13.12.2012 Views

"Signal Transduction: Protein Phosphorylation". In: Current Protocols ...

"Signal Transduction: Protein Phosphorylation". In: Current Protocols ...

"Signal Transduction: Protein Phosphorylation". In: Current Protocols ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

CHAPTER 14<br />

<strong>Signal</strong> <strong>Transduction</strong>: <strong>Protein</strong><br />

Phosphorylation<br />

INTRODUCTION<br />

Cells use selective phosphorylation of proteins to regulate a vast number of intracellular<br />

processes. Enzymes termed protein kinases couple phosphate groups to<br />

tyrosine, serine, or threonine residues in specific amino acid sequence motifs of target<br />

proteins. The process can be reversed by protein phosphatases. Specificity is determined<br />

by the ability of each of the many different types of protein kinases and phosphatases to<br />

recognize specific motifs and proteins. By such site-specific regulation of phosphorylation,<br />

which affects 10% or more of all proteins, cells can switch on or modulate many<br />

major signaling and metabolic pathways, as well as regulate cell behavior in biological<br />

events such as migration and embryonic development. The importance of phosphorylation<br />

to cell biological regulation is underscored by the fact that cells have over a thousand<br />

different protein kinases.<br />

One class of protein phosphorylations regulates enzymes, and the addition or removal of<br />

a key phosphate activates or suppresses activity of the enzyme. Other protein phosphorylations<br />

enable a protein to bind to another to form a complex—e.g., via the binding<br />

of an SH2 domain to a specific tyrosine-phosphorylated site in a target protein. Another<br />

general cellular strategy is to activate cascades of protein phosphorylation in signaltransduction<br />

pathways. For example, complex linear and interconnecting pathways of<br />

sequential phosphorylation of proteins leading to the various types of MAP kinases<br />

are important regulators of cell growth, differentiation, and gene expression. A current<br />

overview of this large field of protein phosphorylation is presented in UNIT 14.1, and a<br />

more specific review of MAP kinase pathways is presented in UNIT 14.3; both provide a<br />

number of relevant literature references.<br />

Although phosphorylation has classically been characterized by the incorporation of 32 P<br />

using radioactive inorganic phosphate, a recent methodological breakthrough of particular<br />

value to cell biologists involves powerful nonradioactive approaches to the study<br />

of protein phosphorylation. Studies of complex signaling pathways in cells and tissues<br />

are now possible even for nonexperts by using immunoblotting and immunofluorescence<br />

or immunohistochemical methods. These new approaches are based on specific antibodies<br />

that recognize a phosphate group on one or more amino acids selectively—e.g.,<br />

phosphotyrosine residues on any protein, or the presence of a certain type of phosphate<br />

linkage on a specific protein such as an activated MAP kinase. A wide selection of these<br />

immunological tools is now available commercially. UNIT 14.2 provides methods for rapid<br />

direct characterization of phosphorylated proteins using a specific antibody. If antibodies<br />

of sufficiently high specificity with respect to a single protein are not available, this unit<br />

also provides a more indirect approach using immunoprecipitation by antibodies against<br />

the protein of interest, followed by anti-phosphotyrosine immunodetection. It also describes<br />

methods for antibody localization of key phosphorylated regulatory molecules.<br />

This approach permits an investigator to follow the expression patterns or intracellular<br />

movements of key phosphorylated proteins in cells, or even in various tissues of intact<br />

organisms.<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology 14.0.1-14.0.3, June 2009<br />

Published online June 2009 in Wiley <strong>In</strong>terscience (www.interscience.wiley.com).<br />

DOI: 10.1002/0471143030.cb1400s43<br />

Copyright C○ 2009 John Wiley & Sons, <strong>In</strong>c.<br />

<strong>Signal</strong><br />

<strong>Transduction</strong>:<br />

<strong>Protein</strong><br />

Phosphorylation<br />

14.0.1<br />

Supplement 43


<strong>In</strong>troduction<br />

14.0.2<br />

MAP kinase signaling is central to many critical cell biological regulatory events, and<br />

UNIT 14.3 provides methods for quantitative characterization of this important signaling<br />

process. Because of the daunting complexity of signaling via MAP kinases, specific<br />

antibodies are needed. This unit starts by providing a general protocol for detecting<br />

MAP kinase activation by immunoblot analysis using specific anti-phospho-MAP kinase<br />

antibodies. It then provides an alternative approach that uses specific antibodies to isolate<br />

phosphoprotein, and then phosphorylation of a MAP kinase substrate is measured by<br />

determining amounts of incorporated 32 P. Because novel kinases may be involved in a<br />

specific cell biological regulatory event, UNIT 14.3 also presents methods for detecting<br />

unknown kinases using an in-gel kinase assay. A test substrate is incorporated into an<br />

SDS-polyacrylamide gel, and electrophoretically separated crude protein extracts are<br />

evaluated for enzyme bands with ability to produce phosphorylation in vitro.<br />

Although the recent proliferation of immunological methods for detecting specific types<br />

of protein phosphorylation has made the analysis of phosphorylation much easier, the<br />

“gold standard” for characterizing phosphorylation of individual proteins continues to be<br />

radioactive labeling with 32 P followed by biochemical analysis of the radiolabeled phosphoproteins.<br />

UNIT 14.4 provides cell culture and biochemical protocols for incorporating<br />

32 P-labeled inorganic phosphate and for characterizing radiolabeled phosphoproteins.<br />

UNIT 14.5 presents current methods for unambigously identifying the specific phosporylated<br />

amino acids in individual phosphoproteins. Appropriate combinations of radioactive<br />

and immunological approaches should permit full characterization of the protein<br />

phosphorylation cascades and pathways that regulate many important cell biological<br />

functions.<br />

Akt (protein kinase B) is another important kinase, which is regulated by phosphoinositide<br />

3-kinase downstream of signaling cascades induced by a number of different growth<br />

factors and integrin ligands. Akt in turn regulates critical cellular functions including cell<br />

survival, growth, and proliferation, and it can play roles in cancer and other diseases.<br />

UNIT 14.6 provides protocols for assaying the phosphorylation state of Akt that regulates<br />

its activity, as well as its dephosphorylation. It also provides a protocol for quantifying<br />

the translocation of activated Akt to the plasma membrane.<br />

Cells generally interact with extracellular matrix molecules using integrin receptors,<br />

which trigger complex signaling cascades that regulate cell survival, growth, migration,<br />

and differentiation. These cascades involve integrin-associated kinases that include focal<br />

adhesion kinase (FAK) and c-Src. These and related kinases are both the mediators and<br />

the targets of specific tyrosine phosphorylation events that play important regulatory<br />

roles. UNIT 14.7 provides a comprehensive series of protocols for analyzing signal transduction<br />

involving FAK and the structurally related kinase Pyk2, as well as the master<br />

regulatory kinase c-Src. Procedures are described for inducing signaling, performing<br />

immunoprecipitation analysis, measuring kinase activity, and characterizing changes in<br />

phosphorylation and activity with phospho-specific antibodies. <strong>Protocols</strong> are also provided<br />

for visualizing activated FAK, Pyk2, and Src, and there are cell biological assays<br />

for cell migration regulated by these types of kinase signaling.<br />

Many cell biological processes are regulated by small GTPases. Cell adhesion, migration,<br />

and proliferation are strongly regulated by the Rho family of GTPases. Although this<br />

family consists of a number of members with both distinct and overlapping functions,<br />

RhoA, Rac, and Cdc42 are particularly important and implicated in a wide range of<br />

functions. UNIT 14.8 provides methods for determining the activation of each of these key<br />

Rho GTPases using proteins that bind specifically to the activated form. Specificity of<br />

these assays is then provided by immunodetection of the specific Rho GTPase isoforms<br />

bound to these activation-detecting reagents.<br />

Supplement 43 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


The precise regulation of the activities of small GTPases is important during many biological<br />

processes. UNIT 14.9 describes detailed protocols for assaying their key regulators, the<br />

GEFs (guanine nucleotide exchange factors) and the GAPs (GTPase activating proteins).<br />

These enzyme regulators respectively stimulate or inactivate GTPase activities. Quantification<br />

of the activities of each of these two types of regulators using these methods can<br />

provide valuable mechanistic insight into GTPase functions in cell and developmental<br />

biology. Future units will provide assays for other important cell biological regulators.<br />

Kenneth M. Yamada<br />

<strong>Signal</strong><br />

<strong>Transduction</strong>:<br />

<strong>Protein</strong><br />

Phosphorylation<br />

14.0.3<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 43


�����������������������������������<br />

�������<br />

��������������������������������������<br />

�������������������������������������������<br />

����������� ��� �������� ���������� �������� ��<br />

���������� ������ �������������� �������� ����<br />

� �� ����������������� �������� ����� ��� ����� ��<br />

�������������������������������������������������<br />

��������������������������������������������<br />

�����������������������������������������������<br />

�������������������������������������������������<br />

����� ������� �������� ������������������ ������<br />

��������������������������������������������<br />

���������������������������������������������<br />

��������������������������������������������������<br />

���� ������������ ����� ��� ����� ������ ���������<br />

��������������������������������������������<br />

�����������������������������������������������<br />

���������������������������������������������<br />

����������� ��� ���� ������������������ �������<br />

��������������������������������������<br />

��������������������������������������������<br />

����� ����� �������������������������������������<br />

����� ������� ���� ���� ���������� �������� ������<br />

������������������������������������������������<br />

�′������������������ �������� �������� ������<br />

���������������������������������������������<br />

�����������������������������������������������<br />

�����������������������������������������������<br />

�����������������������������������������������<br />

��������������������������������������������<br />

���������������������������������������������<br />

���� ���������������� ��� ����� ������ ����������<br />

��������������������������������������������<br />

���������������������������������������������<br />

����������������������������������������������<br />

���������������������<br />

���������������� ���� ������������ ���� ����<br />

����������� ��� ����������������� �����������<br />

�����������������������������������������������<br />

���������������������������������������������<br />

����� ����������� ���� ����� ������ ���� ����<br />

���������������������������������������������<br />

������������������������������������������������<br />

���� ������� ���������� ���� ���� ���� ������<br />

�����������������������������������������������<br />

��� ���������� ��� ���� ���� ������� ������� ���<br />

������������������������������������������������<br />

��� ����� ���� ����������� ������� ��������������<br />

�����������������������������������������������<br />

���������� ������������ ���� ���������������� ��<br />

����������������������������������������������<br />

��������������������������������������������<br />

�����������������������������������������������<br />

������������������������������������<br />

������������������������������������������������������<br />

�������������������������������������������<br />

���������������������������������������������<br />

������������������������������������������������<br />

����������������������������������������������<br />

�������������������������������������������������<br />

����<br />

����������������<br />

������������������������������������������<br />

������������������������������ �� ���������������<br />

������ ���������� � �� ����� ����� ��� �������������<br />

����������������������������������������������<br />

����������������������������������������������<br />

��������������������������������������������<br />

���������������������������������������������<br />

�����������������������������������������������<br />

��������������������������������������������<br />

�����������������������������������������������<br />

�����������������������������������������������<br />

������������� ���� ��� �������� ��� ���� ������ ���<br />

�����������������������������������������������<br />

�� �������� ��������� ���� ������������� ��������<br />

����� �� ��� ����� ���������� �������������� ���<br />

��������������������������������������������<br />

�����������������������������������������������<br />

������������������������������������������������<br />

����������������������������������������������<br />

�������������<br />

������������������������<br />

����������������������������������������<br />

�����������������������������������������������<br />

�������������������������������������������������<br />

��������������� ��� ��������� ���������� �����<br />

��������������������������������������������<br />

�������������������������������������������������<br />

������������������������������������������������<br />

�������������������������������������������������<br />

���������������������������������������������<br />

�������������������������������������������������<br />

�������������������������������������������<br />

���������������������������������������������<br />

��� ������ ������������� ������ ��� ����������<br />

������������������������������������������������<br />

����������� ����� ���� ���� ������������ �����<br />

����������������������������������������������<br />

���������������������������������������������<br />

���������������������������������������������<br />

����� ���� ���������������� ��� ����� ����������<br />

��������������������������������������������<br />

�����������������������������������������������<br />

������������ ������ ��� �������� ���������������<br />

�������������������������������������������<br />

������������������������<br />

���������<br />

������<br />

�������������<br />

�������<br />

���������������<br />

������


�����������<br />

�������<br />

���������������<br />

������<br />

����������������������������������������<br />

�����������������������������������������������<br />

����� �� ��������������������������������������������<br />

�����������������������������������������������<br />

������ ��������������� ��� ������� ��������� ��� ��<br />

��������������������������������������������<br />

���������������������������������������������<br />

��������������������������������������������<br />

������������������������������������������������<br />

�����������������������������������������<br />

����������������������������������������������<br />

����������������������������������������������<br />

����������������������������������������������<br />

�������������<br />

����������������������<br />

������������������<br />

��������������������������������������������<br />

��������������� ��� ���� ������������� ����� ���<br />

�����������������������������������������������<br />

�����������������������������������������������<br />

������������ ���� ��� �������� �������� ��������<br />

���������������������������������������������<br />

�����������������������������������������������<br />

�������������������������������������������<br />

����������������������������������������������<br />

����� ���������� �������������� ��� �����<br />

��������������������������������������������<br />

�����������������������������������������������<br />

����������������������������������������������<br />

���������������������������������������������<br />

���� �������������� ��� ����������������� ���<br />

����� ������������ ��������� ��� ��� ��������� ��<br />

���������������������������������������������<br />

��������������������������������������������<br />

���������������������������������������������<br />

�����������������������������������������������<br />

���������������������������������������������<br />

��������������������������������������������<br />

����� ����������� �������� ���������������<br />

������ ������� ���� ��������� ��� �� �������� ������<br />

������������������������������������������<br />

�����������������������������������������������<br />

��������� ��� ��������������� ��������� ��� ��<br />

���������� �������� ���� ��� �������� ����� ���<br />

������ ���� ��������� ������ ����������� ��� ���<br />

���������������������������<br />

���������������<br />

��������������������������������������������<br />

������� ���� ���������������� ��� ������� ����<br />

�����������������������������������������������<br />

�������������������������������������������<br />

����������������������������������������������<br />

��������������������������������������������<br />

�������������� ���� ��������� ���������� ����� �<br />

���� ������� ���������� ������� ���� ���������<br />

��������������������������������������������<br />

�������� ��� ����� ������� ���� ��������� ��� ����<br />

����������������������������������������������<br />

�����������������������������������������������<br />

��������������������������������������<br />

��������������������<br />

����� �������� ������������� ����� ����� �<br />

�������������������������������������������������<br />

���������������������������������������������<br />

�����������������������������������������������<br />

��������� ������������� ���� ���� ��������������<br />

����������������������������������������������<br />

��������������������������������������������<br />

����������������������������������������������<br />

�������������������������������������������<br />

������ ���� ������ ��� ����������� ��������� ����<br />

�������������������������������������������<br />

���������������������������������������������<br />

����������������������������������������������<br />

��������������������������������������������<br />

����������������� ��� ������ ������� ����������<br />

�������������������������<br />

�����������������������������������������<br />

���������������������������������������������<br />

����� ���� �������� ������ ������� �������� �������<br />

��������������������������������������������<br />

����������������������������������������������<br />

������������� ������ ���������� ����� ������<br />

���������������������������������������������<br />

������������������������������������������<br />

���������������������������������������������<br />

�������� ���� ������� ������ ������������ ������<br />

�����������������������������������������������<br />

����� ����������� ��� ������ ��������� ����������<br />

���������������������������������������������<br />

���������������������������������������������<br />

������������ ��� ������ ������� ��������� �������<br />

���������������������������������������������<br />

���������������������������������������������<br />

��������������������������������������������<br />

�����������������������������������������������<br />

�����������������������������������������������<br />

�������������������������������������������������<br />

����������<br />

���������������������������������������������<br />

����������������������������������������������<br />

����������������������������������������������<br />

���������<br />

����������������<br />

�������� ����� ���� ������� ��� ������ ���������� ��<br />

��������������������������������������������������<br />

��������������������������<br />

��������������������������������������������������<br />

���������������������������������������������<br />

������ �������� ��� �������� ��������� ���� ��������<br />

��������������������������<br />

���������������������������������


�����������������������������������������������<br />

�����������������������������������������������<br />

����<br />

���������������������������������������������������<br />

������������������������������������������������<br />

������������������������<br />

������� ��� ������ ���� ���������� ���� ����������� ��<br />

�������� �������������� ������ ����� ��������<br />

�����������<br />

������� ��� ������ ��������������� ��� �������� ����<br />

�������������� �������������� ��������������� ���<br />

�����������������������������������������������<br />

������������<br />

�������������������������������������������������<br />

��� �� ������� ��������������������������� ������<br />

������������������������������������������������<br />

�����������������������������������������������<br />

����� ��������� ������ ������ ������ ����� ������<br />

�������������<br />

����������������������������������������������������<br />

�������� ���� ���������� ���� ���� ����������� ��<br />

����������������������������������������������<br />

������ ������������ �������� ��������� ��������<br />

����<br />

��������������������������������������������������<br />

�������������������������������������������������<br />

����������������������<br />

���������������������������������������������������<br />

��������� ����������� ���� ����������� ��� �����<br />

��������� ������ ��� ����������� ��������������<br />

������� ����������������� �������� ��������<br />

����������<br />

����������� ����� ���� ����� ����� ������ ������<br />

������������� ���� ����� ����� �������������� ������<br />

��������������� �������� ������� ������������<br />

����������������������������������<br />

������������������������������������������������<br />

��������� ��� ���� �������� ��������� �������������<br />

��������������������������������<br />

��������� ����� ������ ���� �������� ��� ����������<br />

�����������������������������������������������<br />

����<br />

���������������������������������������������������<br />

��������������������������������������������<br />

�������� ������ ���������� �������� ���� ����� ������<br />

������ ���� ��� �������� ����� ��� �������� �������<br />

����������������������������������������������<br />

������������<br />

�������� ������ ������ ������������� ��� ����� �������<br />

���������� ��� ������� �������������� ����� �������<br />

����<br />

���������������������������������������������������<br />

�����������������������������������������������<br />

�����������������������������������������������<br />

���������������������������������<br />

������� ������������� ����� ���� ������� ������<br />

�������������������������<br />

�����������������������������������������������<br />

����������������������������������������������<br />

�������� ��� ������������������� ��������<br />

����������<br />

�������������������������������������������������<br />

�����������������������������������������������<br />

�������������������������������������������������<br />

���������������������������������������������������<br />

������������������������������������<br />

��������������������������������������������������<br />

���������������������������������������������<br />

��������� ���� ���� ������������ ���� ���������<br />

������������������������������������������������<br />

�����������������������������������<br />

�����������������������������������������������������<br />

�������������������������������������������������<br />

������������ ����������������� ������� �����������<br />

����������������<br />

�������� ������ ������������������ ���� ���� ���������<br />

�����������������������������������������������<br />

����������������������������������������������<br />

�����������������������������������������������<br />

����������������������������������������������������<br />

����������������������������������������������<br />

������������������������������������������������<br />

�������������������������������������������<br />

����������������������������������������������������<br />

������ ����� ������ ��� ������ ������������ ��� ���<br />

��������������������������������������������<br />

�����������������������������������������������<br />

����<br />

������ ����� ������ �������� ��� ���� ����� �����������<br />

���������������������<br />

�������������������������������������������������<br />

��������������������������������������������<br />

������������ ������� ���������������� �������<br />

������������������<br />

���������������������������������������������������<br />

������������������������������������������������<br />

�������������������������<br />

��������������������������������������������������<br />

����������������������������������������������<br />

���������������������������������<br />

������� ��� ������ ������� ������������� ������� ���<br />

��������������������������������������������<br />

����������������������������<br />

������������������������������������<br />

������������������<br />

���������������������<br />

������<br />

�������������<br />

�������<br />

���������������<br />

������


������������������������������������������<br />

�����������������������������������������������������������������������������������������<br />

�������������������������������������������������������������������������������������<br />

��������������������������������������������������������������������������������������<br />

�����������������������������������������������������������������������������������������<br />

�����������������������������������������������������������������������������������������<br />

�����������������������������������������������������������������������������������������<br />

�������������������������������������������������������������������������������������<br />

��������������������������������������������������������������������������������������<br />

��������������������������������������������������������������������������������������<br />

�������������������������������������������������������������������������������������<br />

�������������������������������������������������������������������������������<br />

���������������������������������������������<br />

��������������<br />

������������������������������������������������������������������������������������<br />

����������������������������������������������������������������������������������������<br />

������������������ �������� ������� ����� �������� ������ ��� ����� ����� ��� ��� ��������<br />

��������� ����� ���������������� ��������� ���� ��� ����� ����� �������������������������<br />

������������������������������������������������������������������������������������<br />

��������������������������������������������������������������������������������������<br />

����������������������������������������������������������������������������������������<br />

����������������������������������������������������������������������������������������<br />

������������������������������������������������������������������������������<br />

���������<br />

����������<br />

�����������������������������������������������������������������������������<br />

���������������������������������<br />

��������������������������������<br />

�������������������������������������������������������������������������<br />

���������������������������������������������<br />

���µ����������������������<br />

���������������������������<br />

��������������������������������������������<br />

�������������������������������������������������������������<br />

������������������������������������<br />

����������������������������������������<br />

�����������������������������������������������µ��������������������������<br />

�������������������������<br />

��������������������������������������������������������������������������<br />

������������������������������������������<br />

�����������������������������������������������������������������������������<br />

���������������������������⋅�������∼������������������<br />

������������������������������������������������<br />

������������������������������<br />

��������������������������������������������������������������������<br />

�����������������������<br />

������������������������������������������������������������������������������<br />

��������������������������������������������������������<br />

���������������������������������������<br />

�������������������������������������������������������<br />

�������������������������������������������<br />

���������<br />

�����<br />

����������<br />

������<br />

�������������<br />

�������<br />

���������������<br />

������


�������������<br />

������������<br />

���������������<br />

������<br />

�����������������������������������<br />

��������������������������������������������������������������<br />

��������������������������<br />

���������������������������������������������°���������������������������������������<br />

�����<br />

���������<br />

��������������������������������°�<br />

������������������°�<br />

��������������������������������������<br />

������������������������������������������<br />

������������������������������������������<br />

��������������������������������������������������������<br />

���������������������������������������������������<br />

��������������������������������������������������<br />

��������������������������������������������������������������������������������<br />

�������������������������������������������������������������<br />

�������������������������������������������������������������������������������������<br />

����������������������������������������������������<br />

���������������������������������������������������������������������������°��������<br />

������ ���������������������������������������<br />

�������������������������<br />

��� �������������������������������������������������������������������������������<br />

������∼����×��� � ��������������<br />

��� ������������������������������������������������������������������������������<br />

��������������<br />

����������������������������������������������������������������������������������������<br />

�����������������������������������������������������������������������������������������<br />

����������������������������������������������������������������������������������������<br />

�������������������������������������������������������������������������<br />

��� ��������µ��������µ����������������������������������������������µ���������������<br />

���������������������������������������������������������������������������������<br />

������������������������������������������������������������������������������������������<br />

���������������������������������������������������������������������������������������������<br />

�������������������������������������������������������������������������������������������<br />

��������������������������������������������<br />

����������������������������������������������������������������������������������������������<br />

��������������������������������������������������������������������������������������<br />

������������������������������������������������������������������������������������<br />

���������������������<br />

��� �������������������������������������������������������������������������������<br />

���������������������������������������������������������������<br />

�����������������������������������������������������������������������������������������������<br />

����������������������������������������������������������������������������������������<br />

���������������������������������������<br />

��� ��������µ���������������������������������������������������������������������������������<br />

���������������������������������������������������������������������������������������<br />

���������������������������������


��������������������������������������������������������������������������������������<br />

�����������������<br />

�����������������������������������������������������������������������������������������<br />

����������������������������������������������������������������������<br />

���������������������������������������������������������������������������������������<br />

��������<br />

��� ��������������������������������������������������������<br />

��������������������������������������������������������������������������������������<br />

