. Lett. 1984, 3, 455.<br />

(b) Magnus, P.; Taylor, G. M. J. Chem. Soc., Perkin Trans.<br />

1 1991, 11, 2657.<br />

(10) Butler, R. N.; O'Donoghue, D. A. J. Chem. Res. (S) 1983,<br />

18.<br />

(11) Ueyama, N.; Yanagisawa, T.; Kawai, T.; Sonegawa, M.;<br />

Baba, H.; Mochizuki, S.; Kosakai, K.; Tomiyama, T. Chem.<br />

Pharm. Bull. 1994, 42, 1841.<br />

(12) (a) Demko, Z. P.; Sharpless, K. B. Angew. Chem. Int. Ed.<br />

2002, 41, 2113. (b) Demko, Z. P.; Sharpless, K. B. Angew.<br />

Chem. Int. Ed. 2002, 41, 2110. (c) Couty, F.; Durrat, F.;<br />

Prim, D. Tetrahedron Lett. 2004, 45, 3725.<br />

(13) Amer, M. I. K.; Booth, B. L. J. Chem. Res. (S) 1993, 4.<br />

(14) (a) Duncia, J. V.; Pierce, M. E.; Santella, J. B., III. J. Org.<br />

Chem. 1991, 56, 2395. (b) Deady, L. W.; Devine, S. M. J.<br />

Heterocycl. Chem. 2004, 41, 549.<br />

(15) (a) Ek, F.; Wistrand, L.; Frejd, T. J. Org. Chem. 2003, 68,<br />

1911. (b) Angibaud, P.; Saha, A. K.; Bourdrez, X.; End, D.<br />

W.; Freyne, E.; Lezouret, P.; Mannens, G.; Mevellec, L.e;<br />

Meyer, C.; Pilatte, I.; Poncelet, V.; Roux, B.; Smets, G.;<br />

Van Dun, J.; Venet, M.; Wouters, W. Bioorg. Med. Chem.<br />

Lett. 2003, 13, 4361. (c) Upadhayaya, R. S.; Jain, S.; Sinha,<br />

N.; Kishore, N.; Chandra, R.; Arora, S. K. Eur. J. Med.<br />

Chem. 2004, 39, 579-592.<br />

(16) Milne, J. E.; Buchwald, S. L. J. Am. Chem. Soc. 2004, 126,<br />

13028.<br />

(17) (a) Yi, K. Y.; Yoo, S. Tetrahedron Lett. 1995, 36, 1679. (b)<br />

Walker, S. D.; Barder, T. E.; Martinelli, J. R.; Buchwald, S.<br />

L. Angew. Chem. Int. Ed. 2004, 43, 1871.<br />

(18) Katritzky, A. R.; Cai, C.; Singh, S. K. J. Org. Chem. 2006,<br />

71, 3375..<br />

(19) Su, W.; Hong, Z. Faming Zhuanli Shenqing Gongkai<br />

Shuomingshu 2006, Pat. CN 1775764; Chem. Abstr. 2006,<br />

145, 62903.<br />

(20) Padwa, A.; Blacklock, T. J.; Carlsen, P. H. J.; Pulwer, M. J.<br />

Org. Chem. 1979, 44, 3281.<br />

(21) Braun, J.; Rudolph, W. Ber. 1941, 74B, 264.<br />

(22) Butler, R. N.; Garvin, V. C. J. Chem. Soc. Perkin. Trans. 1<br />

1981, 20.<br />

PAPER<br />

1208

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!