13.12.2012 Views

High-throughput maskless lithography - Sematech

High-throughput maskless lithography - Sematech

High-throughput maskless lithography - Sematech

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>High</strong>-<strong>throughput</strong> <strong>maskless</strong> <strong>lithography</strong><br />

Litho Forum, January 29 th , 2004<br />

Pieter Kruit,<br />

MAPPER Lithography


Maskless <strong>lithography</strong>, 10 wph (300 mm), 45 nm and beyond<br />

�� Funded and launched July 1, 2001<br />

�� Team of 20 people<br />

�� Shareholders<br />

Company overview World-class partners<br />

Litho Forum January 2004<br />

Infrastructure


Litho Forum January 2004<br />

MAPPER value proposition<br />

Significant reduction of time-to-silicon and ASIC manufacturing cost<br />

Feasibility<br />

Time-to-silicon advantage<br />

Circuit design<br />

Layout design<br />

Mask design<br />

Prototype<br />

manufacturing<br />

Prototype<br />

testing<br />

Production,<br />

testing<br />

Cost Cost MAPPER’s MAPPER’s ($/wafer) ($/wafer) = = 90 cost 90 cost 90 cost x x [Tool [Tool competitiveness competitiveness cost cost / / Throughput] Throughput] for for ASIC ASIC + + [Mask [Mask and and cost cost prototyping<br />

prototyping<br />

/ / Volume] Volume] + + 8<br />

8<br />

Cost per critical layer ($)<br />

1,000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

-<br />

MAPPER cost<br />

Optical litho cost<br />

0 200 400 600 800 1000 1200 1400<br />

Volume (number of wafers produced)<br />

Plus: Road towards 32, 22 nm high volume


Litho Forum January 2004<br />

MAPPER technology<br />

MAPPER: massively parallel electron beams with optical data transport<br />

Data system Exposure system<br />

SUB-FAB<br />

Vac Chamber<br />

Pump<br />

Source<br />

EO<br />

column<br />

Wafer stage<br />

FAB<br />

Pump<br />

Load lock


Wafer<br />

Electron Source<br />

Collimator lens<br />

Aperture array<br />

Beam Blanker Array<br />

Beam Deflector Array<br />

Litho Forum January 2004<br />

MAPPER technology<br />

MEMS & CMOS technology enable high MAPPER performance<br />

Projection lens Array


Litho Forum January 2004<br />

MAPPER technology<br />

Multi-beam single field, mechanical x-scan, electrostatic y-scan<br />

EO slit<br />

300 mm wafer<br />

Field<br />

EO slit<br />

13,000 beams<br />

26<br />

mm<br />

10 mm<br />

Each beam writes 2 µm stripe<br />

Electron beam<br />

150 µm<br />

Beam OFF<br />

2.25 nm<br />

Wafer movement<br />

150 µm<br />

Beam ON


<strong>High</strong>lights<br />

for 10 wafers / hour<br />

Beam positioning<br />

Reliability / Redundancy<br />

Stitching<br />

Blanker array<br />

Data storage & transport<br />

Overlay<br />

Source<br />

Resist<br />

Lens array manufacturing<br />

Feasibility study & test results: No roadblocks<br />

Current status<br />

First succesful stability measurements<br />

Robust redundancy strategy<br />

Stitching-friendly writing strategy<br />

Design based on 0.25 CMOS process<br />

Succesful blanking tests @ 1 wph<br />

Based on existing telecom technology<br />

Design allows for optical alignment<br />

system<br />

Based on existing cathode<br />

First succesful exposures with bi-layer<br />

resist (50 nm HSQ, 200 nm AZ)<br />

In-house manufacturing of 13,000-lens<br />

arrays<br />

Litho Forum January 2004<br />

Mitigation plan<br />

Project with EUV contamination experts<br />

Test in Demonstrator<br />

Test in Demonstrator<br />

Test bench for full scale blanker<br />

Test in Demonstrator<br />

Cooperation with scanner supplier<br />

Source test bench<br />

Bi-layer resist development based on<br />

LEEPL resist by TOK<br />

Transfer process flows to MEMS<br />

foundry<br />

Development status<br />

Partner<br />

involved


Successful position stability tests of nine individual beams<br />

Relative position variation in Microns<br />

0.06<br />

0.04<br />

0.02<br />

-0.02<br />

-0.04<br />

-0.06<br />

Exposure time: 10ms, Repetition time: 30s<br />

# points: 50, Total time: 25 min<br />

0<br />

-0.06 -0.04 -0.02 0 0.02 0.04 0.06<br />

Litho Forum January 2004<br />

Beam positioning


Successful in-house manufacturing of 13,000 lens array<br />

Litho Forum January 2004<br />

Lens array manufacturing


Successful generation of 13,000 focused e-beams<br />

Litho Forum January 2004<br />

Lens array results


signal (arb.units)<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

Oscilloscope<br />

averaging to improve S/N<br />

Successful demonstration of high speed blanking<br />

0<br />

0 10 20 30 40 50<br />

time (ns)<br />

100 mV<br />

blanker<br />

125 MHz,<br />

t rise/fall = ~ 1<br />

ns<br />

current detector<br />

Pulse generator<br />

125 MHz, t rise/fall = 1 ns<br />

10 4 x amplification<br />

Litho Forum January 2004<br />

10 µV<br />

R<br />

Electron<br />

source<br />

I beam<br />

Blanker<br />

Beamstop<br />

Detector<br />

E/O column<br />

Blanker


First commercial tool in 2006<br />

Development roadmap<br />

2004 2005 2006 2007 2008<br />

Demonstrator phase<br />

Demonstrator<br />

CD 45 nm<br />

CDc 4.5 nm<br />

OL 10 µm<br />

TP


<strong>High</strong>-<strong>throughput</strong> <strong>maskless</strong> <strong>lithography</strong><br />

Litho Forum January 2004<br />

Conclusion

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!