����������������������������������������������������������������������������������������<br />

�������������������������������������������������������������������������������������������������<br />

�������������������������������������������������������������������������������������<br />

��������� ���� ������������ ������ ������� ��������� ����������� ��� ��������� ����� ����� ����<br />

���������������������������������������������������������������������������������������<br />

����������������������������������������������������������������������������������������<br />

���� �� ������� �������� ��� ����� ������ ��������� ��������� ����� ���� ���������� ���� �������<br />

��������������������������������������������������������������������������������������<br />

����������������������������������������������������������������������������������������<br />

�����<br />

��� �������������������������������������������������������×�����°������������������������<br />

�����������������������������������������������������������<br />

���������������������������������������������������������������������������������<br />

��� ������������������µ���������������������������������������������������������������<br />

��������������������������������������������������������������������������������������<br />

�������������<br />

�������������������������������������������������������������������������������������������<br />

�������������������������������������������������������������������������������������<br />

���� ��� ����������� ������������ ���������� �������� ������ ��� ����� �������� ������� ����<br />

��������������������������������������������������������������������������������������������<br />

�����������������������������������������������������������������������������������<br />

������������<br />

�������������������������������<br />

��� ��������µ��������������������������µ������������������������������<br />

���������������������������������������������������������������������������������������<br />

��������������������������������������������������≥�������������������������������������<br />

�����������������������������������������������������������������������������������������<br />

�����������������������������������������������������������������������������������<br />

���������������������������������������������������������������������������������������������<br />

���� ������������µ������������������������������������������������������������������������<br />

�����������������������<br />

����������������������������������������������������������������������������������������<br />

���� ������������µ���������������������������������������������������������������������<br />

��������������������������µ�����������������������������������������������<br />

���� �������������������������������������������������������������������������������������<br />

�������������������������������������� ��������������������������������������������<br />

�����������������������������������������������������������������������������������<br />

��������������������������������������������������������������������������������<br />

���������������<br />

���������������������������������<br />

������<br />

�������������<br />

�������<br />

���������������<br />

������


�������������<br />

������������<br />

���������������<br />

������<br />

���������������������������<br />

���� ����������������������������������������������������������������������������������<br />

����������������������µ�������������������������������������������������<br />

���� ���� � ⁄����������×����������������������������������������������������������������<br />

������<br />

���� ��������������������������������������������������������������������������<br />

�����������������������������������������������������������������������������������������<br />

����������������������������������������������������������������������������������������<br />

��������������������������������������������������������������������������������������<br />

���������<br />

���� ������������������������������������������������������������������������������������<br />

��������������������������������<br />

������������������<br />

���� ���������������������������������������������������������������������<br />

���� ����� ���� ���� ������ ���� �������� ���� ���� ��� ���� ����� ������� ���� ���� ����� ���<br />

����������������������������������������������������������������������������������������<br />

�����������������������������������������<br />

���� �����������������������������������������������������������������������������������<br />

������� ���� �������� ����� ���� ������ ����� �� ��������� ��� ���� ����� ��������������<br />

��������������������������������������������������������������������������������<br />

�������������������������������������������������������������������������������������������<br />

����������������������������������������������������������������������������<br />

������������������������������������������������<br />

���� ���������������������������������������������������������������������������������<br />

������������������������������������������������������������������������������������<br />

����������������������<br />

�������������������������������������������������������������������������������<br />

���� �����������������������������������������������������������������������������������<br />

���������������������������������������������������������������������������������������<br />

����������������������������������������������������������������������������������<br />

������ ������� ���� ������ ���� �������� �������� ��������� ��������� ����������� ����� �<br />

������������������������������<br />

��������������������������������������������������������������������������������<br />

�����������������������������������������������������������������������������������������<br />

�����������������������������������������������������������������������������������������������<br />

����������������������������<br />

���� �������������������������������������������������������������������������������������<br />

����������������������������������������������������������������������������������<br />

�������������������������������������������������������������������������������������<br />

����������<br />

��������������������������������������������������������������������������������������������<br />

���������������������������������������������������������������������������������������<br />

������ ������� ��� �������� ������������ ���� �����������������������������������������������<br />

�������������������������������������������������������������������������������������<br />

����������������������������������������������������������������������������������������<br />

������������������������������������������������������<br />

���������������������������������


���� ������ ��������������� ��������� ����� ����� ���������� ���� ��������� ��� ��� ��� ��� ��<br />

�������������������������������������������������<br />

�����������������������������������������������������������������������������������������<br />

�����������������������������������������������������������������������<br />

����������������������������������������������<br />

���� ������� �������� ��������� ������� ����������� ������������ ���� ������� ���������� ��<br />

�������������������������������������������������������������������������������<br />

��������������������������������������������������������������°���������������°�����<br />

������������������������������<br />

�������������������������������������������������������������������������������������<br />

�����������������������������������������������������������������������������������������<br />

���������������������������������������������������������������������������������<br />

����� ��� ������ ��� ������������ ����� ����������� ��������� ��� ���� ����� �����������������<br />

���������<br />

���� ���������������������������������������������������������������������������������<br />

�����������������������������������<br />

���� ���������������������������������������������������������������������������������<br />

��������������������������������������������������������������������������������<br />

�����<br />

���� ���������� ��� ������������ ���� ������� ���������� ���� ��� ���������� ������� ��� ������<br />

�������� �������� ��� ���� �� �������� ������� ������ ����� ����� ���� ����� ������������<br />

������������������������������������������������������������������������������������<br />

�������������������������������������������������������������������������������������<br />

�����������������������������������������������������������������������<br />

���� ���������������������������������������������������������������������������������<br />

�����������������<br />

���� ��������������������������������������������������������������������<br />

����������������������������������������������������������������������������������������<br />

������� ��� ���� ������� ��� ���� ������ ��� ��������� ���� ����� ��������������� ��������� ��<br />

����������������������������������������������������������������������<br />

���� ������������������������������������������������������������������������������������<br />

������������<br />

���������������������������������������������������������������������������������������������<br />

����������������������������������������������������������������������������������������<br />

�����������������������������������������������������������������������������������������<br />

��������������������������������������������������������������������������������������<br />

������������������������������������������������������������������������������������������<br />

�����������������������������������������������������������������<br />

���� ������� ��������� ��������� ���� ��������� ��������������� ��������� ����� ���� ���<br />

�����������������������������������������������������������������������������������<br />

���������������������������������������������������������������������������������<br />

����������<br />

���� ����������������������������������������������������������������������������������<br />

�������������������������������������������������������������������������������<br />

����������������������������������������������������������������������������������<br />

���������������������������������<br />

������<br />

�������������<br />

�������<br />

���������������<br />

������


�����<br />

����������<br />

�������������<br />

������������<br />

���������������<br />

������<br />

���������������������������������������������<br />

����������������������������������������������<br />

����� ���������� ���� ������ ��������� ���� �������� ����������� ���� ��� ����� ����������������<br />

��������� �� ����� ����������� �������� ��������������� ���������� ��������������������<br />

����������������������������������������������������������������������������������������<br />

����� ������ ����������� ��� ���� ������ ��������� ��������� ��� ����������� ���������� ����<br />

��������������������������������������������������������������������������������������<br />

��������������������������������������������������������������<br />

���������<br />

�������������������������<br />

������������������������������������������������<br />

������������������������������������������������������������������µ���������������<br />

��������������������������������������������<br />

���������������������������������������������������������������<br />

����������������������������������<br />

�����������������������������<br />

����������⋅������������������������<br />

�������������������������������������<br />

�����������������������������������������������������������������������������<br />

��������������������<br />

������������������°�<br />

��������������������������������������������������������������<br />

��������������������������������������������������<br />

�������������������������������������������<br />

��� ���������������������������������∼����µ������������������������������������������<br />

���������������������������������������������������������������<br />

��������� �������� ������������ ��� ������������ ���� ����� �������� ������ ������������<br />

�����������������������������������������������������������������������������������������<br />

����� ������� ���� ��������� ��� ������������������ �������� ������ ��� ����������� ����������<br />

��������������<br />

�������������������������������������������������������������������������������������������<br />

��� ��������������������������������������������������������������������������<br />

�������������������������������������������������������������������������<br />

��� ��������µ�������������µ������������������������������������������µ����������������<br />

�������������������������������������������������������������������������������������<br />

��������������������������������������������������������<br />

�����������������������������������������������������������������µ�������������������<br />

����������� ���� �������� ��� ���� �������� ��� ���� ������� ����� ������� ����� ��������� ����� ��<br />

�������������������������������������������������������������������������������������������<br />

�����������<br />

�������������������������������������������������������������������������������������������<br />

��� ������������������������������������������������������������������������������<br />

���������������������������������������������������������������������������������<br />

��������������������������������������������������������������������������������<br />

����������������������������������������������<br />

���������������������������������������������������������������������≤�����������°��<br />

���������������������������������


�����������������<br />

��� �������µ������������������������������������������µ���������������µ�����������<br />

������������������������µ���������������������������������������������������µ�������<br />

����������������������������������������������������������������������������������<br />

������������������������������������������°��<br />

������������������������������������������������������������������������<br />

��� ���������������� �������������������� ������ �� ���� ��� ������� ×� ��� �°��� �������<br />

����������������������������������������������������������������������������������<br />

��������������������������������������������������������������������������⋅������<br />

����<br />

���������������������������������������������������������������������������������������<br />

��������������������������������������������<br />

��� �������µ������×��������������������������������������������������������������<br />

������������������������������������������������������������������������������<br />

����������������������������������������������������������������<br />

��� ��������������������������������������������������������������������������������<br />

����������������������������������������������������������������������������������������<br />

�����������<br />

��������������������������������������������������<br />

��������������������������������������������������������������������������������������<br />

�������������������������������������������������������������������������������������������<br />

���������������������������������������������������������������������������������������<br />

������������������������������������������������������������������������������������<br />

������������ ����������� ����� ������� ��� ����������� ������� ��� ���������� ������������� ��<br />

�����������������������������������������������������������������������������������������<br />

����������������������������������������������������������������������������������������<br />

���������������������������������<br />

���������<br />

����������<br />

��������������������������<br />

��������������������������������<br />

�����������������<br />

��������������������������������<br />

����������������������������������������������������<br />

����������������<br />

�����������������������������������������������������������������������<br />

����������������������������������������������������<br />

����������������������������<br />

��������������������������������<br />

������������������������������<br />

����������������������������������������������������<br />

����������������������������������<br />

���������������������������������������������������������������<br />

�������������������������������������������������������������������������������������<br />

����������������������������������������������������<br />

�����<br />

����������<br />

������<br />

�������������<br />

�������<br />

���������������<br />

������<br />

��������������������������������� ������������


�������������<br />

������������<br />

���������������<br />

������<br />

���������������������������������������������������������������������������°��������<br />

������ ���������������������������������������������������������������������������<br />

�������������������� ���������������������<br />

��� ������������������������������������������������������������������������������������<br />

∼���������������������������������������������������������������������������<br />

�������������������������������������������������������������������������������<br />

��������������������������<br />

��������������������������������������������������������������������������������������������<br />

���������������������������������������������<br />

���������������������������������������������������������������<br />

��� �������������������������������������������������������������������������<br />

��������������������<br />

�����������������������������������������������������������������������������������<br />

����������������������������������������������������<br />

��� ��������������������������������������������������������������������������������<br />

��������������������������������������������������������������������������������<br />

������������������������������������<br />

��������������������������������������������������������������������������������������<br />

��������� ���� ����������� ����������� ���� ����������� ������� ���� ��� ���������� ��� ����<br />

����������������������������������������������������������<br />

��� ��������������������������������������������������������������������������������<br />

����������������������������������������������������������������������������������<br />

�����������<br />

���������������������������������������������������������������������������������������<br />

��������������������������������������������������������������������������������������<br />

��������������������������������������<br />

��� ��������������������������������������������������������������������������������������<br />

������������������������������������������<br />

��� ��������������������������������������������������������������������������������<br />

�����������������������������������������������������������������µ������������������<br />

����������������������������������������������������∼���������������������������<br />

����������������������������������������������������������������������������������<br />

�������������������������������������������������������������������������������<br />

������������<br />

��������������������������������������������������������������������������������������<br />

�������������������������������������������������������������µ������������������������<br />

����������������������������������������������������������������������������������<br />

������������������������������������������������������������������������������������<br />

�������������������������������������������������<br />

��� �����������������������������������������������������������������������������������<br />

��������������������������������������������������������������������������������������<br />

����������������������������������������������������������������������������������<br />

������������������������������������������������������������������������������<br />

��� ���������������������������������������������������������������������������<br />

�������������������������������������������������������������������������������×<br />

��������������������������������������������������µ��������������������������������<br />

��������� ��� ���� ���������� ������ ����������� ��� ���� ��� ���� ������� ����� ����� �����<br />

������������������������������������<br />

������������ ���������������������������������


���������������������������������������������������������������������������������������<br />

��������������<br />

��� ������������������������������������������������������������������������������<br />

�������������������������������������������������������������������������������������<br />

��������������������������������������������������������������<br />

���� �������������������������������������������������������������������������������<br />

����� ����� ����� �������� ���� ������� ���������� ���� ��� ��������� ���� ����� ����� �<br />

�������������������������������������������������������������������������������<br />

������������������������������������������������������������������������<br />

�������������������������������������������������������������������������<br />

���� ��������������������������������������������������������������������������������<br />

��������� ������������ ������������ ����� ���� ������� ��� ��������� ���� ����� ���� ���<br />

���������������������������������������<br />

����������������������<br />

������������������������������������������������������������������������������������������������������<br />

������������������������������������������<br />

���������������������������������������<br />

�����������<br />

�����������<br />

����������������������<br />

�����������<br />

������������������������� �����������⋅������������������������<br />

�����������⋅����������<br />

�������������<br />

�������������������������������������������°�<br />

��������������������������������������������������������������<br />

����������������������������������������������<br />

���������������������<br />

������������������������������<br />

�����������<br />

�����������<br />

����������������������<br />

������������������<br />

���µ��������������<br />

���µ��������������<br />

����µ����������������<br />

������������������������<br />

�������������������������°�������������<br />

�����������������������<br />

����������������������������������������������������������������������������������<br />

�������������<br />

������������������������������<br />

�����������<br />

�����������<br />

����������������������<br />

����������������������������������������<br />

�������������������������°�������������<br />

�����������������������<br />

����������������������������������������������������������<br />

���������������������������������<br />

������<br />

�������������<br />

�������<br />

���������������<br />

������


�������������<br />

������������<br />

���������������<br />

�������<br />

��������������������������������������������<br />

����������⋅������������������������<br />

�����������<br />

������������������<br />

����������������������������<br />

�����������������������<br />

���������������������<br />

�����������<br />

������������������������������������<br />

���µ�����������<br />

�������������������������°�<br />

�������������������������×<br />

�����������⋅������������������������<br />

������������������<br />

��������������������������<br />

��������������������������<br />

��������������������������<br />

�������������������������−��°�<br />

������������������������������������<br />

����������⋅������������������������<br />

�����������<br />

��������������������<br />

�������������������������°�<br />

����������<br />

����������������������<br />

������������������������������������������<br />

�����������������������������������������������<br />

���������������������������������������������<br />

���������������������������������������������<br />

��������������������������������������������<br />

�����������������������������������������������<br />

��������������������������������������������<br />

�������������������������������������������������<br />

������������ ��������������� ��� ∼����� ��������<br />

���������������������������������������������<br />

���������������������������������������������<br />

������ ���������� ��� ��������� ���������������<br />

������������������������������������������������<br />

���� ����� ����� ���������� ��� ������� ���� ���<br />

������������� ����������� ����������������� ���<br />

�������� ���� ������������ �������� ��� ���������<br />

������������������������������������������������ ������������������������������������������������<br />

����������������������������������������������<br />

����������������������������������������������<br />

�����������������������������������������������<br />

����������������������������<br />

�������� ��������� ��� �������������� �����<br />

����������������������������������������������<br />

��������������������������������������������<br />

��������������������������������������������<br />

��� ����������� ����� ������������� ����� ����� ��<br />

����������������������������������������������<br />

������������������ ����� ������ �����������<br />

����� ��� ��������������������� ������ ������<br />

������������� ������ ���� ��������������� ����<br />

����������������������������������������������<br />

���������������������������������������������<br />

�������������������������������������������������<br />

���������������������������������������������<br />

�������������������������������������������������<br />

�������������������������������������<br />

�������������������������������������������<br />

����������������������������������������������<br />

�������������������������������������������������<br />

��������� ������ ����������� ��������� ����<br />

���������������������������������������������<br />

���������������������������������������������<br />

�����������������������������������������������<br />

����������������������������������������������<br />

����� ������� ���� ������������������� ���� �����<br />

������������������������������������������������<br />

���������������������������������������������<br />

���������������������������������������������<br />

������������������������������������������������<br />

����������������������������������������������<br />

����� ����������� ����� ������� ��� ������� ����<br />

�������� ��� ���������������� ����� ���������<br />

�����������������������������������������������<br />

�����������������������������������������������<br />

���������������������������������


N C C<br />

H<br />

O -<br />

O P<br />

O<br />

CH 2<br />

O -<br />

H O<br />

O P<br />

��������������������������������������������<br />

����������������������������������������������<br />

���������������������������������������<br />

����������������������������������������<br />

����������������������������������������������<br />

��� �� ������ ��������� ���� �������� ���� �������<br />

����������� ������� ��� ���������� ����� �� �����<br />

��������������������������������������������<br />

��������������������������������������������<br />

�������������������������������������������<br />

����� ��� ������ ���������� ��� ������������ �������<br />

���������������������������������������������<br />

�������� ��� �� ����������� ��������� ������ ���<br />

���������� ��������� ���������� ��� ���������<br />

�����������������������������������������<br />

�����������������������������������������<br />

��������������������������������������������<br />

������ �������������������� ������������ �����<br />

�����������������������������������������������<br />

������ ��������� ��� �� ������ ��������� �������� �<br />

��������� ����������� ������� ��������� ���� ����<br />

�������������������������������������������<br />

���������� �������� �������������������������<br />

�����������������������������������������������<br />

��������� ������� ��� ����� ������ ����� ��� ����<br />

�������������������������������������������<br />

��������<br />

��� ��������� ��� �������� ������������� ���<br />

���������������������������������������<br />

����������������������������������������������<br />

��������������������������������������������<br />

H<br />

C<br />

N C C<br />

H<br />

O -<br />

O<br />

O -<br />

H O<br />

CH 3<br />

N C C<br />

H<br />

O -<br />

O P<br />

H O<br />

��������������������������������������������<br />

����� ������ ���� ����� ��� ����� ����������� ��� ���<br />

���������������������������������������������<br />

���������������������������������������������<br />

������� �������� ���� ����������� ������ ��� ���<br />

��������������������������������������������<br />

������� ���� ���������� ��������� ��� ����� �����<br />

���������������������������������������������<br />

������ ����������������� ������ ����� ���� �����<br />

����������������������������������������<br />

������������������������������������������<br />

�����������������������������������������������<br />

������������������������������������������������<br />

��������������������������������������������<br />

�����������������������������������������������<br />

����������������������������������������������<br />

����������������������������������������������<br />

�����������������������������������������������<br />

�����������������������������������������������<br />

�������������� ��������� ����� ����� ������<br />

���������������������������������������������<br />

��������������������������������������������<br />

�����������������������������������������������<br />

������������������������������������������������<br />

��������������������������������������������������<br />

������� ������ �������� ���� ����� �����������<br />

�����������������������������������������������<br />

�������������������������������������������������<br />

������������������������������������������������<br />

���������������������������������������������<br />

���� ������� ���������� ��������� ������� ���<br />

O<br />

CH 2<br />

phosphoserine phosphothreonine phosphotyrosine<br />

�������������� ���������� ��������������� ��� �������������� ������ ����������������� ������ ���<br />

���������������������<br />

���������������������������������<br />

O -<br />

������<br />

�������������<br />

�������<br />

���������������<br />

�������


�������������<br />

������������<br />

���������������<br />

�������<br />

������� ������ ���������� ������ ��������� ���<br />

�����������������������������������������������<br />

���������������������������������������������<br />

�������� ��� ����������� ����� ����������������<br />

����������������� ������ ������� ���� ����������<br />

������������������������������������������������<br />

�������� ������� ������ ���������������� ����<br />

����������������������������������������������<br />

���� ��������� ��������� �������������� ������� ���<br />

�������������<br />

��������������������������������������������<br />

������� ������� ���� ��������� ���������� ����<br />

����������������������������������������������<br />

��������������������������������������������<br />

����� ����� ���������� ���������� ������ ��� ����<br />

���������������������������������������������<br />

���������������������������������������������<br />

���������������������������������������������<br />

������������������������������������������<br />

A<br />

���������� ������ ������ ���� ��������� ��������<br />

������������������������������������������<br />

����� ��� �������� �������������� ��������<br />

����������������������������������������������<br />

�������������������������������������������<br />

����������������������������������������������<br />

���������������������������������������������������<br />

���������� ���������� ��� ����� ������� ���� ���<br />

��������������������������������������������<br />

������� ��������� �������� ��� �������������<br />

�������������������������������������������������<br />

�������������������������������������������������<br />

����������������������������������������������<br />

�������������������������������������������������<br />

������ ����������� ���� �������� ���� ��� ��������<br />

������ ��� ���� �������� ������ ��������� �������<br />

�����������������������<br />

������������ ������� ������������ ������ ���<br />

��������� �������������������� ������������ ���<br />

anti-PY<br />

anti- general<br />

MEK<br />

MW<br />

(Da)<br />

175<br />

83<br />

62<br />

anti- active<br />

MAPK<br />

anti- general<br />

MAPK<br />

MEK1 47<br />

32<br />

25<br />

16<br />

p44 MAPK<br />

p42 MAPK<br />

0 10 20 0 10 20 0 10 20 0 10 20<br />

B<br />

p44 MAPK<br />

p42 MAPK<br />

0 10 20<br />

VOOH (min)<br />

VOOH (min)<br />

�������������� �������������������������������������������������������������������������������<br />

������� ������ �������������� ���� ����� ������ �������� ���� ��� ��� ��� �� ��� ����������� �������� �����<br />

����������������������������������������������������������������������������������������������<br />

����������������������������������µ������������������������������������������������������<br />

���������������������������������������������������������������������������������������������������<br />

��������������������������������������������������������������������������������������������<br />

������������������������������������������������������������������������������������������<br />

���������������������������������������������������������������������������������������������<br />

��������������������������������������������������������������������������������������������<br />

������������������������������������������������������������������µ������������������������<br />

��������������������������������������������������������������������������������������������<br />

������������������������������������������������������������������������������������������<br />

