08.09.2017 Views

SzSA YearBook 2016/17

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

SZENT-GYÖRGYI JUNIOR MENTORS<br />

SZILVIA VESZELKA<br />

Institute of Biophysics<br />

Biological Research Center of the<br />

Hungarian Academy of Sciences<br />

Address: 6726 Temesvári krt. 62., H-6725 Szeged, Hungary<br />

E: veszelka.szilvia@brc.mta.hu<br />

T: +36 62/599-600<br />

RESEARCH AREA<br />

Pharmaceutical treatment of most disorders of the central<br />

nervous system, including neurodegenerative diseases<br />

and brain tumors, is restricted due to the poor penetration<br />

of drugs across the blood-brain barrier, the major entry<br />

route for therapeutic compounds to the central nervous<br />

system. The great majority of neuropharmaceutical candidates,<br />

hydrophilic molecules, biopharmaceuticals, and<br />

efflux transporter ligands have a low permeability across<br />

the blood-brain barrier. Biocompatible and biodegradable<br />

drug targeting systems, so-called nanocarriers hold a great<br />

promise. Nanovesicles which can encorporate drug cargos<br />

and present on their surfaces ligands for blood-brain barrier<br />

endogenous nutrient transporters achieve increased specificity<br />

and efficacy for drug delivery across the blood-brain<br />

barrier. Combination of such ligands is a novel and innovative<br />

idea which could contribute to develop systems for<br />

better treatment of central nervous system diseases.<br />

TECHNIQUES AVAILABLE IN THE LAB<br />

In vitro cell culture works, isolation of brain endothelial cells<br />

(rat/mouse), toxicity measurements (MTT/LDH tests, double<br />

cell nuclei staining, real-time cell monitoring assay), resistance<br />

measurement, cell uptake and blood-brain barrier<br />

transport experiments, immunohistochemistry, confocal<br />

microscopy, scanning electron microscopy, spectrofluorometer<br />

measurements. Preparation of nanoparticles, zeta<br />

potential and size measurements.<br />

SELECTED PUBLICATIONS<br />

Sántha, P., Veszelka, S., Hoyk, Z., Mészáros, M., Walter, FR.,<br />

Tóth, AE., Kiss, L., Kincses, A., Oláh, Z., Seprényi, G., Rákhely,<br />

G., Dér, A., Pákáski, M., Kálmán, J., Kittel, Á., Deli, MA. (<strong>2016</strong>)<br />

Restraint stress-induced morphological changes at the<br />

blood-brain barrier in adult rats. Front Mol Neurosci 8:<br />

Paper 88. 15 p.<br />

Walter, FR., Veszelka, S., Pásztói, M., Péterfi, ZA., Tóth, A.,<br />

Rákhely, G., Cervenak, L., Ábrahám, CS., Deli, MA. (2015)<br />

Tesmilifene modifies brain endothelial functions and opens<br />

the blood-brain/blood-glioma barrier. J Neurochem 134:<br />

1040-1054.<br />

Veszelka, S., Tóth, A.E., Walter, F.R., Datki, Z., Mózes, E., Fülöp,<br />

L, Bozsó, Z., Hellinger, É., Vastag, M., Orsolits, B., Környei, Z.,<br />

Penke, B., Deli, M.A. (2013) Docosahexaenoic acid reduces<br />

amyloid β-induced toxicity in cells of the neurovascular<br />

unit. J Alzheimers Dis 36: 487-501.<br />

Veszelka, S., Kittel, Á., Deli, M.A. (2011) Tools of Modelling<br />

Blood-Brain Barrier Penetrability: Chapter 9. In: Tihanyi K ,<br />

Vastag M (editors), Solubility, Delivery and ADME Problems<br />

of Drugs and Drug-Candidates. 232 p., Washington:<br />

Bentham Science Publishers Ltd., 2011. pp. 166-188.<br />

Veszelka, S., Pásztói, M., Farkas, AE., Krizbai, I., Ngo,<br />

TK., Niwa, M., Abrahám, C., Deli, MA. (2007) Pentosan<br />

polysulfate protects brain endothelial cells against bacterial<br />

lipopolysaccharide-induced damages. Neurochem Int 50:<br />

219-228.<br />

93

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!