�������������������<br />

���������������������������������


��������������������������������������������������<br />

���������������������������������������������<br />

���������������������������������������������<br />

����������������������������������������������<br />

�������������������������������������������������<br />

���������������������������������������������<br />

��������������������������������������������<br />

�������������������������������������������<br />

������������������������������������������������<br />

���������������������������������������������<br />

��� ������������ ��������� ������� ����������<br />

�����������������������������������������������<br />

��������������������������������������������<br />

��� ������� �������� ������� ������� ���������� ���<br />

�����������������������������������������������<br />

����������������������������������������������<br />

�������������������������������������������<br />

�������������������� ����������� ����� ����<br />

����������������������������������������������<br />

�������������������������������������������������<br />

��������������������������������������������<br />

�����������������������������������������������<br />

����������������������������������������������<br />

����������������������������������������������<br />

������������������������������������������������<br />

�����������������������������������������������<br />

��������������������������������������������������<br />

��������������������������������������������������<br />

����������������������������������<br />

�������������������<br />

��������������������������������������������<br />

�������������������������������������������<br />

����������������������������������������������<br />

������������������������������������������������<br />

���� ������� ���� ���������� ���� ��������������<br />

���������������������������������������������<br />

��������������������������������������������<br />

�������������������������������������������������<br />

����� ��� ���������� ���������� ��� ���������� ���<br />

�����������������������������������������������<br />

����������������������������������������������<br />

��� ����������� ������� ��� ���������� ��� �����<br />

�������������������������������������������<br />

������������������������������������������<br />

��������������������������������������������<br />

������������������������������������������������<br />

��������������������������������������������<br />

�����������������������������������������������<br />

���������������������������������������������<br />

���������������������������������������������<br />

���������� ������������� ������������������������<br />

������� ��������� ���������������� ��� �����<br />

�����������������������������������������������<br />

����� ������������ �������� ��� ���� ���������� ��<br />

���������������������������������������������<br />

������ �������� ���� ��� ���������� ��� ������<br />

���������������������������������<br />

������������������������������������������������<br />

���� ����������� ��� ���� �������������� �����<br />

��������� �����������������������������������<br />

��������������������������������������������<br />

������������������������������������������������<br />

�����������������������������������������������<br />

������ ��������������� ���� ���� ����������� ��<br />

������������������������������������������������<br />

������ ��� ��������� ���� ������� ���������� ��� ���<br />

����������������������������������������������<br />

��������������������������������������������������<br />

����� ���� ��������� ��� �������������� ���������<br />

��������� ������ ��� ������� ��� ��� ������� ��<br />

����������������������������������������������<br />

���������������������������������������������<br />

�������������������������������������������������<br />

������������������������� ������ ������<br />

�������� ���� ����� ��������� ����������� �������<br />

����������������������������������������������<br />

������ ��� ������� �������������������� ��� ���<br />

�����������������������������������������������<br />

������������������������������������������������<br />

����������������������������������������������<br />

���������������������������������������������<br />

������������������<br />

��������������������������������������������<br />

������������������������������������������������<br />

�����������������������������������������������<br />

����������������������������������������������<br />

���������������������������������������������<br />

��������������������������������������������<br />

����������������������������������������������<br />

���������������������������������������������<br />

�����������������������������������������������<br />

�����������������������������������������������<br />

�����������������������������������������������<br />

���������������������������������������������<br />

�������������������������������������<br />

����������������������������������������<br />

�������������������������������������������<br />

����� ������ ������ �������� ����� ���������������<br />

��������������������������������������������<br />

��� ���� ����� ���������� ��� ������ ��������� ��� ���<br />

����������� ���� ������ ����������� ��� �������� �<br />

����������������������������������������������<br />

���������������������������������������������<br />

���������������������������������������������<br />

��������� ��� ���� ���������������� ��� �����<br />

����������������������������������������������<br />

����������������������������������������������<br />

���������������������������������������������<br />

����������������������������������������������<br />

���� ������ ��� ���� ������� ������ ��� �������������<br />

����������������������������������������������<br />

������ ��� �������� �� ���� ����� ��� ���� �������<br />

�����������������������������������������������<br />

������<br />

�������������<br />

�������<br />

���������������<br />

�������


�������������<br />

������������<br />

���������������<br />

�������<br />

�����������������������������������������������<br />

���������������������������<br />

���� ����������� ���� ��� �����������������<br />

����������������������������������������������<br />

����������������������������������������������<br />

�������������������������������������������<br />

�������������������������������������������<br />

���� ���������� ����� ��������� ����� ����������<br />

�������������������������������������������������<br />

����������� ����� ����������������� ������ ��<br />

�����������������������������������������������<br />

��������������������������������������������<br />

���������������������������������������������<br />

����������� ����� ������ ��������������� ����<br />

������ ��� ����� �������� ������� �������������<br />

������� ��� ������������ ���������� ��������<br />

�����������������������������������������������<br />

���������������������������������������������<br />

�����������������������������������������<br />

��������������������������������������������<br />

����������� �������� �������� ��� ���� ����������<br />

������������������������������������������������<br />

�������������������������������������������<br />

��������������������������������������������<br />

�������� ������ ��� ����� ������� ���������������<br />

������ ����� ������� ��� ����� ������� ���� �����<br />

���������������������������������������<br />

������������������ ���������� �������� ���<br />

�������������������������������������������<br />

�����������������������������������������������<br />

�������������������������������������������������<br />

��������������������������������������������<br />

���������������������������������������������<br />

��������������������������������������������������<br />

�����������������������������������������������<br />

������������������������������������������������<br />

������������������������������������������������<br />

������������������������������������������������<br />

������ ����� ������������ ������� ��������� �����<br />

������� ���� ����������� ��������� ����� ������<br />

�������������������������������<br />

�����������������������������������������<br />

��������������������������������������������<br />

��� ���� ������� ������ ��� ���� ���������� �������<br />

����������������������������������������������<br />

���� ��������������� ��� ���������������������<br />

������������ ���� ���� ��������� �������������<br />

������ ������ ��������� ����� ������� ��� �����<br />

��������������������������������������������������<br />

����������������������������������������������<br />

��������������������������������������������������<br />

�������������������������������������������������<br />

��������������������������������������������<br />

�������������������������������������������<br />

���������� ��� ����������������������������������<br />

�������������������������������������������<br />

�����������������������������������������������<br />

������������������������������������ ��� ���������<br />

���������������������������������������������<br />

���������������������������������������������<br />

������������������������������������������������<br />

����������������������������������������<br />

�������������������<br />

���� �������� ��������������� ���� ��� ������<br />

��������������������������������������������<br />

�������������������������������������������<br />

���� ���� ����� ������� ��������� ��� ����� ��� ����<br />

����������������������������������������������<br />

�������������������������������������������<br />

�������������� ���������� ��� ����� ������ �����<br />

��������������������������������������������<br />

������� ��� ������� ���� ������� ������ ���<br />

���������������������������������������������<br />

������������������������������������������������<br />

������ ������ ������� ������������������������<br />

���������������������������������������������������<br />

������������������������������������������������<br />

����������������������������������������������<br />

�������������������������������������������<br />

���������������������������������������������<br />

���������������������������������������������<br />

��� ������ ������� ��������� ���� ����� ������ ����<br />

������������� ���� ������� ����������� ������<br />

������� ��� ������ ��������� ��� ���� ����� ����� ���<br />

��������������������������������������<br />

�������������������<br />

�������������������������������������������<br />

�������������������������������������������������<br />

�����������������������������������������������<br />

�����������������������������������������������<br />

�������������������������������������������<br />

����������������������������������������������<br />

�����������������������������������������������<br />

��������������������������������������������<br />

����������������������������������������������<br />

����������������������������������������������<br />

��������������������∼���������������������������<br />

������������������������������������������������<br />

∼���������������������������������������������<br />

������ ���� �������� ����������� ����������������<br />

��������������������������������������<br />

����������������<br />

���������������������������������������������������<br />

������ ��������������� ��� ��������� ���������<br />

�����������������������������������������������<br />

������������������������������������������������<br />

����������������<br />

����������������������������������������������������<br />

������������������������������������������������<br />

���� ��������� ���� �������������� ���� ��������<br />

���������������������������������������������<br />

�����������������������������������������������<br />

���������������������������������


������������������������������������������������<br />

����������������������������������������������<br />

����������������<br />

���������� ������ ������� ���� �������� ������ �������<br />

����������������������������������������������<br />

�������������������������������������������<br />

�����������<br />

�������������������������������������������������<br />

���������������������������������������������������<br />

���������� ��� ��������������������������� ����<br />

�������������������������������������������������<br />

������������ ������������ ��� ����������� �����<br />

��������������������������������������<br />

�������������������������������������������������<br />

������ ��������������������������������������<br />

�����������������������������������������������<br />

������ ����� ����������������������� ������ ���<br />

�����������������������������������������������<br />

������������<br />

���������������������������������������������������<br />

����������� �������� ��� ����������� ���� ��������<br />

�������� ������� ������������� �������<br />

��������������<br />

������� ������ ������������ ������ ���������� �����<br />

�������� ���� ������ ������ ����������� ������ ���<br />

����������� ����� ������ ����������� ��� ����<br />

����������������������������������������������<br />

������������������������������������������������<br />

����<br />

�����������������������������������������������������<br />

����������������������������������������������<br />

�����������������������������������������������<br />

�������������������������������������<br />

�����������������������������������������������<br />

����������������������������������������<br />

��������������������������������������������������<br />

�����������������������������������������������<br />

���������������������������<br />

���������������������������������������������������<br />

�������������������������������������������������<br />

������������������������������������������������<br />

����������������<br />

���������������������������������������������������<br />

���������������������������������������������<br />

����������������������������������������������������<br />

����������������<br />

����������������������������������������������������<br />

���������������������������������������������<br />

�����������������������������������������������<br />

�����������������������������������������������������<br />

��������������������<br />

��������������������������������������������������<br />

����� ������ ����� ������� ������������� ���� �����<br />

�������������������������������������������������<br />

��������������������������������������������������<br />

���������������������������������<br />

���������������������������������������������<br />

����������������������������<br />

������������������������������������������������<br />

����������������� �������� �� ������������������<br />

������������������������������������������������<br />

������ ��� ��������� ��� �������� ���� ������ ������<br />

�����������������������������������������������<br />

���������������<br />

�����������������������������������������������<br />

�������������������������������������������������<br />

����������������<br />

������������������������������������������������<br />

�����������������������������������������������<br />

��������� ��������������� ����� ����������� ��� �<br />

�������������������������������������<br />

������������������������������������������������<br />

����� ��������� ���� �������� �������� ��� ��������<br />

�������������������������������������������������<br />

������� �������� ����������������������� ���<br />

��������������������������������������������<br />

����������������������������������������������<br />

��������������������������������������<br />

������� ���� ������� ���� �������� ������ ������� �����<br />

���������������������������������������������<br />

�����������������������������������������������<br />

����� ������ ���������������� ��� �������������<br />

������ �������� ������� ������� �������� ���� ���<br />

�������� ��� �������� ������� ��������� ����<br />

���������������������������������������������<br />

�����������������������������������������������<br />

����������������������������������������������<br />

����������������������������<br />

��������������������������������������������������������<br />

������������������������������������������������<br />

������������������������������������������������<br />

��������������������������������������������<br />

�������������<br />

���������������������������������������������������<br />

����������������������������������������������<br />

����������������������������������������������<br />

����������������������������������������������<br />

�����������������������<br />

�������������<br />

������������������������������<br />

��������������������������������������������������<br />

���� ��������������������� ��� ������� ���� ������<br />

��������������������������������������������������<br />

������ ������������� ����� ��������������� ���� ���<br />

��������������������������������������������<br />

���������������������������������������<br />

���������������������������������<br />

���������������<br />

������<br />

�������������<br />

�������<br />

���������������<br />

�������


The Detection of MAPK <strong>Signal</strong>ing<br />

The transmission of extracellular signals to their intracellular targets is mediated by a<br />

network of interacting proteins that relays biochemical messages and thus controls cellular<br />

processes. Several related intracellular signaling pathways (Seger and Krebs, 1995;<br />

Chen et al., 2001; Morrison and Davis, 2003; Raman and Cobb, 2003; Rubinfeld and<br />

Seger, 2004), collectively known as mitogen-activated protein kinase (MAPK) signaling<br />

cascades, have been demonstrated to play a role in many systems. Transmission of signals<br />

via these cascades is usually initiated by activation of a small G protein (e.g., Ras) and<br />

followed by a sequential stimulation of several sets of cytosolic protein kinases. Four<br />

distinct MAPK cascades (ERK, JNK, p38 and BMK; Fig. 14.3.1) have been elucidated so<br />

far. Each is named after the subgroup of its MAPK component and is composed of from<br />

three to five tiers (MAP4K, MAP3K, MAPKK, MAPK and MAPKAPK; Fig.14.3.1),<br />

where the three tiers MAP3K, MAPKK, and MAPK are considered the core cascade. One<br />

or more components in each of these tiers phosphorylates and activates components in the<br />

next level, until a downstream component phosphorylates a target regulatory molecule.<br />

These cascades can cooperate in transmitting signals from most extracellular stimuli,<br />

and thus can determine a cell’s fate in response to the ever-changing environment. For<br />

detailed description see Background <strong>In</strong>formation.<br />

Because many of the MAPK cascade components are activated by phosphorylation, a<br />

convenient method to detect their activation is the use of phosphorylation-site-specific<br />

(anti-phospho) antibodies. <strong>In</strong>deed, Basic Protocol 1 describes the use of protein blots<br />

(immunoblotting; also see UNIT 6.2) to detect protein phosphorylation with anti-phospho<br />

antibodies (see, e.g., Fig. 14.3.2). This method involves only three steps and usually<br />

yields impressive results. Unfortunately, the available, reliable anti-phospho antibodies<br />

are limited to some of the MAPK cascade components, and the use of these antibodies<br />

does not always reflect the kinetic parameters of the kinase activation. To overcome this<br />

problem, the unit also includes protocols that utilize the kinase activity of the MAPK<br />

components to determine their activation (Basic <strong>Protocols</strong> 2 and 3). Basic Protocol 2<br />

describes an immunoprecipitation of desired protein kinases followed by phosphorylation<br />

of specific substrates. Basic Protocol 3 describes an in-gel kinase assay, which is mainly<br />

used when the identity of the kinase is not known, or when there are no reagents available<br />

for its determination.<br />

STRATEGIC PLANNING<br />

The relative intensity and duration of signals transmitted in each MAPK cascade are<br />

thought to be major determinants of signaling specificity (Marshall, 1995). Therefore,<br />

an accurate detection of the amount of signals transmitted via various MAPK cascades<br />

toward target molecules is important for studying intracellular signaling. Usually, the<br />

activity of one component of the MAPK level of each cascade (ERK, JNK, p38 and<br />

BMK) is a sufficient indicator of the transmitted signal. However, sometimes the activity<br />

of additional components at upstream or downstream levels must be determined because<br />

of a cross-talk between various cascades. For example, p38 can be activated by as many<br />

as three distinct MAPKKs (MKK 3, 4, or 6; Ono and Han, 2000), and, therefore, it is<br />

important to check which one of these MAPKKs is the immediate activator in different<br />

systems.<br />

Most components of MAPK cascades belong to the large family of protein kinases,<br />

which in humans consists of about 520 members (Manning et al., 2002). To study protein<br />

kinases in general, and MAPK components in particular, specific detection of the activity<br />

Contributed by Yoav Shaul and Rony Seger<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology (2005) 14.3.1-14.3.34<br />

Copyright C○ 2005 by John Wiley & Sons, <strong>In</strong>c.<br />

UNIT 14.3<br />

<strong>Signal</strong><br />

<strong>Transduction</strong><br />

14.3.1<br />

Supplement 28


Figure 14.3.1 Schematic representation of MAPK cascades. The ERK cascade is represented in green, the JNK cascade<br />

in red, the p38 cascade in blue, and the BMK cascade in brown. Components that are shared by more than one cascade<br />

have combination of colors. The connections between components from different levels are shown by arrows; the specifics<br />

of these interactions have yet to be defined. This black and white facsimile of the figure is intended only as a placeholder;<br />

for full-color version of figure go to http://www.interscience.wiley.com/c p/colorfigures.htm.<br />

The Detection of<br />

MAPK <strong>Signal</strong>ing<br />

14.3.2<br />

of the desired protein kinase is essential. Singling out the activity of a particular protein<br />

kinase from a multitude of related activities that might mask its activity can be achieved<br />

in two main ways. One of them requires the use of a specific substrate that is recognized<br />

only by the desired protein kinase. This method is good for detecting kinases like MEK,<br />

which seems to specifically and selectively phosphorylate its downstream component,<br />

ERK. The other, and more common method is to isolate the protein kinase and then use<br />

a general substrate as an indicator of its activity. This unit will concentrate on the latter<br />

method of kinase activity determination, which has successfully been used in studies of<br />

MAPK cascades.<br />

<strong>In</strong> one of the first methods used for the systematic detection of protein kinases involved<br />

in growth factor signaling, protein kinases were isolated using MonoQ fast protein liquid<br />

chromatography (FPLC; Ahn et al., 1990). This method involves stimulation of tissue<br />

culture cells, fractionating the cytosolic extracts of these cells on a MonoQ column, and<br />

examining the resulting fractions for protein kinase activity. Since fractionation with the<br />

MonoQ column is extremely reproducible, kinases that are activated upon stimulation can<br />

be detected by comparing the elution profiles of kinases from activated and nonactivated<br />

cells. The advantages of this method are: (1) the ability to identify novel protein kinases<br />

and measure their activity, (2) the ability to detect the overall activity of many protein<br />

kinases, and (3) the method’s good linear range, which allows the determination of<br />

Supplement 28 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


Figure 14.3.2 Detection of MAPK activity by the methods described in this unit. (A) Detection of<br />

ERK phosphorylation (activity) with anti–phospho ERK antibody. HeLa cells were grown in 6-cm<br />

plates until subconfluency and then starved for 18 hr in 2 ml/plate of starvation medium. Two<br />

plates (indicated) were then pretreated with the MEK inhibitor U0126 (10 µM) for 20 min while<br />

the other plates were left untreated. The cells were then either stimulated for the indicated times<br />

with EGF, peroxovanadate (0.1 mM vanadate, 0.2 mM H2O2), or with vehiecle control. Aliquots<br />

(30 µg) from each sample were separated by a 10% SDS-PAGE and subjected to immunoblotting<br />

with anti-pERK antibody and anti-gERK antibody (C-16; Santa Cruz Biotechnology), and detected<br />

using an AP detection system (Sigma). (B) Detection of ERK activity by immunoprecipitation and<br />

MBP phosphorylation. NIH-3T3 cells were grown in 6-cm plates until subconfluency and then<br />

starved as described as above. Cells were then stimulated either with VOOH (100 µM sodium<br />

orthovanadate/200 µM H2O2) for 15 min, with EGF (50 ng/ml) for 5 min, or left untreated (basal).<br />

Cytosolic extracts were prepared by sonication and the resulting proteins (300 µg) were incubated<br />

either with 30 µl of protein A beads conjugated with anti-ERK C-terminus antibody (C-16; Santa<br />

Cruz Biotechnology), represented by (+) or with protein A beads only, represented by (–). The<br />

phosphorylation reaction on MBP was performed as described in Basic Protocol 2. (C) Detection of<br />

protein kinase activities by in-gel kinase assay. MCF7 cells overexpressing ErbB-2 receptor were<br />

stimulated with EGF (50 ng/ml) for the indicated times. The in-gel kinase assay was performed as<br />

described in Basic Protocol 3. ERK1 and ERK2 bands are indicated. The identity of other bands<br />

was not determined.<br />

<strong>Signal</strong><br />

<strong>Transduction</strong><br />

14.3.3<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 28


The Detection of<br />

MAPK <strong>Signal</strong>ing<br />

14.3.4<br />

the ratio between the activities of distinct protein kinases at a given time. Although this<br />

method has been good for some protein kinases, its main disadvantages are that separation<br />

of various proteins kinases is not always complete, and that it is a very laborious method.<br />

Another method that is useful in detecting novel protein kinases is the in-gel kinase<br />

assay (Basic Protocol 3). This technique involves copolymerization of a given substrate<br />

on a sodium dodecyl sulfate (SDS)–polyacrylamide gel, electrophoresis of the samples<br />

of interest on the copolymerized gel, and in-gel phosphorylation in the presence of<br />

[γ- 32 P]ATP. The advantage of this method is that it reveals the molecular weight of<br />

the kinases with the desired specificity, assisting in the identification of the enzymes of<br />

interest. Also, several samples can be examined simultaneously. The main disadvantages<br />

of this procedure are: (1) not all protein kinases can be renatured in the SDS gel, (2) each<br />

in-gel assay takes 2 or 3 days, and (3) there is a narrow linear range of protein kinase<br />

activities that can interfere with the detection of the fold induction of protein kinases<br />

upon stimulation.<br />

The MonoQ fractionation and in-gel kinase assay methods are mainly used to identify or<br />

characterize novel protein kinases. However, since the resolutions of these two methods<br />

are not always adequate and they are very labor-intensive, more specific and convenient<br />

methods are recommended for the characterization of given protein kinases. Such specific<br />

methods often require the isolation of the protein kinase of interest, although a<br />

specific activator or substrate can sometimes be used (as is the case with PKA or MEK).<br />

The separation is often done by specific antibodies, which can be either directed against<br />

the phosphorylated sequence (anti-phospho antibodies) or against the whole molecule<br />

(anti-general antibodies), as described in this unit. The anti-phospho antibody becomes<br />

useful when the examined protein kinase is activated by phosphorylation and the activating<br />

phosphorylation site is known. <strong>In</strong>deed, this seems to be the case for most MAPKs,<br />

MAPKAPKs, and MAPKKs known today, but it does not seem to be applicable for<br />

MAP3Ks and MAP4Ks, as described below. Probably the best known examples are the<br />

anti–active mitogen-activated protein kinase (MAPK; Seger and Krebs, 1995) antibodies<br />

(anti-diphospho ERK; Gabay et al., 1997; Yung et al., 1997), which are commercially<br />

available (Table 14.3.1). <strong>In</strong> response to stimulation, ERK1 and ERK2 are rapidly phosphorylated<br />

at up to six sites (Robbins and Cobb, 1992). Phosphorylation of two of these<br />

sites (threonine 183 and tyrosine 185 in ERK2; Payne et al., 1991) can lead to full activation<br />

of the enzyme, whereas the effects of phosphorylation of the other sites are not<br />

yet known. Antibodies directed towards the activation motif of ERK, which is PT-E-PY,<br />

serve as good tools for detecting its enzymatic activity, whereas anti-PAA antibodies can<br />

detect the total phosphorylation, which does not fully correlate with ERK’s enzymatic<br />

activity. An important advantage of using anti-phospho antibodies is that they shorten<br />

and simplify the procedure of detection, which can be achieved in only one step (immunoblotting<br />

or cell staining). However, the antibodies do not usually serve as reliable<br />

tools to determine the exact kinetic parameters of the MAPK, as their dynamic range of<br />

detection is limited.<br />

The successful use of sequence-specific anti-phospho antibodies relies on their specificity<br />

for the phosphorylated form of the examined protein. Monoclonal antibodies,<br />

which usually confer better specificity than polyclonal ones, are considered a reliable<br />

tool for distinguishing phosphorylated from nonphosphorylated forms of proteins, although<br />

affinity-purified polyclonal antibodies can be used as well. Both monoclonal and<br />

polyclonal antibodies can be generated by immunization with whole phosphorylated<br />

proteins or with KLH- or BSA-coupled peptides (see UNIT 16.6). Standard procedures for<br />

the isolation of the monoclonal and polyclonal antibodies are then employed. <strong>In</strong> this unit,<br />

the use of anti-phospho antibodies in immunoblot analysis is described. However, most<br />

of these antibodies can be used also for cell staining, which is described in UNITS 4.3 & 14.2.<br />

Supplement 28 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


Table 14.3.1 Antibodies Available Against MAPKs<br />

Tier Name MAPK activated<br />

Mol. wt.<br />

(kDa)<br />

Commercially<br />

available antibodies<br />

Supplier a Reference<br />

MAP4K GCK JNK 91 General Many<br />

companies<br />

Pombo et al. (1995)<br />

GLK JNK 104 General 2, 11 Diener et al. (1997)<br />

GCKR JNK 100 General 11 Shi and Kehrl (1997)<br />

HPK JNK 97 General 7 Kiefer et al. (1996)<br />

HGK JNK 130 General 11 Yao et al. (1999)<br />

KHS JNK 95 General 11 Tung and Blenis (1997)<br />

SLK JNK 210 General 2 Sabourin and Rudnicki<br />

(1999)<br />

MAP4K4/<br />

NIK<br />

JNK 100 General + phospho Many<br />

companies<br />

Su et al. (1997)<br />

SPAK p38 64 General 2 Johnston et al. (2000)<br />

MST1 JNK, p38 59 General + phospho 7 Graves et al. (1998)<br />

TNIK JNK 160 General 2,4 Fu et al. (1999)<br />

NESK JNK 175 — — Nakano et al. (2000)<br />

MINK JNK, p38 155 General 2, 8 Dan et al. (2000)<br />

PAK1 JNK, p38 (?) 68 General + phospho 11 Zhang et al. (1995)<br />

PAK5 JNK 90 General 11 Dan et al. (2002)<br />

MST4 ERK (?) 52 General 7 Lin et al. (2001)<br />

MAP3K ASK1 JNK, p38 155 General + phospho Many<br />

companies<br />

Ichijo et al. (1997)<br />

ASK2 JNK 145 General + phospho — Wang et al. (1998)<br />

TAK1 JNK, p38 82 General + phospho Many<br />

companies<br />

Moriguchi et al. (1996)<br />

LZK1 JNK 140 — — Sakuma et al. (1997)<br />

DLK1 JNK, p38 110 — — Fan et al. (1996)<br />

MLK1 JNK 130 General 11 Xu et al. (2001)<br />

MLK2 JNK, p38-? ERK1/2-? 115 General 11 Hirai et al. (1997)<br />

MLK3 JNK, p38 ERK-? 93 General + phospho 7, 11 Rana et al. (1996)<br />

MLK4 JNK, p38 120 — — Gallo and Johnson<br />

(2002)<br />

MLTK α/β JNK, p38, ERK1/2-?,<br />

BMK-?<br />

95/50 General 14 Gotoh et al. (2001)<br />

ZAK JNK 91 General 2, 14 Yang (2002).<br />

MEKK1 JNK, p38. ERK1/2-? 195 General 1, 11 Yan et al. (1994)<br />

MEKK2 JNK, p38 BMK 70 General 11 Blank et al. (1996)<br />

MEKK3 JNK, p38, BMK 71 General 11 Blank et al. (1996)<br />

MEKK4 JNK 180 General 11 Gerwins et al. (1997)<br />

continued<br />

<strong>Signal</strong><br />

<strong>Transduction</strong><br />

14.3.5<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 28


Table 14.3.1 Antibodies Available Against MAPKs, continued<br />

Tier Name MAPK activated<br />

The Detection of<br />

MAPK <strong>Signal</strong>ing<br />

14.3.6<br />

Mol. wt.<br />

(kDa)<br />

Commercially<br />

available antibodies<br />

Supplier a Reference<br />

TPL2 JNK, p38,<br />

ERK1/2, BMK<br />

60 + General + phospho 7 Salmeron et al. (1996)<br />

Raf-1 ERK1/2 74 General + phospho Many<br />

companies<br />

Kyriakis et al. (1992)<br />

B-Raf ERK1/2 94 General 1, 11 Peraldi et al. (1995)<br />

A-Raf ERK1/2 68 General 7 Hagemann and Rapp<br />

(1999)<br />

MOS ERK1/2 39 General 1, 11 Posada et al. (1993)<br />

TAO1 JNK, p38 140 General 4 Hutchison et al. (1998)<br />

TAO2 JNK, p38 120 General + phospho 2, 9 Chen et al. (1999)<br />

MAP3K6/7,<br />

TAO3<br />

? Not<br />

charachterized<br />

— — Manning et al. (2002)<br />

MAPKK MEK1/2 ERK1/2 45/46 General + phospho Many<br />

companies<br />

Ahn et al. (1991)<br />

MKK3/6 p38 40/41 General + phospho Many<br />

companies<br />

Derijard et al. (1995)<br />

MKK4 JNK, p38 44 General + phospho Many<br />

companies<br />

Yan et al. (1994)<br />

MKK5 BMK 45 General 11 Zhou et al. (1995)<br />

MKK7 JNK 48 General + phospho Many<br />

companies<br />

Tournier et al. (1997)<br />

MAPK ERK1/2 ERK1/2 42.44 General + phospho 1-14 Ray and Sturgill (1987)<br />

p38 α−δ p38 41,43.47,<br />

54 + other<br />

forms<br />

General + phospho Many<br />

companies<br />

Han et al. (1994)<br />

JNK1-3 JNK 46,52,54 General + phospho Many<br />

companies<br />

Derijard et al. (1994)<br />

BMK BMK 110 General + phospho Many<br />

companies<br />

Zhou et al. (1995)<br />

MAPKAPKRSK1-3 ERK1/2 90 General + phospho Many<br />

companies<br />

Sturgill et al. (1988)<br />

MAPKAPK2p38 45+other General + phospho Many<br />

companies<br />

Stokoe et al. (1992)<br />

MAPKAPK3p38, ERK1/2 43 General 3, 13 McLaughlin et al. (1996)<br />

MK5 p38, ERK1/2 56 — — Ni et al. (1998)<br />

MNK p38, ERK1/2 52 General + phospho 7, 11 Waskiewicz et al. (1997)<br />

MSK p38, ERK1/2 90 General + phospho 7, 13 Deak et al. (1998)<br />

SGK BMK 54 General + phospho 11, 13 Hayashi et al. (2001)<br />

aSuppliers: 1, Abcam (http://www.abcam.com/); 2, Abgent (http://www.abgent.com); 3, Abnova, (http://www.abnova.com/tw); 4, BD Biosciences; 5,<br />

Biomol; 6, Calbiochem; 7, Cell <strong>Signal</strong>ing (http://www.cellsignal.com); 8, Novus Biologicals; 9, PhosphoSolutions (http://www.phosphosolutions.com);<br />

10, Promega; 11, Santa Cruz Biotechnology; 12, Sigma; 13, Upstate Biotechnology; 14, Zymed. See SUPPLIERS APPENDIX for additional contact<br />

information.<br />

Supplement 28 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


Because not all MAPK components are activated by phosphorylation, and because the<br />

availability of commercial anti-phospho antibodies might be limited, the activity of<br />

the desired protein kinases may be determined by immunoprecipitation with specific<br />

antibodies directed to the C-terminal domain of the kinase (as described in Basic Protocol<br />

2). Another use for anti-general antibodies is detection of slower migration on SDS-PAGE<br />

that occurs upon phosphorylation of regulatory residues of some MAPKs. However, this<br />

gel shift does not always correlate with enzymatic activity, as was shown for ERK and<br />

Raf1. Methods for affinity purification that do not involve antibodies can sometime be<br />

used to isolate given protein kinases (e.g., JNKs; Hibi et al., 1993). Although affinity<br />

techniques (including immunoprecipitation) are often used, it should be noted that the<br />

attachment to a solid support that occurs in this method may interfere with the accurate<br />

detection of the kinase activity. However, affinity reagents are not available for all MAPK<br />

components, and the identity of the desired protein kinase might be obscured. Therefore,<br />

the method that can be used in this case is the in-gel kinase assay as described in<br />

Basic Protocol 3. Although other methods are available, the combination of the methods<br />

described here should allow determination of the activity of most MAPK components<br />

and identification of the components that are activated by various extracellular stimuli.<br />

IMMUNODETECTION OF MAPK ACTIVATION USING ANTI-PHOSPHO<br />

MAPK ANTIBODIES<br />

This method describes the immunodetection of phosphoproteins using extraction of<br />

proteins by sonication followed by immunoblot analysis. Although phosphorylation of<br />

ERK1/2 is used here as an example, this immunodetection protocol can be used with most<br />

specific anti-phospho antibodies available for many components of the MAPK cascades<br />

(Table 14.3.1). This protocol minimizes the time phosphorylated proteins are exposed<br />

to phosphatases, which allows reliable and quantitative detection of the phosphorylated<br />

proteins, and it can be completed within 7 to 10 hr. Furthermore, this method can be used<br />

with almost all tissue culture cell lines, homogenized animal organs, and even whole<br />

lower organisms.<br />

Materials<br />

Rat1 cells (ATCC #CRL-2210)<br />

DMEM containing 10% heat-inactivated FBS (see APPENDIX 2A and UNIT 1.2)<br />

Starvation medium: DMEM containing 0.1% (v/v) heat-inactivated FBS (see<br />

APPENDIX 2A and UNIT 1.2)<br />

50 µg/ml epidermal growth factor (EGF) in EGF buffer (0.5 mg/ml BSA in PBS)<br />

EGF buffer: 0.5 mg/ml bovine serum albumin (BSA) in phosphate-buffered saline<br />

(PBS; APPENDIX 2A)<br />

Phosphate-buffered saline (PBS; APPENDIX 2A), ice-cold<br />

Buffer A (see recipe), ice-cold<br />

Buffer H (see recipe), ice-cold<br />

<strong>Protein</strong> standards: 5, 10, 20, 50, 100, and 200 µg/ml BSA in Buffer H (see recipe<br />

for buffer H)<br />

Bradford protein assay reagent (Pierce or Bio-Rad; also see recipe for Coomassie<br />

dye reagent in APPENDIX 3H)<br />

4× sample buffer for SDS-PAGE (see recipe)<br />

1.5 M Tris·Cl, pH 8.8 (APPENDIX 2A)<br />

30% acrylamide/0.8% bisacrylamide (Table 6.1.1)<br />

10% (w/v) ammonium persulfate (prepare fresh)<br />

Tetramethylethelendiamine (TEMED)<br />

0.5 M Tris·Cl, pH 6.8 (APPENDIX 2A)<br />

Running buffer (see recipe)<br />

Prestained protein markers<br />

BASIC<br />

PROTOCOL 1<br />

<strong>Signal</strong><br />

<strong>Transduction</strong><br />

14.3.7<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 28


The Detection of<br />

MAPK <strong>Signal</strong>ing<br />

14.3.8<br />

Transfer buffer (see recipe)<br />

Blocking solution: 2% (w/v) bovine serum albumin (BSA) in TBST (see recipe for<br />

TBST)<br />

Primary antibodies: monoclonal mouse anti-phospho ERK antibody (Table 14.3.1)<br />

and polyclonal rabbit anti-general ERK antibody (C-terminus)<br />

Tris-buffered saline with Tween 20 (TBST; see recipe)<br />

Secondary antibodies: alkaline phosphatase (AP)–coupled goat anti-mouse<br />

antibody and horseradish peroxidase (HRP)–conjugated goat anti-rabbit<br />

antibody<br />

6-cm tissue culture dishes<br />

1-ml pipet tips, precooled<br />

1.5-ml microcentrifuge tubes precooled; four sets of six (each labeled 1 to 6)<br />

Plastic (or rubber) policeman<br />

Probe sonicator (e.g., Branson)<br />

96-well flat-bottom microtiter plate<br />

Microtiter plate reader capable of reading at 595 nm<br />

95◦C or boiling water bath<br />

Gel-casting apparatus: 7 × 10–cm glass plates, 1.5-mm spacers, and 1.5-mm comb<br />

with 10 teeth (also see UNIT 6.1)<br />

Gel electrophoresis apparatus and power supply (also see UNIT 6.1)<br />

0.45-µm nitrocellulose membrane (e.g., Schleicher & Schuell or Millipore), cut to<br />

gel size<br />

Whatman 3MM paper (two sheets cut to gel size)<br />

Transfer apparatus and power supply (also see UNIT 6.2)<br />

Additional reagents and equipment for cell culture (UNIT 1.1), SDS-PAGE (UNIT 6.1),<br />

and visualization of immunoblotted proteins (UNIT 6.2 & 14.2)<br />

NOTE: All reagents and equipment coming into contact with living cells must be sterile,<br />

and aseptic technique should be used accordingly.<br />

NOTE: All culture incubations should be performed in a humidified 37 ◦ ,5%CO2 incubator<br />

unless otherwise specified. Some media (e.g., DMEM) require altered levels of<br />

CO2 to maintain pH 7.4.<br />

Prepare cellular extracts<br />

1. Grow Rat1 cells in six 6-cm tissue culture dishes in 4 ml DMEM containing 10%<br />

FBS to subconfluency (∼0.5 × 10 6 cells/dish).<br />

UNIT 1.1 describes basic cell culture techniques.<br />

2. Serum-starve the Rat1 cells by removing the culture medium from each dish, replacing<br />

it with 2 ml starvation medium, and incubating 18 hr.<br />

During serum starvation, place the dishes in the tissue culture incubator, making sure that<br />

the dishes remain flat and that the medium covers the entire dish evenly. The aim of this<br />

starvation is to make the cells quiescent, and thereby reduce the amount of the inducible<br />

MAPK phosphatases (MKPs). Under these conditions, this can be achieved within 14 to<br />

24 hr. Starvation for too long or any change in temperature or pH may be stressful to<br />

the cells, thereby inducing activation of one or more signaling pathways. Although this<br />

protocol describes EGF stimulation of Rat1 cells, this procedure, with minor changes,<br />

can be used for most extracellularly stimulated cells.<br />

3. To each of three of the dishes, add 2.0 µl of50µg/ml EGF (stimulated samples).<br />

To each of the other three dishes, add 2.0 µl EGF buffer (control samples). <strong>In</strong>cubate<br />

one sample and control for 5 min, another sample and control for 15 min, and the<br />

third sample and control for 45 min.<br />

Supplement 28 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


Usually, the stimulus is given first to the dishes with the longest incubation, then, at<br />

appropriate intervals, to the dishes with the second longest and the shortest incubation<br />

periods. It is useful to make and use a time chart so that stimuli will be given at the<br />

appropriate times and the cells harvested within a short period of time (within 5 to<br />

10 min for all dishes). If the influence of the stimulating agent on the particular cells<br />

is not yet known, a positive control should be included, such as a dish treated with<br />

50 µl peroxovanadate (VOOH) solution (see recipe), for a final concentration of 100 µM<br />

sodium orthovanadate and 200 µMH2O2, which nonspecifically activates many signaling<br />

events in most tissue culture cells.<br />

4. At the end of the assay, remove the medium from the dishes containing the Rat1<br />

cells. Rinse dishes twice with 5 ml ice-cold PBS and once with 5 ml ice-cold buffer<br />

A. Be sure to remove all of the PBS after the last wash. Place dishes on ice.<br />

Because the objective at this stage is to arrest or slow down biological processes, the<br />

dishes should be placed on ice. Washing and harvesting of each dish should take 0.5 to<br />

1.5 min. so that all six dishes are harvested within 5 to 10 min.<br />

5. Add 250 µl of ice-cold buffer H to each dish, tilt the dish gently (preferably on<br />

ice), and scrape the cells into the buffer using a plastic (or rubber) policeman. Using<br />

precooled pipet tips, transfer the cells and buffer to prelabeled, precooled 1.5-ml<br />

plastic test tubes.<br />

Special consideration should be given to the composition of the buffer H (see Reagents<br />

and Solutions). The authors recommend using β-glycerophosphate, which serves both<br />

as a buffer and a general phosphatase inhibitor, rather than Tris or HEPES. Sodium<br />

orthovanadate is used to inhibit tyrosine phosphatases, and the mixture of pepstatin A,<br />

aprotinin, leupeptin, and benzamidine is used to inhibit proteinases. This buffer, when<br />

cold, blocks most of the phosphatase and proteinase activities in cell extracts.<br />

6. Disrupt the cells by sonication using two 7-sec, 50-W pulses with a 20-sec interval<br />

per ∼0.5-ml sample on ice.<br />

Over the years, several methods of protein extraction from cells have been successfully<br />

used in the study of protein kinases. <strong>In</strong> this protocol, which utilizes sonication, proteins are<br />

extracted from the cytosolic and nuclear fractions, but not from the membrane fraction,<br />

and therefore can be considered as cytosolic extract. Cellular extraction with nonionic<br />

detergents, which extract proteins from membranal, cytosolic, and some nuclear fractions<br />

of the cell, makes determination of the protein concentration somewhat difficult, but it is<br />

often used. Extraction with RIPA buffer or by freezing-thawing can also be used for some<br />

kinases.<br />

7. Microcentrifuge the cellular extracts 15 min at 14,000 × g, 4 ◦ C. Transfer the resulting<br />

supernatants (cytosolic extracts), which contain the protein to be examined<br />

for phosphorylation, to fresh, precooled microcentrifuge tubes. Take a 5- to 20-µl<br />

aliquot of each extract and determine protein concentration (steps 8 to 11). Store<br />

the remainder of each cytosolic extract on ice until needed for the electrophoresis,<br />

transfer, and detection steps (steps 12 to 36).<br />

The protein concentration of each sample should be determined so that the amounts of<br />

proteins from the different samples can be compared, making it possible to determine the<br />

relative amounts of protein kinases in all samples accurately. If samples are compared<br />

based on cell number, differences of up to 20% in the amount of protein may result. Such<br />

differences may cause even larger ones in the following steps.<br />

Determine protein concentration and prepare extracts for electrophoresis<br />

8. Dilute 10 µl of each cytosolic extract sample in 190 µl buffer A (a final dilution of<br />

1:20) in labeled tubes.<br />

Usually, dilutions of at least 1:20 are necessary to ensure that the samples will be in the<br />

linear range of the protein determination assay. For some Coomassie blue reagents with<br />

extended ranges, this dilution is not always necessary.<br />

<strong>Signal</strong><br />

<strong>Transduction</strong><br />

14.3.9<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 28


The Detection of<br />

MAPK <strong>Signal</strong>ing<br />

14.3.10<br />

9. Put 10 µl of each of the protein standards (10, 25, 50, 75, 100, 150, and 200 µg/ml<br />

BSA in buffer H) into duplicate or triplicate wells of a flat-bottom 96-well microtiter<br />

plate.<br />

<strong>Protein</strong> standards should be prepared in the same buffer used for the cell extraction (in<br />

this case, buffer H).<br />

10. Put 10 µl of each of the sample dilutions from step 8 into duplicate or triplicate wells<br />

of the same microtiter plate. Add 200 µl of Bradford protein assay reagent to all<br />

wells.<br />

11. Place the microtiter plate in a microtiter plate reader and measure the optical density<br />

at 595 nM.<br />

Perform electrophoresis<br />

12. From the optical densities, calculate the protein concentrations of the samples. Take<br />

an aliquot of each extract corresponding to 40 µg of protein and place in a new<br />

1.5-ml microcentrifuge tube.<br />

30 to 50 µg protein should be loaded in each lane of the gel. The authors strongly<br />

recommend using equal protein amounts for each sample to avoid inaccuracies.<br />

13. Add 1/3 vol of 4× sample buffer to each tube, mix the contents, and place in 95 ◦ C<br />

or boiling water bath for 5 min.<br />

14. Assemble 7 × 10–cm glass plates and 1.5-mm spacers for casting the polyacrylamide<br />

gel.<br />

15. Prepare a 12% separating gel by mixing the following (total volume, 10.0 ml):<br />

3.4 ml H2O<br />

2.5ml1.5MTris·Cl, pH 8.8<br />

4.0 ml 30% acrylamide/0.8% bisacrylamide<br />

100 µl 10% ammonium persulfate<br />

6 µl TEMED.<br />

16. Pour the separating gel (UNIT 6.1). Overlay the top of the gel with water and allow it<br />

to polymerize ∼30 to 45 min.<br />

17. Prepare 3% polyacrylamide stacking gel by mixing the following (5 ml total):<br />

550 µl 30% acrylamide/0.8% bisacrylaimde solution<br />

625 µl 0.5MTris·Cl, pH 6.8<br />

3.7 ml H2O<br />

120 µl ammonium persulfate<br />

5 µl TEMED.<br />

18. Remove the water from the top of the polymerized separating gel. Using a Pasteur<br />

pipet, layer 2 ml of the stacking gel on top of the separating gel (UNIT 6.1) to fill up<br />

the apparatus. <strong>In</strong>sert comb into the stacking gel and allow it to polymerize for ∼10<br />

to 20 min.<br />

19. Place the polymerized gel in the electrophoresis apparatus, add running buffer, and<br />

check for leaks.<br />

20. Load 30 µl of the samples (from step 13) and 10 µl of the prestained protein markers<br />

into each well of the gel.<br />

Usually, prestained markers are loaded into the first or second lane of the gel so that the<br />

first lane can be located in the immunoblot and the molecular weights of the detected proteins<br />

determined. These markers will also indicate whether the proteins were completely<br />

transferred from the gel onto the nitrocellulose paper during blotting.<br />

Supplement 28 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


21. Connect the wire leads of the gel apparatus to the power supply. Turn on the power<br />

supply and run the gel at 150 V (constant voltage) until the bromphenol blue dye<br />

reaches a point 0.5 cm from the bottom of the gel (which usually takes ∼1 hr).<br />

Transfer the proteins to a membrane<br />

22. Prewet (soak) the nitrocellulose membrane and 3MM Whatman paper in transfer<br />

buffer.<br />

23. Once the dye front of the SDS-PAGE has reached the end of the gel, remove the<br />

gel from the apparatus, cut off the stacking gel, and place the separating gel in a<br />

container with transfer buffer.<br />

24. Fill the transfer apparatus with transfer buffer. Open the inner transfer apparatus<br />

and remove air bubbles from the pads. Make a sandwich by putting a wet 3MM<br />

Whatman paper on the wet pad, the gel on top of the 3MM Whatman paper, the wet<br />

nitrocellulose membrane on top of the gel, and the other wet 3MM Whatman paper<br />

on top of the nitrocellulose membrane.<br />

Basic immunoblotting techniques are described in detail in UNIT 6.2.<br />

25. Remove any air bubbles from between the different layers of the transfer sandwich<br />

by gently rolling a 10-ml pipet over the sandwich. Place the other wet pad on top of<br />

the transfer sandwich.<br />

Make sure that no air bubbles are trapped between the gel and the other components.<br />

26. Place the sandwich containing the gel and nitrocellulose membrane into the bufferfilled<br />

transfer apparatus with the nitrocellulose membrane facing the side with the<br />

cathode and the gel facing the side with the anode. Connect the apparatus to a power<br />

supply and start the current. Transfer the proteins at 200 mA constant current for<br />

120 min, preferably with a cooling device.<br />

The voltage will drop as the transfer progresses due to an increase in the conductivity.<br />

Methanol or 0.05% SDS are sometimes included in the transfer buffer; their inclusion<br />

will require different transfer conditions (see UNIT 6.2).<br />

27. At the end of the transfer period, turn off the power supply and remove the nitrocellulose<br />

membrane from the transfer sandwich. Rinse the nitrocellulose membrane<br />

with transfer buffer to remove any adhering pieces of gel, and place the membrane<br />

in a flat container.<br />

At this stage, the efficiency of protein transfer can be monitored visually by the transfer of<br />

prestained protein markers to the membrane. The total amount of protein transferred can<br />

also be detected by staining the membrane with Ponceau S solution (UNIT 6.2). However,<br />

since the total amount of nonphosphorylated proteins is determined by general antibodies,<br />

as described later, staining with Ponceau S is probably not essential for this particular<br />

protocol.<br />

Expose the membrane to antibodies<br />

28. <strong>In</strong>cubate the nitrocellulose membrane in ∼25 ml blocking solution for 60 min at<br />

room temperature.<br />

This will ensure that nonspecific protein binding sites on the membrane are blocked. The<br />

use of milk for blocking is not recommended because it causes nonspecific binding of<br />

some of the antibodies.<br />

29. <strong>In</strong>cubate the blot with 10 to 20 ml of the primary antibody (e.g., monoclonal antiphospho<br />

ERK antibody, diluted according to the supplier’s recommendations in<br />

TBST) either overnight at 4 ◦ C, 30 min at 37 ◦ C, or 1 to 2 hr at room temperature.<br />

30. Wash the blot in the flat container at least three times, each time for 15 min with 50<br />

ml TBST at room temperature.<br />

<strong>Signal</strong><br />

<strong>Transduction</strong><br />

14.3.11<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 28


BASIC<br />

PROTOCOL 2<br />

The Detection of<br />

MAPK <strong>Signal</strong>ing<br />

14.3.12<br />

31. <strong>In</strong>cubate the blot with 10 to 20 ml of the secondary antibody (e.g., AP-conjugated<br />

goat anti-mouse IgG, diluted according to the supplier’s instructions in TBST) for<br />

45 min at room temperature.<br />

For detection of the anti-phospho ERK antibody, the AP detection system is recommended<br />

because of its broader linear range compared to ECL (see Commentary). Alternatively,<br />

HRP-conjugated goat anti-rabbit antibodies can be used as secondary antibodies with<br />

detection by ECL. If HRP-rather than AP-conjugated antibodies are used at this stage,<br />

then AP-conjugated antibodies should be used in step 35.<br />

32. Wash the blot at least three times, each time for 10 min, with 50 ml TBST.<br />

33. Use an AP detection protocol (UNIT 6.2) to detect phospho ERK.<br />

After detecting the phosophorylated (active) ERK, it is recommended that it be determined<br />

whether there is an equal amount of ERK in all lanes by exposing the same blot to<br />

polyclonal anti-general ERK antibody and redeveloping it (see steps 34 to 36).<br />

Expose the membrane to general antibody<br />

34. <strong>In</strong>cubate the stained nitrocellulose in blocking solution for 30 min at room temperature.<br />

Since two different types of antibodies are used (mouse and rabbit), stripping away<br />

the antibodies used in steps 29 to 30 is not necessary, and the second blotting can be<br />

performed by simply adding the different type of antibody and following steps 35 and<br />

36. Antibodies from the same species of origin (mouse or rabbit) can be used for both<br />

steps; however this requires a stripping step, which must be performed before continuing<br />

with step 35. Note that some of the antibodies can hinder recognition by other antibodies<br />

directed against different epitopes, and therefore also require stripping before the second<br />

type of antibody is applied.<br />

35. <strong>In</strong>cubate the blot with 10 to 20 ml of the polyclonal rabbit anti-general ERK primary<br />

antibody, wash as described in step 30, then incubate with 10 to 20 ml of HRPconjugated<br />

goat anti-rabbit secondary antibody.<br />

36. Use a luminescent detection protocol for HRP (UNIT 6.2) to observe general ERK.<br />

The ECL protocol involves mixing solution A (2.5 mM Luminol, 400 mM p-coumarin,<br />

100 mM Tris·Cl, pH 8.5) with an equal amount of solution B (5.4 mM H2O2, 100 mM<br />

Tris·Cl, pH 8.5), incubation of the blot with the substrate solution for 1 min, drying<br />

the blot with 3MM Whatman paper, wrapping the blot in transparent plastic wrap and<br />

exposing it to X-ray film. See UNITS 6.2 & 14.2 for additional details.<br />

DETERMINATION OF MAPK (ERK) ACTIVITY BY<br />

IMMUNOPRECIPITATION<br />

This method describes determination of ERK activity by isolating the enzyme using<br />

immunoprecipitation with specific antibodies and then performing a phosphorylation<br />

reaction in vitro. Although this protocol uses ERK with its appropriate reagents, it can be<br />

performed with other components of the MAPK cascade, as antibodies are available for<br />

most components of these cascades (Table 14.3.1). This protocol allows a fast and efficient<br />

isolation of the desired protein kinase and its reliable quantitation by a phosphorylation<br />

reaction. It involves standard biochemical procedures and can be completed in 7 to<br />

10 hr. Furthermore, this method can be used with almost all tissue culture cell lines,<br />

homogenized animal organs, and even lower organisms.<br />

CAUTION: When working with radioactive materials, take appropriate precautions to<br />

avoid contamination of the experimenter and the surroundings. Carry out the experiment<br />

and dispose of wastes in an appropriately designated area, following guidelines provided<br />

by the institutional Radiation Safety Officer (also see UNIT 7.1 and APPENDIX 1D).<br />

Supplement 28 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


Materials<br />

Rat1 cells (ATCC #CRL-2210)<br />

DMEM containing 10% heat-inactivated FBS (see APPENDIX 2A and UNIT 1.2)<br />

Starvation medium: DMEM containing 0.1% (v/v) heat-inactivated FBS (see<br />

APPENDIX 2A and UNIT 1.2)<br />

50 µg/ml epidermal growth factor (EGF) in EGF buffer<br />

EGF buffer: 0.5 mg/ml bovine serum albumin (BSA) in phosphate buffered saline<br />

(PBS; APPENDIX 2A)<br />

Phosphate-buffered saline (PBS; APPENDIX 2A), ice-cold<br />

Buffer A (see recipe), ice-cold<br />

Buffer H (see recipe), ice-cold<br />

<strong>Protein</strong> standards: 5, 10, 20, 50, 100 and 200 µg/ml BSA in Buffer H<br />

Bradford protein assay reagent (Pierce or Bio-Rad; also see recipe for Coomassie<br />

dye reagent in APPENDIX 3H)<br />

<strong>Protein</strong> A–Sepharose beads (Amersham Biosciences; 10 to 20 µl of packed beads<br />

per reaction)<br />

Antibody for immunoprecipitation (e.g., anti-ERK C-terminus antibody, 1 to 5 µg<br />

per reaction according to the supplier’s instructions)<br />

RIPA buffer (see recipe), ice-cold<br />

Lithium chloride solution: 0.5 M LiCl/0.1 M Tris·Cl, pH 8.0 (see APPENDIX 2A for<br />

Tris·Cl), ice-cold<br />

RM×3 (see recipe)<br />

2 mg/ml myelin basic protein (MBP), or other appropriate phosphorylation<br />

substrate at appropriate (usually lower) concentration<br />

4× sample buffer for SDS-PAGE (see recipe)<br />

7 × 10–cm 15% SDS-PAGE gel with stacking gel (UNIT 6.1; also see Basic Protocol<br />

1)<br />

Prestained protein markers<br />

Staining solution (see recipe)<br />

Destaining solution (see recipe)<br />

6-cm tissue culture dishes<br />

1-ml pipet tips, precooled<br />

1.5-ml microcentrifuge tubes precooled; four sets of six (each labeled 1 to 6)<br />

Plastic (or rubber) policeman<br />

Probe sonicator (e.g., Branson)<br />

96-well flat-bottom microtiter plate<br />

Microtiter plate reader capable of reading at 595 nm<br />

End-over-end rotator<br />

30◦C Thermomixer (Eppendorf) or water bath<br />

Boiling water bath<br />

Flat container for staining/destaining gel<br />

Additional reagents and equipment for cell culture (UNIT 1.1), SDS-PAGE (UNIT 6.1),<br />

and autoradiography or phosphor imaging (UNIT 6.3)<br />

NOTE: All reagents and equipment coming into contact with living cells must be sterile,<br />

and aseptic technique should be used accordingly.<br />

NOTE: All culture incubations should be performed in a humidified 37 ◦ ,5%CO2 incubator<br />

unless otherwise specified. Some media (e.g., DMEM) require altered levels of<br />

CO2 to maintain pH 7.4.<br />

<strong>Signal</strong><br />

<strong>Transduction</strong><br />

14.3.13<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 28


The Detection of<br />

MAPK <strong>Signal</strong>ing<br />

14.3.14<br />

Prepare cellular extracts<br />

1. Grow Rat1 cells in six 6-cm tissue culture dishes in 4 ml DMEM containing 10%<br />

FBS to subconfluency (∼0.5 × 10 6 cells/dish).<br />

UNIT 1.1 describes basic cell culture techniques.<br />

2. Serum-starve the Rat1 cells by removing the culture medium from each dish,<br />

replacing it with 2 ml starvation medium, and incubating 18 hr.<br />

During serum starvation, place the dishes in the tissue culture incubator, making sure that<br />

the dishes remain flat and that the medium covers the entire dish evenly. The aim of this<br />

starvation is to make the cells quiescent, and thereby reduce the amount of the inducible<br />

MAPK phosphatases (MKPs). Under these conditions, this can be achieved within 14 to<br />

24 hr. Starvation for too long or any change in temperature or pH may be stressful to<br />

the cells, thereby inducing activation of one or more signaling pathways. Although this<br />

protocol describes EGF stimulation of Rat1 cells, this procedure, with minor changes,<br />

can be used for most extracellularly stimulated cells.<br />

3. To each of three of the dishes, add 2.0 µl of50µg/ml EGF (stimulated samples).<br />

To each of the other three dishes, add 2.0 µl EGF buffer (control samples). <strong>In</strong>cubate<br />

one sample and control for 5 min, another sample and control for 15 min, and the<br />

third sample and control for 45 min.<br />

Usually, the stimulus is given first to the dishes with the longest incubation, then, at<br />

appropriate intervals, to the dishes with the second longest and the shortest incubation<br />

periods. It is useful to make and use a time chart so that stimuli will be given at the<br />

appropriate times and the cells harvested within a short period of time (within 5 to<br />

10 min for all dishes). If the influence of the stimulating agent on the particular cells is<br />

not yet known, a positive control should be included, such as a dish treated with 50 µl<br />

peroxovanadate (VOOH) solution (see recipe), for a final concentration of 100 µM sodium<br />

orthovanadate and 200 µMH2O2, which nonspecifically activates many signaling events<br />

in most tissue culture cells.<br />

4. At the end of the assay, remove the medium from the dishes containing the Rat1<br />

cells. Rinse the dishes twice with 5 ml ice-cold PBS and once with 5 ml ice-cold<br />

buffer A. Be sure to remove all of the PBS after the last wash. Place dishes on ice.<br />

Because the objective at this stage is to arrest or slow down biological processes, the<br />

dishes should be placed on ice. Washing and harvesting of each dish should take 0.5 to<br />

1.5 min. so that all six dishes are harvested within 5 to 10 min.<br />

5. Add 250 µl of ice-cold buffer H to each dish, tilt the dish gently (preferably on<br />

ice), and scrape the cells into the buffer using a plastic (or rubber) policeman. Using<br />

precooled pipet tips, transfer the cells and buffer to prelabeled, precooled 1.5-ml<br />

plastic test tubes.<br />

Special consideration should be given to the composition of the buffer H (see Reagents<br />

and Solutions). The authors recommend using β-glycerophosphate, which serves both<br />

as a buffer and a general phosphatase inhibitor, rather than Tris or HEPES. Sodium<br />

orthovanadate is used to inhibit tyrosine phosphatases, and the mixture of pepstatin A,<br />

aprotinin, leupeptin, and benzamidine is used to inhibit proteinases. This buffer, when<br />

cold, blocks most of the phosphatase and proteinase activities in cell extracts.<br />

6. Disrupt the cells by sonication using two 7-sec 50-W pulses with a 20-sec interval<br />

per ∼0.5-ml sample on ice.<br />

Over the years, several methods of protein extraction from cells have been successfully<br />

used in the study of protein kinases. <strong>In</strong> this protocol, which utilizes sonication, proteins are<br />

extracted from the cytosolic and nuclear fractions, but not from the membrane fraction, and<br />

therefore can be considered as cytosolic extract. Cellular extraction with nonionic detergents,<br />

which extract proteins from membranal, cytosolic, and some nuclear fractions of the<br />

cell, makes determination of the protein concentration somewhat difficult, but is often used.<br />

Extraction with RIPA buffer or by freezing-thawing can also be used for some kinases.<br />

Supplement 28 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


7. Microcentrifuge the cellular extracts 15 min at 14,000 × g, 4 ◦ C. Transfer the resulting<br />

supernatants (cytosolic extracts), which contain the protein to be examined<br />

for phosphorylation, to fresh precooled microcentrifuge tubes. Take a 5- to 20-µl<br />

aliquot of each extract and determine protein concentration (steps 8 to 12). Store the<br />

remainder of each cytosolic extract on ice until needed for the immunoprecipitation<br />

and phosphorylation steps (steps 13 to 27).<br />

The protein concentration of each sample should be determined so that the amounts of<br />

proteins from the different samples can be compared, making it possible to determine the<br />

relative amounts of protein kinases in all samples accurately. If samples are compared<br />

based on cell number, differences of up to 20% in the amount of protein may result. Such<br />

differences may cause even larger ones in the following steps.<br />

Determine protein concentration<br />

8. Dilute 10 µl of each cytosolic extract sample in 190 µl buffer A (a final dilution of<br />

1:20) in labeled tubes.<br />

Usually, dilutions of at least 1:20 are necessary to ensure that the samples will be in the<br />

linear range of the protein determination assay. For some Coomassie blue reagents with<br />

extended ranges, this dilution is not always necessary.<br />

9. Put 10 µl of each of the protein standards (10, 25, 50, 75, 100, 150, and 200 µg/ml<br />

BSA in buffer H) into duplicate or triplicate wells of a flat-bottom 96-well microtiter<br />

plate.<br />

<strong>Protein</strong> standards should be prepared in the same buffer used for the cell extraction (in<br />

this case, buffer H).<br />

10. Put 10 µl of each of the sample dilutions from step 8 into duplicate or triplicate wells<br />

of the same microtiter plate. Add 200 µl of the Bradford protein assay reagent to all<br />

wells.<br />

11. Place the microtiter plate in a microtiter plate reader and measure the optical density<br />

at 595 nM.<br />

12. From the optical densities, calculate the protein concentrations of the samples.<br />

Prepare antibody-conjugated protein A–Sepharose beads<br />

13. Place ∼150 µl protein A–Sepharose beads in a 1.5-ml microcentrifuge tube and add<br />

1 ml of PBS. Let the beads swell for 10 min at room temperature.<br />

Although protein A–conjugated Sepharose is recommended for this method, other commercially<br />

available protein A–conjugated resins, such as agarose, HiTrap, etc., may be<br />

used. <strong>Protein</strong> G–coupled resins are sometimes required to immunoprecipitate certain<br />

types of monoclonal antibodies (Table 7.2.1). If resins are supplied as ready-to-use suspensions,<br />

this swelling step is not necessary.<br />

14. Microcentrifuge the swollen beads 1 min at 14,000 × g, room temperature, and<br />

remove the supernatant. Wash the swollen beads three times, each time by adding<br />

1 ml PBS, centrifuging again as before, and discarding the supernatant.<br />

15. Combine 180 µl of the swollen packed beads with 320 µl PBS. Add the recommended<br />

amount of the antibody for immunoprecipitation (e.g., ∼10 µg anti-ERK C terminus).<br />

Rotate the mixture 1 hr at room temperature on an end-over-end rotator to allow the<br />

antibodies to bind to the protein A.<br />

Alternatively, this step can be done at 4 ◦ C for 16 hr.<br />

Usually, anti-C-terminal antibodies are used for the determination of kinase activity<br />

because their binding to the kinase does not interfere with the kinase activity. Ideally,<br />

the volumes listed here should be sufficient for ten reactions, but, because of the density<br />

of the beads, they will probably only be sufficient for eight reactions. Depending on the<br />

<strong>Signal</strong><br />

<strong>Transduction</strong><br />

14.3.15<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 28


The Detection of<br />

MAPK <strong>Signal</strong>ing<br />

14.3.16<br />

number of reactions to be performed, the amounts given here can be scaled up as long as<br />

the proportions are maintained.<br />

For easy handling of the resin, the ends of the pipet tips can be cut to enlarge their<br />

openings.<br />

16. Microcentrifuge the antibody-conjugated beads 1 min at 14,000 × g, room temperature.<br />

Resuspend the beads in 1 ml PBS, then centrifuge again as before and<br />

remove the supernatant. Wash three times, each time by adding 1 ml ice-cold PBS,<br />

centrifuging again as before, and removing the supenatant. Resuspend the washed<br />

beads in an equal volume of ice-cold buffer A (∼250 µl for∼250 µl of beads).<br />

Either use the antibody-conjugated beads immediately, or store at 4 ◦ C until used. It is<br />

best to use the conjugated beads within 3 days of preparation.<br />

17. <strong>In</strong> precooled 1.5-ml microcentrifuge tubes, add 30 µl of the antibody-conjugated<br />

bead suspension from step 16 (equivalent to 15 µl packed beads) to 300 µl of<br />

cytosolic extract (from step 7) containing 50 to 500 µg total protein (determined as<br />

in steps 8 to 12) in buffer H. Rotate on an end-over-end rotator for 2 hr at 4 ◦ C.<br />

Several immunoprecipitation methods have been developed. These methods usually vary<br />

with respect to the order in which the antibodies and protein A are added to the cell<br />

extracts. <strong>In</strong> the protocol described here, the antibodies are conjugated to protein A beads<br />

and only then added to the cytosolic extracts. This procedure minimizes the time the<br />

samples are incubated with the antibodies, and thereby minimizes exposure of the desired<br />

kinases to phosphatases and proteinases in the extracts. Furthermore, this procedure<br />

ensures that only antibodies recognized by protein A will be used for the immunoprecipitation.<br />

Antibodies that are not recognized by protein A can bind to the desired antigen, but<br />

they will not be precipitated when protein A beads are added; therefore, such antibodies<br />

will reduce the efficiency of immunoprecipitation.<br />

18. Centrifuge the incubation mixture 1 min at 14,000 × g,4 ◦ C. Remove and discard the<br />

incubation supernatant from the antibody-conjugated beads. Add 1 ml ice-cold RIPA<br />

buffer, centrifuge again as before, and discard the supernatant. Wash the pellet twice,<br />

each time by adding 1 ml ice-cold 0.5 M lithium chloride solution, centrifuging again<br />

as before, and removing the supernatant, then wash twice, each time by adding 1 ml<br />

ice-cold buffer A, centrifuging again, and discarding the supernatant.<br />

These stringent washes are important because they will remove most sticky protein kinases<br />

that might nonspecifically interact with the protein A beads.<br />

Perform phosphorylation reaction<br />

19. After the last wash step in 18, completely remove buffer A from the conjugated beads<br />

by microcentrifuging again after the buffer has been aspirated from above the pellet<br />

(without resuspension), then gently removing the residual buffer above the beads.<br />

20. Resuspend the bead pellet in 15 µl water.<br />

At this stage, prepare the bench for working with small amounts of radioactivity (see<br />

APPENDIX 1D).<br />

21. Add 10 µlofRM×3 to each tube.<br />

See Reagents and Solutions for a discussion of the components of RM×3.<br />

22. Start the phosphorylation reaction by adding 5 µl of the phosphorylation substrate<br />

(e.g., 2 mg/ml MBP) to the tube and placing the mixture in an Eppendorf Thermomixer<br />

(or water bath) at 30 ◦ C. <strong>In</strong>cubate 20 min at 30 ◦ C with either constant or<br />

frequent shaking.<br />

Although MBP is probably not a physiological substrate for any MAPK, it is a good<br />

general substrate for many kinases, including ERKs, in vitro. Substrates should be well<br />

phosphorylated by the desired kinases to allow accurate detection of the phosphorylation<br />

Supplement 28 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


kinetics. Therefore known substrates of the MAPK can be used as good substrates instead<br />

of MBP, but those are usually used at lower concentrations in the phosphorylation<br />

reaction.<br />

23. End the phosphorylation reaction by adding 10 µlof4× sample buffer to each tube.<br />

24. Place samples in a boiling water bath for 5 min. Microcentrifuge 1 min at 14,000 × g,<br />

room temperature. Load the resulting supernatants on a 7 × 10–cm, 15% SDS-PAGE<br />

gel with stacking gel (UNIT 6.1). Load prestained markers on gel as well. Run the gel<br />

at 150 V (constant voltage) for ∼1 hr or until the dye front is 0.5 cm from the bottom<br />

(UNIT 6.1).<br />

Usually, prestained markers are loaded into the first or second lane of the gel so that the<br />

first lane can be located on the dried gel and the molecular weight of the detected proteins<br />

determined.<br />

Since determination of enzymatic activity is not always accurate when enzymes (in this<br />

case protein kinases) are bound to beads, the kinase(s) of interest can be released from<br />

the beads at step 19 or 20 by using excess immunizing peptide. The phosphorylation<br />

reaction (steps 21 to 23) can thus be performed without the interference of the beads.<br />

Then the activity can be detected as described (step 27) or by a paper assay. For the<br />

paper assay, the phosphorylation reaction is terminated by spotting 20 µl of each sample<br />

on phosphocellulose paper squares (Whatman P81), which are immediately washed with<br />

150 mM phosphoric acid. Phosphate incorporation is then measured using a scintillation<br />

cocktail. Gel quantitation can also be carried out by densitometry after imaging the gel<br />

as in step 27.<br />

25. Turn the power supply off and disconnect the leads. Remove the glass plates containing<br />

the gel and remove the gel from the plate.<br />

26. Place the gel in a flat container and stain the gel with 50 ml staining solution for<br />

20 min at room temperature. Destain with four 30-min changes of 50 ml destaining<br />

solution.<br />

This extensive destaining removes excess free [γ - 32 P]ATP, which would affect the background.<br />

<strong>In</strong> some cases, the extensive destaining is not necessary, or the proteins can be<br />

transferred to a nitrocellulose membrane and then be imaged as described below.<br />

27. Place the gel on a sheet of Whatman 3MM paper, cover the gel with a clear plastic<br />

wrap, and dry the gel in a gel dryer (usually 1.5 hr at 80 ◦ C is sufficient). Expose the<br />

gel in a phosphor imager or autoradiograph on X-ray film (UNIT 6.3).<br />

Bands should appear at 16 to 21 kDa, corresponding to the molecular weight of the four<br />

MBP isoforms.<br />

IN-GEL KINASE ASSAY<br />

If the identity of the kinase is not known or there are no specific antibodies available<br />

for the kinase, the in-gel kinase assay may be used instead of the immunoprecipitation<br />

protocol (Basic Protocol 2). This in-gel protocol involves copolymerization of a substrate<br />

with the polyacrylamide gel followed by electrophoresis of the protein sample(s) on the<br />

gel. After several rounds of denaturation and renaturation, a phosphorylation reaction is<br />

performed with the gel, and the phosphorylated bands are visualized by autoradiography<br />

or phosphor imaging. With this method, the molecular weight of the protein kinase is<br />

revealed and unknown protein kinases can be identified (the molecular weight of most<br />

MAPK components is shown in Table 14.3.1). However, not all protein kinases can be<br />

renatured under the conditions of this protocol, and the linear range of this assay is usually<br />

limited. Therefore, this method should not be routinely used to monitor and characterize<br />

known protein kinases.<br />

BASIC<br />

PROTOCOL 3<br />

<strong>Signal</strong><br />

<strong>Transduction</strong><br />

14.3.17<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 28


The Detection of<br />

MAPK <strong>Signal</strong>ing<br />

14.3.18<br />

CAUTION: When working with radioactive materials, take appropriate precautions to<br />

avoid contamination of the experimenter and the surroundings. Carry out the experiment<br />

and dispose of wastes in an appropriately designated area, following guidelines provided<br />

by the institutional Radiation Safety Officer (also see UNIT 7.1 and APPENDIX 1D).<br />

Materials<br />

Rat1 cells (ATCC #CRL-2210)<br />

DMEM containing 10% heat-inactivated FBS (see APPENDIX 2A and UNIT 1.2)<br />

Starvation medium: DMEM containing 0.1% (v/v) heat-inactivated FBS (see<br />

APPENDIX 2A and UNIT 1.2)<br />

50 µg/ml epidermal growth factor (EGF) in EGF buffer<br />

EGF buffer: 0.5 mg/ml bovine serum albumin (BSA) in phosphate buffered saline<br />

(PBS; APPENDIX 2A)<br />

Phosphate-buffered saline (PBS; APPENDIX 2A), ice-cold<br />

Buffer A (see recipe), ice-cold<br />

Buffer H (see recipe) containing 1% (v/v) Triton X-100, ice-cold<br />

Buffer H (see recipe), ice-cold<br />

<strong>Protein</strong> standards: 5, 10, 20, 50, 100 and 200 µg/ml BSA in Buffer H (see recipe<br />

for buffer H)<br />

Bradford protein assay reagent (Pierce or Bio-Rad; also see recipe for Coomassie<br />

dye reagent in APPENDIX 3H)<br />

4× sample buffer for SDS-PAGE (see recipe)<br />

1.5 M Tris·Cl, pH 8.8 (APPENDIX 2A)<br />

30% acrylamide/0.8% bisacrylamide (Table 14.3.1)<br />

10% (w/v) ammonium persulfate (prepare fresh)<br />

Tetramethylethelendiamine (TEMED)<br />

2 mg/ml myelin basic protein (MBP)<br />

0.5 M Tris·Cl, pH 6.8 (APPENDIX 2A)<br />

Running buffer (see recipe)<br />

20% (v/v) isopropanol/50 mM HEPES, pH 7.6<br />

Renaturation buffer: 50 mM HEPES, pH 7.6 containing 5 mM 2-mercaptoethanol<br />

Renaturation buffer containing 6 M urea<br />

Renaturation buffer containing 0.05% (v/v) Tween 20<br />

<strong>In</strong>-gel kinase buffer (see recipe)<br />

<strong>In</strong>-gel kinase reaction solution (see recipe)<br />

5% (w/v) trichloroacetic acid (TCA)/1% (w/v) sodium pyrophosphate<br />

6-cm tissue culture dishes<br />

1-ml pipet tips, precooled<br />

1.5-ml microcentrifuge tubes precooled; four sets of six (each labeled 1 to 6)<br />

Plastic (or rubber) policeman<br />

96-well flat-bottom microtiter plate<br />

Microtiter plate reader capable of reading at 595 nm<br />

Gel-casting apparatus: 7 × 10–cm glass plates, 1.5-mm spacers, and 1.5-mm comb<br />

with 10 teeth (also see UNIT 6.1)<br />

Gel electrophoresis apparatus and power supply (also see UNIT 6.1)<br />

Flat containers for washing gel<br />

30 ◦ C water bath with proper shielding for radioactive work<br />

Additional reagents and equipment for cell culture (UNIT 1.1), SDS-PAGE (UNIT 6.1),<br />

and autoradiography (UNIT 6.3)<br />

NOTE: All reagents and equipment coming into contact with living cells must be sterile,<br />

and aseptic technique should be used accordingly.<br />

Supplement 28 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


NOTE: All culture incubations should be performed in a humidified 37 ◦ ,5%CO2 incubator<br />

unless otherwise specified. Some media (e.g., DMEM) require altered levels of<br />

CO2 to maintain pH 7.4.<br />

Prepare cellular extracts<br />

1. Grow Rat1 cells in six 6-cm tissue culture dishes in DMEM containing 10% FBS to<br />

subconfluency (∼0.5 × 10 6 cells/dish).<br />

UNIT 1.1 describes basic cell culture techniques.<br />

2. Serum-starve the Rat1 cells by removing the culture medium from each dish, replacing<br />

it with 2 ml starvation medium, and incubating 18 hr.<br />

During serum starvation, place the dishes in the tissue culture incubator, making sure that<br />

the dishes remain flat and that the medium covers the entire dish evenly. The aim of this<br />

starvation is to make the cells quiescent, and thereby reduce the amount of the inducible<br />

MAPK phosphatases (MKPs). Under these conditions, this can be achieved within 14 to<br />

24 hr. Starvation for too long or any change in temperature or pH may be stressful to<br />

the cells, thereby inducing activation of one or more signaling pathways. Although this<br />

protocol describes EGF stimulation of Rat1 cells, this procedure, with minor changes,<br />

can be used for most extracellularly stimulated cells.<br />

3. To each of three of the dishes, add 2.0 µl of50µg/ml EGF (stimulated samples).<br />

To each of the other three dishes, add 2.0 µl EGF buffer (control samples). <strong>In</strong>cubate<br />

one sample and control for 5 min, another sample and control for 15 min, and the<br />

third sample and control for 45 min.<br />

Usually, the stimulus is given first to the dishes with the longest incubation, then, at<br />

appropriate intervals, to the dishes with the second longest and the shortest incubation<br />

periods. It is useful to make and use a time chart so that stimuli will be given at the<br />

appropriate times and the cells harvested within a short period of time (within 5 to 10<br />

min for all dishes). If the influence of the stimulating agent on the particular cells is<br />

not yet known, a positive control should be included, such as a dish treated with 50<br />

µl peroxovanadate (VOOH) solution (see recipe), for a final concentration of 100 µM<br />

sodium orthovanadate and 200 µMH2O2, which nonspecifically activates many signaling<br />

events in most tissue culture cells.<br />

4. At the end of the assay, remove the medium from the dishes containing the Rat1<br />

cells. Rinse the dishes twice with 5 ml ice-cold PBS and once with 5 ml ice-cold<br />

buffer A. Be sure to remove all of the PBS after the last wash. Place dishes on ice.<br />

Because the objective at this stage is to arrest or slow down biological processes, the<br />

dishes should be placed on ice. Washing and harvesting of each dish should take 0.5 to<br />

1.5 min, so that all six dishes are harvested within 5 to 10 min.<br />

5. Harvest cells in 250 µl buffer H containing 1% Triton X-100 on ice, scraping the<br />

dishes with a plastic or rubber policeman and transferring the homogenate to a 1.5ml<br />

microcentrifuge tube. Microcentrifuge 15 min at 14,000 × g, 4 ◦ C. Collect the<br />

supernatant and transfer to a new 1.5-ml tube.<br />

For this protocol, extraction with detergent is usually better than sonication.<br />

Determine protein concentration<br />

6. Dilute 10 µl of each extract from step 5 in 190 µl buffer A (a final dilution of 1:20)<br />

in labeled tubes.<br />

Usually, dilutions of at least 1:20 are necessary to ensure that the samples will be in the<br />

linear range of the protein determination assay. For some Coomassie blue reagents with<br />

extended ranges, this dilution is not always necessary.<br />

<strong>Signal</strong><br />

<strong>Transduction</strong><br />

14.3.19<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 28


The Detection of<br />

MAPK <strong>Signal</strong>ing<br />

14.3.20<br />

7. Put 10 µl of each of the protein standards (10, 25, 50, 75, 100, 150, and 200 µg/ml<br />

BSA in buffer H) into duplicate or triplicate wells of a flat-bottom 96-well microtiter<br />

plate.<br />

<strong>Protein</strong> standards should be prepared in the same buffer used for the cell extraction (in<br />

this case, buffer H).<br />

8. Put 10 µl of each of the sample dilutions from step 6 into duplicate or triplicate wells<br />

of the same microtiter plate. Add 200 µl of Bradford protein assay reagent to all wells.<br />

9. Place the microtiter plate in a microtiter plate reader and measure the optical density<br />

at 595 nM.<br />

10. From the optical densities, calculate the protein concentrations of the samples. Take<br />

an aliquot of each extract corresponding to 50 to 100 µg of protein and place in a<br />

new 1.5-ml microcentrifuge tube.<br />

11. Add 1/3 vol of 4× sample buffer to each tube. Keep at 4 ◦ C, without boiling.<br />

Electrophorese the sample<br />

12. Assemble 7 × 10–cm glass plates and 1.5-mm spacers for casting the polyacrylamide<br />

gel.<br />

13. Prepare a 12% separating gel containing MBP by mixing the following (total volume,<br />

8 ml):<br />

0.7 ml H2O<br />

2.0 ml 2 mg/ml MBP<br />

2.0ml1.5MTris·Cl, pH 8.8<br />

3.2 ml 30% acrylamide/0.8% bisacrylamide<br />

100 µl 10% ammonium persulfate<br />

6 µl TEMED.<br />

14. Pour the separating gel (UNIT 6.1). Overlay the top of the separating gel with water.<br />

Allow the gel to polymerize ∼30 to 45 min.<br />

15. Prepare 3% polyacrylamide stacking gel by mixing the following (5 ml total):<br />

550 µl 30% acrylamide/0.8% bisacrylaimde solution<br />

625 µl 0.5MTris·Cl, pH 6.8<br />

3.7 ml H2O<br />

120 µl ammonium persulfate<br />

5 µl TEMED<br />

5mltotal.<br />

16. Remove the water from the top of the polymerized separating gel. Using a Pasteur<br />

pipet, layer ∼2 ml of the stacking gel on top of the separating gel (UNIT 6.1) to fill up the<br />

apparatus. <strong>In</strong>sert comb into the stacking gel and allow it to polymerize 10 to 20 min.<br />

17. Place the polymerized gel in the electrophoresis apparatus, add running buffer, and<br />

check for leaks.<br />

18. Load ∼40 µl of the samples (from step 13; containing ∼70 µg protein per lane) and<br />

10 µl of the prestained protein markers (according to the manufacturer’s instructions)<br />

onto the gel. Electrophorese at 100 V for ∼1 hr or until the dye front is ∼0.5 cm<br />

from the bottom (UNIT 6.1).<br />

The gel should not be heated above 30 ◦ C, therefore, the voltage used for electrophoresis<br />

should not be higher than 100 V.<br />

19. When electrophoresis is completed, turn the power supply off, remove the glass<br />

plates from the electrophoresis apparatus, and remove the gel from the plates.<br />

Supplement 28 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


Wash the gel and renature the proteins<br />

20. Cut off the stacking gel. Place the separating gel in a flat container and wash twice,<br />

each time with 100 ml of 20% isopropanol/50 mM HEPES, pH 7.6, for 30 min at<br />

room temperature with shaking on a platform shaker. Wash the gel twice more, each<br />

time with 100 ml renaturation buffer for 30 min at room temperature with shaking,<br />

then wash the gel twice more, each time with 100 ml of 6 M urea (in renaturation<br />

buffer) for 15 min with shaking at room temperature. Leave the last urea wash on<br />

the gel and proceed to step 21.<br />

If necessary, the second wash with 20% isopropanol/50 mM HEPES can be done overnight<br />

at 4 ◦ C.<br />

21. Place the gel in a 4 ◦ C cold room, remove 50 ml of the 6 M urea, add 50 ml renaturation<br />

buffer containing 0.05% Tween 20, and shake for 15 min on a platform shaker.<br />

The washing solution is now 3 M urea in renaturation buffer containing Tween 20.<br />

22. Remove 50 ml of the washing solution, add 50 ml of renaturation buffer containing<br />

0.05% Tween 20, and shake for additional 15 min<br />

This reduces the urea to 1.5 M.<br />

23. Remove 50 ml of the washing solution once more and replace with renaturation<br />

buffer/0.05% Tween 20, so that the washing solution contains 0.75 M urea. Shake<br />

for 15 min.<br />

24. Wash the gel twice, each time with 100 ml renaturation buffer containing 0.05%<br />

Tween 20 for 15 min with shaking at 4 ◦ C. Wash a third time with the same solution<br />

with shaking overnight in the cold room.<br />

Detect kinase activity<br />

25. Remove the washing buffer and incubate the gel in 30 ml in-gel kinase buffer for 30<br />

min at 30 ◦ C. Remove the buffer and add 20 ml of in-gel kinase reaction solution.<br />

At this stage, the amount of radioactive material is very high, and therefore the reaction<br />

should be performed with a proper shielding. Make sure that the gel is straight in the<br />

flat container. Unequal distribution of the phosphorylation buffer may lead to wrong<br />

concentrations of the ingredients and thereby interfere with the phosphorylation reaction.<br />

26. Wash gel carefully four times, each time with 3 ml 5% TCA/1% sodium pyrophosphate<br />

for 15 min at room temperature.<br />

If the gel is still very radioactive, continue washing overnight.<br />

27. Dry the gel and subject to autoradiography (UNIT 6.3).<br />

Bands should appear where kinases are present and cause phosphorylation of the MBP<br />

copolymerized in the gel (see Fig. 14.3.2).<br />

REAGENTS AND SOLUTIONS<br />

Use deionized or distilled water in all recipes and protocol steps. For common stock solutions,<br />

see APPENDIX 2A; for suppliers, see SUPPLIERS APPENDIX.<br />

Buffer A<br />

50 mM β-glycerophosphate, pH 7.3<br />

1.5 mM EGTA<br />

1.0 mM EDTA<br />

1.0 mM dithiothreitol (DTT)<br />

0.1 mM sodium orthovanadate<br />

Store up to 2 weeks at 4◦C Recipe from Ahn et al. (1990).<br />

<strong>Signal</strong><br />

<strong>Transduction</strong><br />

14.3.21<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 28


The Detection of<br />

MAPK <strong>Signal</strong>ing<br />

14.3.22<br />

Buffer H<br />

50 mM β-glycerophosphate, pH 7.3<br />

1.5 mM EGTA<br />

1.0 mM EDTA<br />

0.1 mM sodium orthovanadate<br />

Store solution with above components up to 3 months at 4◦C Immediately before use, add:<br />

1.0 mM DTT<br />

1.0 mM benzamidine<br />

10 µg/ml aprotinin<br />

10 µg/ml leupeptin<br />

2.0 µg/ml pepstatin A<br />

Recipe from Seger et al. (1992). “H” refers to homogenization buffer.<br />

Destaining solution<br />

15% (v/v) isopropanol<br />

7% (v/v) acetic acid<br />

Store up to 1 month at room temperature<br />

<strong>In</strong>-gel kinase buffer<br />

20 mM HEPES, pH 7.6<br />

20 mM MgCl2<br />

Store up to 1 month at 4◦C <strong>In</strong>-gel kinase reaction solution<br />

20 mM HEPES, pH 7.6<br />

20 mM MgCl2<br />

2mMDTT<br />

20 µM ATP (unlabeled)<br />

100 µCi [γ-32P]ATP Store up to 2 weeks at −20◦C Peroxovanadate (VOOH) solution<br />

Mix 200 µl of 20 mM sodium orthovanadate with 800 µl of10mMH2O2 in PBS<br />

(see APPENDIX 2A for PBS). Allow mixture to incubate 15 min at room temperature<br />

before use. Prepare fresh.<br />

RIPA buffer<br />

137 mM NaCl<br />

20 mM Tris·Cl, pH 7.4 (APPENDIX 2A)<br />

10% (v/v) glycerol<br />

1% (v/v) Triton X-100<br />

0.5% (w/v) sodium deoxycholate<br />

0.1% (w/v) SDS<br />

2.0 mM EDTA<br />

Store with above components up to 1 month at −20◦C 1.0 mM phenylmethylsulfonyl fluoride (PMSF, add fresh)<br />

20 µM leupeptin<br />

RM×3<br />

75 mM β-glycerophosphate, pH 7.3<br />

30 mM MgCl2<br />

100 µM [γ-32P]ATP (∼4000 cpm/pmol)<br />

0.9% (w/v) bovine serum albumin (BSA)<br />

continued<br />

Supplement 28 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


3mMDTT<br />

3mMEGTA<br />

0.3 mM sodium orthovanadate<br />

Store up to 3 month at −20 ◦ C<br />

The most important components of the reaction mixture (also see Basic Protocol 2, step<br />

21) are the Mg 2+ and [γ - 32 P]ATP, which are essential for the phosphorylation reaction.<br />

The authors recommend the use of 100 µM ATP with ∼4000 cpm/pmol of the labeled ATP,<br />

which provides an extended linear range and reproducible results. When the enzymatic<br />

activity of the kinases is very low, which makes detection of phosphorylation difficult, the<br />

concentration of cold ATP should be reduced to 10 to 20 µM and the amount of radioactive<br />

material elevated. Addition of labeled ATP alone is not recommended because this will<br />

result in a nanomolar concentration of ATP, which is much below the Km for ATP and<br />

may lead to nonspecific phosphorylation. The β-glycerophosphate in the reaction mixture<br />

serves as a buffer, but it can also inhibit residual phosphatases that may have nonspecifically<br />

bound to the beads. The BSA serves as a carrier protein, but when purity is required, it can<br />

be eliminated. The EGTA chelates Ca 2+ , which may interfere with some kinase activities,<br />

DTT keeps the proteins reduced, and sodium orthovanadate inhibits tyrosine phosphatases.<br />

Running buffer<br />

25 mM Tris·Cl, pH 8.3 (APPENDIX 2A)<br />

188 mM glycine<br />

0.1% (w/v) SDS<br />

Store up to 1 month at room temperature<br />

Sample buffer, 4×<br />

200 mM Tris·Cl, pH 6.8 (APPENDIX 2A)<br />

40% (v/v) glycerol<br />

8% (w/v) SDS<br />

8% (v/v) β-mercaptoethanol<br />

0.2% (w/v) bromphenol blue<br />

Store up to 3 months at −20 ◦ C<br />

Staining solution<br />

40% (v/v) methanol<br />

7% (v/v) acetic acid<br />

0.005% (w/v) bromphenol blue<br />

Store up to 3 months at room temperature<br />

Transfer buffer<br />

50 mM Tris·Cl, pH 8.8 (APPENDIX 2A)<br />

50 mM glycine<br />

Store up to 1 month at room temperature<br />

Tris-buffered saline with Tween 20 (TBST)<br />

20 mM Tris·Cl, pH 7.5 (APPENDIX 2A)<br />

150 mM NaCl<br />

0.05% (v/v) Tween 20<br />

Store up to 1 month at room temperature<br />

COMMENTARY<br />

Background <strong>In</strong>formation<br />

Sequential activation of kinases (protein<br />

kinase cascades) is a common mechanism of<br />

signal transduction in many cellular processes<br />

(Seger and Krebs, 1995). The best studied protein<br />

kinase cascades known today are mitogenactivated<br />

protein kinase (MAPK) signaling<br />

cascades, which are the topic of this unit (Seger<br />

<strong>Signal</strong><br />

<strong>Transduction</strong><br />

14.3.23<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 28


The Detection of<br />

MAPK <strong>Signal</strong>ing<br />

14.3.24<br />

and Krebs, 1995; Chen et al., 2001; Morrison<br />

and Davis, 2003; Raman and Cobb, 2003;<br />

Rubinfeld and Seger, 2004). Each of these signaling<br />

cascades consists of up to five tiers<br />

of protein kinases that sequentially activate<br />

each other by phosphorylation. The similarity<br />

among the enzymes that comprise each tier<br />

in the various cascades categorizes them into<br />

a superfamily of kinases with similar structure<br />

and function.<br />

The activation of each of these cascades<br />

is initiated either by small GTP-binding proteins<br />

or by adaptor proteins that transmit<br />

the signal to protein kinases, commonly referred<br />

to as MAPK kinase kinases (MAP3Ks).<br />

<strong>In</strong> some cases, the activation is mediated<br />

by upstream, Ste20-like kinases, which are<br />

termed MAP4Ks, although in many cases the<br />

MAP3Ks can be activated directly by the GTP<br />

binding proteins, or the MAP4Ks bypass the<br />

MAP3Ks (Fig. 14.3.1, Table 14.3.1). The signal<br />

is then transmitted downstream in the cascade<br />

by the sequential activation of MAPK kinase<br />

(MAPKK), MAPK and MAPK-activated<br />

protein kinases (MAPKAPKs), and, in a few<br />

cases, also kinases downstream of this tier. The<br />

existence of as many as three to six tiers in each<br />

of the MAPK cascades is probably essential<br />

for signal amplification, specificity determination,<br />

and tight regulation of the transmitted<br />

signal.<br />

The four distinct MAPK cascades that are<br />

currently known are named according to the<br />

subgroup of their MAPK components. These<br />

are (1) the extracellular signal-regulated kinase<br />

(ERK) cascade; (2) the c-Jun N-terminal<br />

kinase [JNK; or stress activated protein kinase<br />

1 (SAPK1) cascade]; (3) the p38 cascade<br />

(Freshney et al., 1994; Han et al., 1994;<br />

Lee et al., 1994); and (4) the BMK1 (ERK5)<br />

cascade (see Seger and Krebs, 1995 and<br />

Chuderland and Seger, 2005, for reviews). The<br />

identification of ERK7/8 (Abe et al., 1999)<br />

indicates that additional full MAPK cascades<br />

can emerge. The ERK cascade seems to participate<br />

mainly in the transmission of mitogenic<br />

signals, whereas the p38 and JNK cascades<br />

transmit mainly stress signals. BMK seems to<br />

be activated equally by mitogens and stress<br />

stimuli. These MAPK cascades cooperate to<br />

transmit signals to their intracellular targets,<br />

and thus to initiate cellular processes such<br />

as proliferation, differentiation, development,<br />

stress response, and apoptosis. <strong>In</strong> this section,<br />

the various MAPK cascades will be briefly reviewed.<br />

The ERK cascade, also known as the p42,<br />

p44 MAPK cascade, was the first MAPK<br />

cascade elucidated (Seger and Krebs, 1995).<br />

This cascade is initiated in many cases by<br />

the small G-protein Ras, which, upon stimulation,<br />

causes membranal translocation and activation<br />

of the protein serine/threonine kinase,<br />

Raf1 (reviewed in Hagemann and Rapp, 1999).<br />

Once activated, Raf1 continues the transmission<br />

of the signal by phosphorylating two regulatory<br />

serine residues located in the activation<br />

loop of MEK, thus causing its full activation<br />

(Kyriakis et al., 1992). <strong>In</strong>terestingly, Raf-1 activation<br />

can be facilitated by PKC, and this can<br />

implicate the PKC as a MAP4K of the ERK<br />

cascade. Other kinases that act in the MAP3K<br />

level of the cascade under various conditions<br />

are—(1) B-Raf (Peraldi et al., 1995), which is<br />

usually activated by the small G-protein Rap1<br />

(Hagemann and Rapp, 1999) in combination<br />

with phosphorylation by MLK3 (Chadee and<br />

Kyriakis, 2004); (2) A-Raf (Hagemann and<br />

Rapp, 1999); (3) Mos, which acts specifically<br />

in the reproductive system (Gotoh and<br />

Nishida, 1995); (4) the protooncogene TPL2<br />

(Salmeron et al., 1996); (5) under stress conditions,<br />

possibly also MEKK1 (Lange-Carter<br />

et al., 1993) and other MAP3Ks such as MLK2<br />

(Hirai et al., 1997), MLTK, (Gotoh et al.,<br />

2001), MLK3 (Chadee and Kyriakis, 2004),<br />

and even IRAK (MacGillivray et al., 2000), although<br />

the direct effect of these kinases is still<br />

controversial. Another kinase on this level is<br />

kinase suppressor of Ras (KSR), which seems<br />

to act mainly as a scaffold protein for some of<br />

the MAP3K and MAPKK components of the<br />

cascade (Morrison and Davis, 2003); but the<br />

role of its catalytic activity is still controversial<br />

(Kolesnick and Xing, 2004). <strong>In</strong> any case, all<br />

the indicated MAP3Ks seem to phosphorylate<br />

the same regulatory residues of MEK, which<br />

are required for its full activation (Ahn et al.,<br />

1991; Seger et al., 1992). Activated MEK is a<br />

dual-specificity protein kinase, which appears<br />

to be the only kinase capable of specifically<br />

phosphorylating and activating the next kinase<br />

in this cascade, i.e., ERK (Boulton et al., 1990,<br />

1991). ERK activation requires phosphorylation<br />

of two regulatory residues, threonine and<br />

tyrosine, which reside in a TEY phosphorylation<br />

motif (Payne et al., 1991; Canagarajah<br />

et al., 1997). Although phosphorylation of<br />

threonine and tyrosine residues is essential for<br />

the activation of all MAPKs, in the other cascades,<br />

the identity of the middle amino acid<br />

in the TXY motif of the MAPK is different,<br />

Supplement 28 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


and this determines the specificity of the signal<br />

(Seger and Krebs, 1995).<br />

ERK appears to be an important regulatory<br />

molecule, which, by itself, can phosphorylate<br />

regulatory targets in the cytosol such<br />

as phospholipase A2 (PLA2; Lin et al., 1993).<br />

It can translocate into and phosphorylate nuclear<br />

substrates such as the transcription factors<br />

Elk1 (Gille et al., 1992), cFos (Murphy<br />

et al., 2002), p53 (Milne et al., 1994), ERF<br />

(Sgouras et al., 1995), PEA-3 (O’Hagan et al.,<br />

1996), ERM (Janknecht et al., 1996), ER81<br />

(Janknecht et al., 1996), Ets1/2 (Yang et al.,<br />

1996), SAP-1a (Strahl et al., 1996), and cJun<br />

(Morton et al., 2003), or it can transmit the signal<br />

to the MAPKAPK level. The main MAP-<br />

KAPK of the ERK cascade is RSK (Sturgill<br />

et al., 1988), which can also translocate to the<br />

nucleus upon activation and phosphorylate a<br />

set of nuclear substrates different from those<br />

phosphorylated by ERK. Additional MAP-<br />

KAPKs are the mitogen- and stress-activated<br />

kinase (MSK; Deak et al., 1998) and the<br />

MAPK-interacting kinases (MNKs; Fukunaga<br />

and Hunter, 1997; Waskiewicz et al., 1997),<br />

which are activated equally by the related p38<br />

cascade. Finally, the MAPKAPK3 (McLaughlin<br />

et al., 1996) and MK5 (Ni et al., 1998)<br />

cascades are only slightly related to the ERK<br />

cascade and are mainly activated by the p38<br />

cascade (for review see Roux and Blenis,<br />

2004). MAPKAPKs can regulate the activity<br />

of additional kinases (e.g., Myt1; Palmer et al.,<br />

1998), but those are usually not considered to<br />

be genuine members of the MAPK cascade.<br />

ERKs are activated primarily by mitogenic<br />

signals, whereas other MAPK cascades (p38,<br />

JNK) are activated mainly by cellular stresses<br />

such as heat shock, ischemia, UV irradiation,<br />

and cytokines (Davis, 2000); therefore they<br />

are referred to as stress-activated protein kinase<br />

(SAPK) cascades (Kyriakis and Avruch,<br />

1996). The p38 cascade consists of MAPKs<br />

that contain a glycine residue in their activation,<br />

TXY motif (TGY; Han et al., 1994).<br />

Many kinases on the MAP3K and MAP4K<br />

levels have been implicated in the p38 cascade<br />

(Fig. 14.3.1, Table 14.3.1); however, their individual<br />

roles are not yet fully elucidated. Moreover,<br />

in spite of their sequence similarity to<br />

the Ste20 and Ste11 kinases (the MAP4K and<br />

MAP3K in Saccharomyces cerevisiae that operate<br />

in a sequential order; Herskowitz, 1995),<br />

the mammalian kinases do not always act in a<br />

sequential order, and may use different mechanisms<br />

to activate the rest of the cascade (Dan<br />

et al., 2001; Hagemann and Blank, 2001).<br />

<strong>In</strong>dependent of the particular MAP3K or<br />

MAP4K, the signals of the p38 cascade are<br />

funneled into two main MAPKKs: MKK3<br />

(also known as MEK3 or p38MAPKK; Derijard<br />

et al., 1995) and MKK6 (also known as<br />

MEK6, or SAPKK3; Han et al., 1996). Similarly<br />

to MEK1/2, these are dual-specificity<br />

protein kinases that phosphorylate the regulatory<br />

threonine and tyrosine residues of the<br />

p38s to fully activate them. Although these<br />

two MKKs are unique in their ability to activate<br />

p38s and no other MAPKs, the p38s<br />

seem to be activated by MKK4 (Derijard et al.,<br />

1995) and to some extent also by MKK7<br />

(Dashti et al., 2001), which are the main activators<br />

of the JNK cascade (as indicated below).<br />

The MAPK-level components of this<br />

cascade are the four p38s (p38α to δ, also<br />

known as SAPK2a SAPK2b, SAPK3, and<br />

SAPK4; Han et al., 1994; Goedert et al., 1997),<br />

which are normally expressed as four main<br />

proteins of 41, 43, 47, and 51 kDa, and at<br />

least six additional alternatively spliced forms<br />

with molecular masses that range between 32<br />

and 65 kDa. Once these p38s are activated,<br />

they phosphorylate and modulate the activity<br />

of a large number of substrates in various<br />

compartments in the cells (Davis, 2000).<br />

Thus, the p38s can phosphorylate and activate<br />

various MAPKAPK-level components including<br />

MAPKAPK2 and 3 (Stokoe et al., 1992;<br />

McLaughlin et al., 1996), MSK (Deak et al.,<br />

1998), MNK (Fukunaga and Hunter, 1997;<br />

Waskiewicz et al., 1997), and MK5 (Ni et al.,<br />

1998). Except for MAPKAPK2, all MAP-<br />

KAPKs can also be activated by the ERK cascade<br />

(see above) and therefore present a point<br />

of cross-talk between the two cascades (for<br />

review see Roux and Blenis, 2004). Another<br />

important group of p38 substrates are various<br />

transcription factors that are usually activated<br />

under stress conditions, including ATF2, Elk1<br />

(Raingeaud et al., 1996), CHOP (Wang and<br />

Ron, 1996), MEF2C (Han et al., 1997), SAP-1<br />

(Cuenda et al., 1997), and p53 (Huang et al.,<br />

1999).<br />

Other stress-activated MAPKs are the c-Jun<br />

amino-terminal kinases (JNKs; also named<br />

SAPK1), which comprise a third MAPK subgroup<br />

(Derijard et al., 1994; Kyriakis et al.,<br />

1994). These enzymes are distinct from the<br />

p38s mainly because they contain a TPY rather<br />

than a TGY motif in their activation loop. As<br />

the other MAPK cascades, the JNK cascade<br />

is triggered by small GTPases (Crespo et al.,<br />

1997), i.e., Rac and CDC42, or it can be activated<br />

by various adaptor molecules (Davis,<br />

<strong>Signal</strong><br />

<strong>Transduction</strong><br />

14.3.25<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 28


The Detection of<br />

MAPK <strong>Signal</strong>ing<br />

14.3.26<br />

2000). Next, the signals are transmitted via<br />

MAP4K and MAP3K components that are<br />

mostly shared with the p38 cascades (Table<br />

14.3.1). Since the p38 and JNK cascades are<br />

not always simultaneously activated, the signals<br />

must be separately regulated to allow separate<br />

cascades, and this is mostly executed by a<br />

physical segragation between the components<br />

by specialized scaffold proteins (Morrison and<br />

Davis, 2003). At the MAPKK level, the JNKs<br />

can be activated by MKK4 (MEK4, SEK1,<br />

JNKK1; Sanchez et al., 1994; Yan et al., 1994),<br />

and MKK7 (MEK7, JNKK2; Tournier et al.,<br />

1997). These MKKs are able to phosphorylate<br />

and activate the components in the MAPK<br />

level, which are JNK1-3 (SAPKs) of molecular<br />

weights 46, 54, and 52 kDa, respectively<br />

(Derijard et al., 1994; Kyriakis et al., 1994).<br />

No enzymes in the MAPKAPK level have<br />

been identified for JNKs, which appear to be<br />

major regulators of nuclear processes, in particular,<br />

transcription. Shortly after activation,<br />

JNKs translocate to the nucleus where they<br />

physically associate with and activate their targets,<br />

mostly transcription factors such as c-Jun<br />

(Hibi et al., 1993), ATF2 (Gupta et al., 1995),<br />

Elk1 (Whitmarsh et al., 1995), p53 (Milne<br />

et al., 1995), JUN-D (Kallunki et al., 1996),<br />

PEA3 (O’Hagan et al., 1996), NFAT4 (Chow<br />

et al., 1997), c-Myc (Noguchi et al., 1999),<br />

and SAP-2/Net (Ducret et al., 2000). <strong>In</strong>terestingly,<br />

the JNKs also participate in the induction<br />

of apoptosis by several proapoptotic<br />

drugs, and this is mediated by the phosphorylation<br />

of various death-related components in<br />

various cellular compartments (for review see<br />

Varfolomeev and Ashkenazi, 2004).<br />

Another MAPK subgroup is the BMK (also<br />

known as ERK5; Zhou et al., 1995; Abe et al.,<br />

1996), with a molecular weight of 110 kDa.<br />

Like ERK1/2, BMK contains a TEY phosphorylation<br />

motif in its activation loop, but because<br />

it is not activated at all by MEK1 and<br />

2, it forms a separate signaling cascade. BMK<br />

seems to be activated equally by stress (Zhou<br />

et al., 1995; Abe et al., 1996) and by mitogenic<br />

signals (Kato et al., 1998), and thereby<br />

participates in the regulation of a variety of<br />

cellular processes including oncogenic transformation<br />

(English et al., 1999). The cascade<br />

is thought to be activated by the adaptor protein<br />

Lad, which operates downstream of c-Src,<br />

at least in the pathway that leads to BMK activation<br />

by growth factors (Sun et al., 2003). <strong>In</strong><br />

turn, Lad transmits the signal to protein kinases<br />

on the MAP3K level of the cascade, MEKK2<br />

and MEKK3, which are implicated also in the<br />

activation of the p38 and JNK cascade (Chao<br />

et al., 1999; Chayama et al., 2001). The signal<br />

is then transmitted downstream the cascade to<br />

the MAPKK, MEK5 (Zhou et al., 1995), which<br />

specifically phosphorylates and activates the<br />

kinase on the MAPK level, BMK. <strong>In</strong>terestingly,<br />

MEK5 and BMK are often localized in<br />

the cell nucleus (Raviv et al., 2004), where<br />

BMK associates with several transcription factors<br />

substrates including c-Myc (English et al.,<br />

1998), MEF2 family members (Kato et al.,<br />

1997; Yang et al., 1998), c-Fos (Kamakura<br />

et al., 1999), SAP1a (Kamakura et al., 1999),<br />

Fra-1 (Terasawa et al., 2003), and possibly<br />

also NFκB (Pearson et al., 2001). Importantly,<br />

BMK also influences transcription through a<br />

direct transcriptional activity, as shown in the<br />

activation of the Nur77 gene upon calcium signals<br />

in T cells (Kasler et al., 2000). <strong>In</strong> addition<br />

to its nuclear activity, BMK mediates several<br />

cytosolic functions including phosphorylation<br />

of connexin-43 (Cameron et al., 2003) and<br />

of the serum- and glucocorticoid-inducible kinase<br />

SGK (Hayashi et al., 2001), implicating<br />

the latter as a MAPKAPK in the ERK5 cascade.<br />

Besides these four MAPK cascades, which<br />

are composed of similar components in each<br />

level, other protein kinases and kinase cascades<br />

are activated in response to mitogenic<br />

stimulation. First, two MAPKs termed ERK7<br />

and ERK8, which are similar to each other<br />

(Abe et al., 2001), have been identified. Although<br />

their mode of activation is not clear,<br />

they are likely to operate within an independent,<br />

fifth MAPK cascade. Another cascade is<br />

that of ERK3, which, in spite of its 50% identity<br />

to ERK1/2, is not considered a MAPK<br />

because of the absence of the TEY motif<br />

in its activation loop (Boulton et al., 1991).<br />

ERK3 is activated by an ERK3K with an unknown<br />

identity (Cheng et al., 1996), and it<br />

seems to function mainly in muscles. <strong>In</strong> addition,<br />

the NIK-IKK (Malinin et al., 1997),<br />

PI3K-PDK-AKT-GSK3 (Cohen et al., 1997),<br />

Rho-dependent pathways (Leung et al., 1995),<br />

and the PKA-phosphorylase kinase pathway<br />

(Brushia and Walsh, 1999) operate in a kinase<br />

cascade. However, because of their distinct<br />

characteristics, these pathways are not<br />

considered MAPK cascades, although they are<br />

involved in transmission of mitogenic signals.<br />

The inactivation of many components of the<br />

MAPK cascade is mediated by a large number<br />

of distinct phosphatases, including MKP,<br />

PTPs, and PPs (for review see Yao and Seger,<br />

2004).<br />

Supplement 28 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


All the pathways mentioned are apparently<br />

activated to some extent by distinct extracellular<br />

agents, and as a result of their action<br />

in an elaborate network, determine the outcome<br />

of each stimulation. The full dimensions<br />

of this network, the mode of regulation<br />

of its components, and the mechanism by<br />

which these cascades determine cell fates in response<br />

to various stimuli, have yet to be fully<br />

elucidated.<br />

Critical Parameters<br />

Several points should be considered when<br />

using Basic Protocol 2 (immunoprecipitation<br />

followed by phosphorylation). One of the most<br />

important parameters for the success of this<br />

protocol depends on the method of protein<br />

extraction used. Since the MAPKs are localized<br />

within cells, the cellular membranes<br />

must be disrupted to access the desired targets.<br />

The protein kinases of interest must then<br />

be obtained and preserved in their active form,<br />

while decreasing the amount of nonrelevant<br />

kinases. For example, activated Raf-1 can be<br />

present in Golgi membranes, which might not<br />

be disrupted by some extraction procedures,<br />

but are disrupted if RIPA buffer is used for<br />

extraction. The method for cellular extraction<br />

described in Basic Protocol 1 can be effectively<br />

used for detection of most MAPKs by<br />

immunoprecipitation or other methods. Sonication<br />

disrupts the plasma membrane but does<br />

not solubilize it, and therefore the resulting extracts<br />

(referred to as cytosolic extracts) should<br />

contain both cytosolic and some nuclear fractions.<br />

Depending on the subcellular localization<br />

of the proteins of interest, other extraction<br />

methods can be applied. For example, cellular<br />

extracts obtained with Triton X-100 usually<br />

contain membrane, cytosolic, and some<br />

nuclear components, whereas cellular extracts<br />

obtained with RIPA buffer should contain solubilized<br />

proteins from most cellular compartment.<br />

Cellular extraction by addition of hot<br />

SDS-PAGE sample buffer to cells is not recommended<br />

because it frees chromatin, which<br />

causes formation of a gel that is hard to handle.<br />

Extraction by freeze-thawing is not recommended<br />

either, because of molecular degradations<br />

that might occur during the thawing<br />

phases.<br />

Another consideration for successful detection<br />

of phosphoproteins is minimization<br />

of protein degradation and dephosphorylation.<br />

During extraction, most cellular organelles<br />

break, and thus expose phosphoproteins to<br />

phosphatases and proteinases. Addition of<br />

specific inhibitors of phosphatases and proteinases<br />

to the extraction buffers, and extraction<br />

at low temperatures, minimizes the effect<br />

of these enzymes. However, since phosphatases<br />

are usually efficient enzymes, even if<br />

these precautions are taken extractions should<br />

be performed as quickly as possible.<br />

One of the most critical elements for the<br />

success of the basic methods for immunological<br />

monitoring of phosphorylation is the quality<br />

and specificity of the antibodies used. The<br />

antibodies employed should (1) recognize the<br />

phosphorylated protein but not its nonphosphorylated<br />

counterpart, and (2) recognize only<br />

the desired phosphorylated amino acid, not additional<br />

phosphorylated sites in either the same<br />

or different proteins. <strong>In</strong> addition, the amount<br />

of proteins in the different samples subjected<br />

to immunoblot analysis and the dilution of<br />

the antibodies should be optimized to avoid<br />

nonspecific recognition of excess proteins.<br />

The antibodies used for immunoprecipitation<br />

(Basic Protocol 2) should not interfere with<br />

the enzymatic activity of the enzymes tested.<br />

<strong>In</strong> addition, it is necessary to avoid nonspecific<br />

precipitation of contaminant kinases. However,<br />

sometimes the washings may not prevent<br />

coimmunoprecipitation of protein kinases<br />

other than those desired, and these might interfere<br />

with the phosphorylation reaction. This<br />

difficulty can be overcome by using a specific<br />

substrate or direct assay methods (i.e., in-gel<br />

kinase assay, Basic Protocol 3).<br />

For accurate comparison of the amounts<br />

of phosphoproteins, detection should be performed<br />

in the linear range of the detection<br />

system. Thus, the amount of protein loaded<br />

on the gel, the concentration of primary and<br />

secondary antibodies, and the time of ECL exposure<br />

should be optimized in order to reach<br />

linearity. Alternatively, a standard curve with<br />

the proteins of interest can be made and serial<br />

dilutions of the cellular extracts of each<br />

treatment can be loaded onto the SDS-PAGE<br />

gel. The blot detection system, e.g.,<br />

ECL- 125 I-, AP-, or biotin-conjugated antibodies,<br />

should be chosen carefully. Usually, ECL<br />

has the narrowest linear range of these systems,<br />

whereas 125 I-antibodies have a relatively<br />

broad range. The AP detection system, which<br />

has moderate linear range, is usually used for<br />

the types of experiments described here, because<br />

it is a reliable method that does not necessitate<br />

the use of radioactive materials.<br />

Other parameters that should be considered<br />

for accurate comparison of protein kinases are<br />

as follows.<br />

<strong>Signal</strong><br />

<strong>Transduction</strong><br />

14.3.27<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 28


The Detection of<br />

MAPK <strong>Signal</strong>ing<br />

14.3.28<br />

1. Starvation of the cells before activation,<br />

which may interfere with the activation of the<br />

desired protein kinase or cause activation of<br />

some stress-activated protein kinases.<br />

2. The optimal length of stimulation may<br />

vary from cell type to cell type and from one<br />

protein kinase to the other; thus, appropriate<br />

time points for each kinase should be determined.<br />

3. For accurate comparison of protein kinase<br />

activities, detection should be performed<br />

in the linear range of the phosphorylation reaction.<br />

Thus, the amount of protein used for<br />

immunoprecipitation, the concentration of antibodies,<br />

the length of the phosphorylation reaction,<br />

and the exposure to X-ray film or to the<br />

phosphor imager should be optimized in order<br />

to reach linearity. If necessary, a standard<br />

curve with the protein kinases of interest can<br />

be made, and serial dilutions of the cytosolic<br />

extracts or a time course of the phosphorylation<br />

can be used to ensure one is working in a<br />

linear range.<br />

Anticipated Results<br />

With immunoblotting, the desired phosphoprotein<br />

should be selectively detected by both<br />

anti-phospho and anti-general antibodies. For<br />

example, when anti-active ERK antibodies are<br />

used (Basic Protocol 1), two faint bands at<br />

molecular weights of 42 and 44 kDa should be<br />

detected in the basal, nonstimulated fractions<br />

of the cells (Fig. 14.3.2). These two bands represent<br />

the small amount of active ERK (ERK1<br />

and ERK2) present in resting cells. Upon addition<br />

of EGF to these cells, the intensity of<br />

staining of the same bands should increase<br />

with time, peak at 30 min after stimulation,<br />

and decline thereafter. Usually a third band at<br />

46 kDa (ERK1b) appears at the longer time<br />

points of EGF stimulation. The kinetics of detection<br />

of the phosphoprotein result from the<br />

transient activation of ERK by EGF in these<br />

cells. Staining the same blots with anti-general<br />

ERK antibodies should result in equal staining<br />

of the 42-, 44-, and 46-kDa bands in all lanes<br />

of the blot.<br />

<strong>In</strong> Basic Protocol 2, extracts from nonstimulated<br />

Rat-1 cells should yield very little MBP<br />

phosphorylation (Fig. 14.3.2), which represents<br />

the activity of both ERK1 and ERK2<br />

in these cells. Upon addition of EGF to the<br />

cells, the amount of phosphate incorporated<br />

should increase with time, peaking at 30 min<br />

after stimulation and declining thereafter. The<br />

kinetics of phosphorylation represent the transient<br />

activation of ERK by EGF in these cells.<br />

When the in-gel assay is used (Basic Protocol<br />

3), both ERK1 and ERK2 should be detected<br />

at molecular weights of 44 and 42 kDa, and the<br />

kinetics of activation of both of them should be<br />

similar to those of the MBP phosphorylation<br />

obtained with Basic Protocol 1. Typical results<br />

of Basic Protocol 3 are shown in Figure 14.3.2.<br />

Time Considerations<br />

After cell harvesting, Basic Protocol 1 requires<br />

extraction (0.5 hr), determination of<br />

protein concentration (0.5 hr), SDS-PAGE<br />

(2.5 hr), and immunoblot analysis (6 to 8 hr).<br />

Because this procedure may take more than<br />

1 working day, it can be stopped after boiling<br />

the samples in sample buffer, or the transfer<br />

onto the nitrocellulose membrane can be<br />

performed overnight at 40 to 50 mA (instead<br />

of 200 to 300 mA). Immunoprecipitation and<br />

washes (Basic Protocol 2) add about 4 to 5 hr<br />

to Basic Protocol 1.<br />

After cell harvesting, Basic Protocol 2 requires<br />

extraction (0.5 hr), immunoprecipitation<br />

and washings (3 to 4 hr), the phosphorylation<br />

reaction (0.5 to 1.0 hour), SDS-PAGE<br />

(2.5 hr), and processing of the gel (6 to 16 hr).<br />

Because this procedure usually takes more<br />

than 1 working day, it can be interrupted after<br />

boiling the samples in sample buffer or at any<br />

time during the destaining period.<br />

The in-gel kinase assay (Basic Protocol 3)<br />

may take 2 to 3 days.<br />

Literature Cited<br />

Abe, J., Kusuhara, M., Ulevitch, R.J., Berk, B.C.,<br />

and Lee, J.D. 1996. Big mitogen-activated protein<br />

kinase 1 (BMK1) is a redox-sensitive kinase.<br />

J. Biol. Chem. 271:16586-16590.<br />

Abe, M.K., Kuo, W.L., Hershenson, M.B., and<br />

Rosner, M.R. 1999. Extracellular signalregulated<br />

kinase 7 (ERK7), a novel ERK with a<br />

C-terminal domain that regulates its activity, its<br />

cellular localization, and cell growth. Mol. Cell<br />

Biol. 19:1301-1312.<br />

Abe, M.K., Kahle, K.T., Saelzler, M.P., Orth, K.,<br />

Dixon, J.E., and Rosner, M.R. 2001. ERK7 is an<br />

autoactivated member of the MAP kinase family.<br />

J. Biol. Chem. 276:21272-21279.<br />

Ahn, N.G., Weiel, J.E., Chan, C.P., and Krebs,<br />

E.G. 1990. Identification of multiple epidermal<br />

growth factor-stimulated protein serine/threonine<br />

kinases from Swiss 3T3 cells. J.<br />

Biol. Chem. 265:11487-11494.<br />

Ahn, N.G., Seger, R., Bratlien, R.L., Diltz, C.D.,<br />

Tonks, N.K., and Krebs, E.G. 1991. Multiple<br />

components in an epidermal growth factorstimulated<br />

protein kinase cascade: <strong>In</strong> vitro activation<br />

of myelin basic protein/microtubuleassociated<br />

protein-2 kinase. J. Biol. Chem.<br />

266:4220-4227.<br />

Supplement 28 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


Blank, J.L., Gerwins, P., Elliott, E.M., Sather, S.,<br />

and Johnson, G.L. 1996. Molecular cloning of<br />

mitogen-activated protein/ERK kinase kinases<br />

(MEKK) 2 and 3: Regulation of sequential<br />

phosphorylation pathways involving mitogenactivated<br />

protein kinase and c-Jun kinase. J. Biol.<br />

Chem. 271:5361-5368.<br />

Boulton, T.G., Yancopoulos, G.D., Gregory, J.S.,<br />

Slaughter, C., Moomaw, C., Hsu, J., and Cobb,<br />

M.H. 1990. An insulin-stimulated protein kinase<br />

similar to yeast kinases involved in cell cycle<br />

control. Science 249:64-67.<br />

Boulton, T.G., Nye, S.H., Robbins, D.J., Ip,<br />

N.Y., Radziejewska, E., Morgenbesser, S.D.,<br />

DePinho, R.A., Panayotatos, N., Cobb, M.H.,<br />

and Yancopoulos, G.D. 1991. ERK’s: A family<br />

of protein-serine/threonine kinases that are activated<br />

and tyrosine phosphorylated in response<br />

to insulin and NGF. Cell 65:663-675.<br />

Brushia, R.J. and Walsh, D.A. 1999. Phosphorylase<br />

kinase: The complexity of its regulation is reflected<br />

in the complexity of its structure. Front.<br />

Biosci. 4:D618-D641.<br />

Cameron, S.J., Malik, S., Akaike, M., Lerner-<br />

Marmarosh, N., Yan, C., Lee, J.D., Abe, J., and<br />

Yang, J. 2003. Regulation of epidermal growth<br />

factor-induced connexin 43 gap junction communication<br />

by big mitogen–activated protein kinase1/ERK5<br />

but not ERK1/2 kinase activation.<br />

J. Biol. Chem. 278:18682-18688.<br />

Canagarajah, B.J., Khokhlatchev, A., Cobb, M.H.,<br />

and Goldsmith, E.J. 1997. Activation mechanism<br />

of the MAP kinase ERK2 by dual phosphorylation.<br />

Cell 90:859-869.<br />

Chadee, D.N. and Kyriakis, J.M. 2004. MLK3 is<br />

required for mitogen activation of B-Raf, ERK<br />

and cell proliferation. Nat. Cell Biol. 6:770-776.<br />

Chao, T.H., Hayashi, M., Tapping, R.I., Kato, Y.,<br />

and Lee, J.D. 1999. MEKK3 directly regulates<br />

MEK5 activity as part of the big mitogenactivated<br />

protein kinase 1 (BMK1) signaling<br />

pathway. J. Biol. Chem. 274:36035-36038.<br />

Chayama, K., Papst, P.J., Garrington, T.P., Pratt,<br />

J.C., Ishizuka, T., Webb, S., Ganiatsas, S., Zon,<br />

L.I., Sun, W., Johnson, G.L., and Gelfand, E.W.<br />

2001. Role of MEKK2-MEK5 in the regulation<br />

of TNF-alpha gene expression and MEKK2-<br />

MKK7 in the activation of c-Jun N-terminal kinase<br />

in mast cells. Proc. Natl. Acad. Sci. U.S.A.<br />

98:4599-4604.<br />

Chen, Z., Hutchison, M., and Cobb, M.H. 1999.<br />

Isolation of the protein kinase TAO2 and identification<br />

of its mitogen-activated protein kinase/extracellular<br />

signal-regulated kinase kinase<br />

binding domain. J. Biol. Chem. 274:28803-<br />

28807.<br />

Chen, Z., Gibson, T.B., Robinson, F., Silvestro, L.,<br />

Pearson, G., Xu, B., Wright, A., Vanderbilt, C.,<br />

and Cobb, M.H. 2001. MAP kinases. Chem. Rev.<br />

101:2449-2476.<br />

Cheng, M., Zhen, E., Robinson, M.J., Ebert, D.,<br />

Goldsmith, E., and Cobb, M.H. 1996. Characterization<br />

of a protein kinase that phosphorylates<br />

serine 189 of the mitogen-activated protein ki-<br />

nase homolog ERK3. J. Biol. Chem. 271:12057-<br />

12062.<br />

Chow, C.W., Rincon, M., Cavanagh, J., Dickens,<br />

M., and Davis, R.J. 1997. Nuclear accumulation<br />

of NFAT4 opposed by the JNK signal transduction<br />

pathway. Science 278:1638-1641.<br />

Chuderland, D. and Seger, R. 2005. <strong>Protein</strong>-protein<br />

interactions in the regulation of the extracellular<br />

signal-regulated kinase (ERK). Mol. Biotechnol.<br />

29:47-64.<br />

Cohen, P., Alessi, D.R., and Cross, D.A. 1997.<br />

PDK1, one of the missing links in insulin signal<br />

transduction? FEBS Lett. 410:3-10.<br />

Crespo, P., Schuebel, K.F., Ostrom, A.A.,<br />

Gutkind, A.S., and Bustel, X.P. 1997.<br />

Phosphotyrosine-dependent activation of Rac-1<br />

GDP/GTP exchange by the vav proto-oncogene<br />

product. Nature 385:169-172.<br />

Cuenda, A., Cohen, P., Buee-Scherrer, V., and<br />

Goedert, M. 1997. Activation of stress-activated<br />

protein kinase-3 (SAPK3) by cytokines and cellular<br />

stresses is mediated via SAPKK3 (MKK6):<br />

Comparison of the specificities of SAPK3<br />

and SAPK2 (RK/p38). EMBO J. 16:295-<br />

305.<br />

Dan, I., Watanabe, N.M., Kobayashi, T., Yamashita-<br />

Suzuki, K., Fukagaya, Y., Kajikawa, E.,<br />

Kimura, W.K., Nakashima, T.M., Matsumoto,<br />

K., Ninomiya-Tsuji, J., and Kusumi, A. 2000.<br />

Molecular cloning of MINK, a novel member of<br />

mammalian GCK family kinases, which is upregulated<br />

during postnatal mouse cerebral development.<br />

FEBS Lett. 469:19-23.<br />

Dan, I., Watanabe, N.M., and Kusumi, A. 2001.<br />

The Ste20 group kinases as regulators of MAP<br />

kinase cascades. Trends Cell Biol. 11:220-230.<br />

Dan, C., Nath, N., Liberto, M., and Minden, A.<br />

2002. PAK5, a new brain-specific kinase, promotes<br />

neurite outgrowth in N1E-115 cells. Mol.<br />

Cell Biol. 22:567-577.<br />

Dashti, S., Efimova, R.T., and Eckert, R.L. 2001.<br />

MEK7-dependent activation of p38 MAP kinase<br />

in keratinocytes. J. Biol. Chem. 276:8059-<br />

8063.<br />

Davis, R.J. 2000. <strong>Signal</strong> transduction by the JNK<br />

group of MAP kinases. Cell 103:239-252.<br />

Deak, M., Clifton, A.D., Lucocq, L.M., and Alessi,<br />

D.R. 1998. Mitogen- and stress-activated protein<br />

kinase-1 (MSK1) is directly activated by<br />

MAPK and SAPK2/p38, and may mediate activation<br />

of CREB. EMBO J. 17:4426-4441.<br />

Derijard, B., Hibi, M., Wu, I.H., Barrett, T., Su,<br />

B., Deng, T., Karin, M., and Davis, R.J. 1994.<br />

JNK1: A protein kinase stimulated by UV<br />

light and Ha-Ras that binds and phosphorylates<br />

the c-Jun activation domain. Cell 76:1025-<br />

1027.<br />

Derijard, B., Raingeaud, J., Barrett, T., Wu, I.H.,<br />

Han, J., Ulevitch, R.J., and Davis, R.J. 1995.<br />

<strong>In</strong>dependent human MAP-kinase signal transduction<br />

pathways defined by MEK and MKK<br />

isoforms. Science 267:682-685 [published erratum<br />

appears in Science 269:17].<br />

<strong>Signal</strong><br />

<strong>Transduction</strong><br />

14.3.29<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 28


The Detection of<br />

MAPK <strong>Signal</strong>ing<br />

14.3.30<br />

Diener, K., Wang, X.S., Chen, C., Meyer, C.F.,<br />

Keesler, G., Zukowski, M., Tan, T.H., and Yao,<br />

Z. 1997. Activation of the c-Jun N-terminal kinase<br />

pathway by a novel protein kinase related<br />

to human germinal center kinase. Proc. Natl.<br />

Acad. Sci. U.S.A. 94:9687-9692.<br />

Ducret, C., Maira, S.M., Lutz, Y., and Wasylyk,<br />

B. 2000. The ternary complex factor Net contains<br />

two distinct elements that mediate different<br />

responses to MAP kinase signalling cascades.<br />

Oncogene 19:5063-5072.<br />

English, J.M., Pearson, G., Baer, R., and Cobb,<br />

M.H. 1998. Identification of substrates and regulators<br />

of the mitogen-activated protein kinase<br />

ERK5 using chimeric protein kinases. J. Biol.<br />

Chem. 273:3854-3860.<br />

English, J.M., Pearson, G., Hockenberry, T., Shivakumar,<br />

L., White, M.A., and Cobb, M.H. 1999.<br />

Contribution of the ERK5/MEK5 pathway to<br />

Ras/Raf signaling and growth control. J. Biol.<br />

Chem. 274:31588-31592.<br />

Fan, G., Merritt, S.E., Kortenjann, M., Shaw, P.E.,<br />

and Holzman, L.B. 1996. Dual leucine zipperbearing<br />

kinase (DLK) activates p46SAPK and<br />

p38mapk but not ERK2. J. Biol. Chem.<br />

271:24788-24793.<br />

Freshney, N.W., Rawlinson, L., Guesdon, F., Jones,<br />

E., Cowley, S., Hsuan, J., and Saklatvala, J.<br />

1994. <strong>In</strong>terleukin-1 activates a novel protein kinase<br />

cascade that results in the phosphorylation<br />

of Hsp27. Cell 78:1039-1049.<br />

Fu, C.A., Shen, M., Huang, B.C., Lasaga, J., Payan,<br />

D.G., and Luo, Y. 1999. TNIK, a novel member<br />

of the germinal center kinase family that<br />

activates the c-Jun N-terminal kinase pathway<br />

and regulates the cytoskeleton. J. Biol. Chem.<br />

274:30729-30737.<br />

Fukunaga, R. and Hunter, T. 1997. MNK1, a new<br />

MAP kinase-activated protein kinase, isolated<br />

by a novel expression screening method for<br />

identifying protein kinase substrates. EMBO J.<br />

16:1921-1933.<br />

Gabay, L., Seger, R., and Shilo, B.Z. 1997. <strong>In</strong><br />

situ activation pattern of Drosophila EGF receptor<br />

pathway during development. Science<br />

277:1103-1106.<br />

Gallo, K.A. and Johnson, G.L. 2002. Mixed-lineage<br />

kinase control of JNK and p38 MAPK pathways.<br />

Nat. Rev. Mol. Cell Biol. 3:663-672.<br />

Gerwins, P., Blank, J.L., and Johnson, G.L. 1997.<br />

Cloning of a novel mitogen-activated protein<br />

kinase kinase kinase, MEKK4, that selectively<br />

regulates the c-Jun amino terminal kinase pathway.<br />

J. Biol. Chem. 272:8288-8295.<br />

Gille, H., Sharrocks, A.D., and Shaw, P.E. 1992.<br />

Phosphorylation of transcription factor p62TCF<br />

by MAP kinase stimulates ternary complex<br />

formation at c-fos promoter. Nature 358:414-<br />

417.<br />

Goedert, M., Cuenda, A., Craxton, M., Jakes, R.,<br />

and Cohen, P. 1997. Activation of the novel<br />

stress-activated protein kinase SAPK4 by cytokines<br />

and cellular stresses is mediated by<br />

SKK3 (MKK6): Comparison of its substrate<br />

specificity with that of other SAP kinases.<br />

EMBO J. 16:3563-3571.<br />

Gotoh, I., Adachi, M., and Nishida, E. 2001. Identification<br />

and characterization of a novel MAP<br />

kinase kinase kinase, MLTK. J. Biol. Chem.<br />

276:4276-4286.<br />

Gotoh, Y. and Nishida, E. 1995. Activation mechanism<br />

and function of the MAP kinase cascade.<br />

Mol. Reprod. Dev. 42:486-492.<br />

Graves, J.D., Gotoh, Y., Draves, K.E., Ambrose,<br />

D., Han, D.K., Wright, M., Chernoff, J., Clark,<br />

E.A., and Krebs, E.G., 1998. Caspase-mediated<br />

activation and induction of apoptosis by the<br />

mammalian Ste20-like kinase Mst1. EMBO J.<br />

17:2224-2234.<br />

Gupta, S., Campbell, D., Derijard, B., and Davis,<br />

R.J. 1995. Transcription factor ATF2 regulation<br />

by the JNK signal transduction pathway. Science<br />

267:389-393.<br />

Hagemann, C. and Blank, J.L. 2001. The ups and<br />

downs of MEK kinase interactions. Cell <strong>Signal</strong><br />

13:863-875.<br />

Hagemann, C. and Rapp, U.R. 1999. Isotypespecific<br />

functions of Raf kinases. Exp. Cell Res.<br />

253:34-46.<br />

Han, J., Lee, J.D., Bibbs, L., and Ulevitch, R.J.<br />

1994. A MAP kinase targeted by endotoxin and<br />

hyperosmolarity in mammalian cells. Science<br />

265: 808-811.<br />

Han, J., Lee, J.D., Jiang, Y., Li, Z., Feng, L.,<br />

and Ulevitch, R.J. 1996. Characterization of the<br />

structure and function of a novel MAP kinase<br />

kinase (MKK6). J. Biol. Chem. 271:2886-2891.<br />

Han, J., Jiang, Y., Li, Z., Kravchenko, V.V., and<br />

Ulevitch, R.J. 1997. Activation of the transcription<br />

factor MEF2C by the MAP kinase p38 in<br />

inflammation. Nature 386:296-299.<br />

Hayashi, M., Tapping, R.I., Chao, T.H., Lo, J.F.,<br />

King, C.C., Yang, Y., and Lee, J.D. 2001. BMK1<br />

mediates growth factor-induced cell proliferation<br />

through direct cellular activation of serum<br />

and glucocorticoid-inducible kinase. J. Biol.<br />

Chem. 276:8631-8634.<br />

Herskowitz, I. 1995. MAP kinase pathways in yeast:<br />

For mating and more. Cell 80:187-197.<br />

Hibi, M., Lin, A., Smeal, T., Minden, A., and Karin,<br />

M. 1993. Identification of an oncoprotein- and<br />

UV-responsive protein kinase that binds and<br />

potentiates the c-Jun activation domain. Genes<br />

Dev. 7:2135-2148.<br />

Hirai, S., Katoh, M., Terada, M., Kyriakis, J.M.,<br />

Zon, L.I., Rana, A., Avruch, J., and Ohno, S.<br />

1997. MST/MLK2, a member of the mixed lineage<br />

kinase family, directly phosphorylates and<br />

activates SEK1, an activator of c-Jun N-terminal<br />

kinase/stress-activated protein kinase. J. Biol.<br />

Chem. 272:15167-15173.<br />

Huang, C., Ma, W.Y., Maxiner, A., Sun, Y., and<br />

Dong, Z. 1999. p38 kinase mediates UVinduced<br />

phosphorylation of p53 protein at serine<br />

389. J. Biol. Chem. 274:12229-12235.<br />

Supplement 28 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


Hutchison, M., Berman, K.S., and Cobb, M.H.<br />

1998. Isolation of TAO1, a protein kinase that activates<br />

MEKs in stress- activated protein kinase<br />

cascades. J. Biol. Chem. 273:28625-28632.<br />

Ichijo, H., Nishida, E., Irie, K., ten Dijke, P.,<br />

Saitoh, M., Moriguchi, T., Takagi, M., Matsumoto,<br />

K., Miyazono, K., and Gotoh, Y. 1997.<br />

<strong>In</strong>duction of apoptosis by ASK1, a mammalian<br />

MAPKKK that activates SAPK/JNK and p38<br />

signaling pathways. Science 275:90-94.<br />

Janknecht, R., Monte, D., Baert, J.L., and de<br />

Launoit, Y. 1996. The ETS-related transcription<br />

factor ERM is a nuclear target of signaling<br />

cascades involving MAPK and PKA. Oncogene<br />

13:1745-1754.<br />

Johnston, A.M., Naselli, G., Gonez, L.J., Martin,<br />

R.M., Harrison, L.C., and DeAizpurua, H.J.<br />

2000. SPAK, a STE20/SPS1-related kinase that<br />

activates the p38 pathway. Oncogene 19:4290-<br />

4297.<br />

Kallunki, T., Deng, T., Hibi, M., and Karin, M.<br />

1996. c-Jun can recruit JNK to phosphorylate<br />

dimerization partners via specific docking interactions.<br />

Cell 87:929-939.<br />

Kamakura, S., Moriguchi, T., and Nishida, E. 1999.<br />

Activation of the protein kinase ERK5/BMK1<br />

by receptor tyrosine kinases: Identification and<br />

characterization of a signaling pathway to the<br />

nucleus. J. Biol. Chem. 274:26563-26571.<br />

Kasler, H. Victoria, G.J., Duramad, O., and Winoto,<br />

A. 2000. ERK5 is a novel type of mitogenactivated<br />

protein kinase containing a transcriptional<br />

activation domain. Mol. Cell Biol.<br />

20:8382-8389.<br />

Kato, Y., Kravchenko, V.V., Tapping, R.I., Han, J.,<br />

Ulevitch, R.J., and Lee, J.D. 1997. BMK1/ERK5<br />

regulates serum-induced early gene expression<br />

through transcription factor MEF2C. EMBO J.<br />

16:7054-7066.<br />

Kato, Y., Tapping, R.I., Huang, S., Watson, M.H.,<br />

Ulevitch, R.J., and Lee, J.D. 1998. Bmk1/Erk5<br />

is required for cell proliferation induced by epidermal<br />

growth factor. Nature 395:713-716.<br />

Kiefer, F., Tibbles, L.A., Anafi, M., Janssen, A.,<br />

Zanke, B.W., Lassam, N., Pawson, T., Woodgett,<br />

J.R., and Iscove, N.N. 1996. HPK1,<br />

a hematopoietic protein kinase activating the<br />

SAPK/JNK pathway. EMBO J. 15:7013-7025.<br />

Kolesnick, R. and Xing, H.R. 2004. <strong>In</strong>flammatory<br />

bowel disease reveals the kinase activity<br />

of KSR1. J. Clin. <strong>In</strong>vest. 114:1233-1237.<br />

Kyriakis, J.M. and Avruch, J. 1996. Sounding<br />

the alarm: <strong>Protein</strong> kinase cascades activated<br />

by stress and inflamation. J. Biol. Chem.<br />

271:24313-24316.<br />

Kyriakis, J.M., App, H., Zhang, F.X., Banerjee,<br />

P., Brautigan, D.L., Rapp, U.R., and Avruch, J.<br />

1992. Raf-1 activates MAP kinase-kinase. Nature<br />

358:417-421.<br />

Kyriakis, J.M., Banerjee, P., Nikolakaki, E., Dai,<br />

T., Rubie, E.A., Ahmad, M.F., Avruch, J., and<br />

Woodgett, J.R. 1994. The stress-activated protein<br />

kinase subfamily of c-Jun kinases. Nature<br />

369:156-160.<br />

Lange-Carter, C.A., Pleiman, C.M., Gardner, A.M.,<br />

Blumer, K.J., and Johnson, G.L. 1993. A divergence<br />

in the MAP kinase regulatory network defined<br />

by MEK kinase and Raf. Science 260:315-<br />

317.<br />

Lee, J.C., Laydon, J.T., McDonnell, P.C., Gallagher,<br />

T.F., Kumar, S., Green, D., McNulty, D., Blumenthal,<br />

M.J., Heys, J.R., and Landvatter, S.W.,<br />

et al. 1994. A protein kinase involved in the regulation<br />

of inflammatory cytokine biosynthesis.<br />

Nature 372:739-746.<br />

Leung, T., Manser, E., Tan, L., and Lim, L. 1995. A<br />

novel serine/threonine kinase binding the Rasrelated<br />

RhoA GTPase which translocates the kinase<br />

to peripheral membranes. J. Biol. Chem.<br />

270:29051-29054.<br />

Lin, J.L., Chen, H.C., Fang, H.I., Robinson, D.,<br />

Kung, H.J., and Shih, H.M. 2001. MST4, a new<br />

Ste20-related kinase that mediates cell growth<br />

and transformation via modulating ERK pathway.<br />

Oncogene 20:6559-6569.<br />

Lin, L.L., Wartmann, M., Lin, A.Y., Knopf, J.L.,<br />

Seth, A., and Davis, R.J. 1993. cPLA2 is phosphorylated<br />

and activated by MAP kinase. Cell<br />

72:269-278.<br />

MacGillivray, M.K., Cruz, T.F., and McCulloch,<br />

C.A. 2000. The recruitment of the interleukin-1<br />

(IL-1) receptor-associated kinase (IRAK) into<br />

focal adhesion complexes is required for IL-<br />

1beta-induced ERK activation. J. Biol. Chem.<br />

275:23509-23515.<br />

Malinin, N.L., Boldin, M.P., Kovalenko, A.V., and<br />

Wallach, D. 1997. MAP3K-related kinase involved<br />

in NF-kappaB induction by TNF, CD95<br />

and IL-1. Nature 385:540-544.<br />

Manning, G., Whyte, D.B., Martinez, R., Hunter,<br />

T., and Sudarsanam, S. 2002. The protein kinase<br />

complement of the human genome. Science<br />

298:1912-1934.<br />

Marshall, C.J. 1995. Specificity of receptor tyrosine<br />

kinase signaling: Transient versus sustained<br />

extracellular signal-regulated kinase activation.<br />

Cell 80:179-185.<br />

McLaughlin, M.M., Kumar, S., McDonnell, P.C.,<br />

Van Horn, S., Lee, J.C., Livi, G.P., and Young,<br />

P.R. 1996. Identification of mitogen-activated<br />

protein (MAP) kinase-activated protein kinase-<br />

3, a novel substrate of CSBP p38 MAP kinase.<br />

J. Biol. Chem. 271:8488-8492.<br />

Milne, D.M., Campbell, D.G., Caudwell, F.B., and<br />

Meek, D.W. 1994. Phosphorylation of the tumor<br />

suppressor protein p53 by mitogen-activated<br />

protein kinases. J. Biol. Chem. 269:9253-<br />

9260.<br />

Milne, D.M., Campbell, L.E., Campbell, D.G., and<br />

Meek, D.W. 1995. p53 is phosphorylated in<br />

vitro and in vivo by an ultraviolet radiationinduced<br />

protein kinase characteristic of the c-<br />

Jun kinase, JNK1. J. Biol. Chem. 270:5511-<br />

5518.<br />

Moriguchi, T., Kuroyanagi, N., Yamaguchi, K., Gotoh,<br />

Y., Irie, K., Kano, T., Shirakabe, K., Muro,<br />

Y., Shibuya, H., Matsumoto, K., Nishida, E.,<br />

and Hagiwara, M. 1996. A novel kinase cascade<br />

<strong>Signal</strong><br />

<strong>Transduction</strong><br />

14.3.31<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 28


The Detection of<br />

MAPK <strong>Signal</strong>ing<br />

14.3.32<br />

mediated by mitogen-activated protein kinase<br />

kinase 6 and MKK3. J. Biol. Chem. 271:13675-<br />

13679.<br />

Morrison, D.K. and Davis, R.J. 2003. Regulation<br />

of MAP kinase signaling modules by scaffold<br />

proteins in mammals. Annu. Rev. Cell Dev. Biol.<br />

19:91-118.<br />

Morton, S., Davis, R.J., McLaren, A., and Cohen,<br />

P. 2003. A reinvestigation of the multisite phosphorylation<br />

of the transcription factor c-Jun.<br />

EMBO J. 22:3876-3886.<br />

Murphy, L.O., Smith, S., Chen, R.H., Fingar, D.C.,<br />

and Blenis, J. 2002. Molecular interpretation of<br />

ERK signal duration by immediate early gene<br />

products. Nat. Cell Biol. 4:556-564.<br />

Nakano, K., Yamauchi, J., Nakagawa, K., Itoh, H.,<br />

and Kitamura, N. 2000. NESK, a member of<br />

the germinal center kinase family that activates<br />

the c-Jun N-terminal kinase pathway and is expressed<br />

during the late stages of embryogenesis.<br />

J. Biol. Chem. 275:20533-20539.<br />

Ni, H., Wang, X.S., Diener, K., and Yao, Z. 1998.<br />

MAPKAPK5, a novel mitogen-activated protein<br />

kinase (MAPK)-activated protein kinase, is<br />

a substrate of the extracellular-regulated kinase<br />

(ERK) and p38 kinase. Biochem. Biophys. Res.<br />

Commun. 243:492-496.<br />

Noguchi, K., Kitanaka, C., Yamana, H., Kokubu,<br />

A., Mochizuki, T., and Kuchino, Y. 1999. Regulation<br />

of c-Myc through phosphorylation at Ser-<br />

62 and Ser-71 by c-Jun N-terminal kinase. J.<br />

Biol. Chem. 274:32580-32587.<br />

O’Hagan, R.C., Tozer, R.G., Symons, M., Mc-<br />

Cormick, F., and Hassell, J.A. 1996. The activity<br />

of the Ets transcription factor PEA3 is regulated<br />

by two distinct MAPK cascades. Oncogene<br />

13:1323-1333.<br />

Ono, K. and Han, J. 2000. The p38 signal transduction<br />

pathway: activation and function. Cell<br />

<strong>Signal</strong> 12:1-13.<br />

Palmer, A., Gavin, A.C., and Nebreda, A.R. 1998. A<br />

link between MAP kinase and p34(cdc2)/cyclin<br />

B during oocyte maturation: p90(rsk) phosphorylates<br />

and inactivates the p34(cdc2) inhibitory<br />

kinase Myt1. EMBO J. 17:5037-5047.<br />

Payne, D.M., Rossomando, A.J., Martino, P., Erickson,<br />

A.K., Her, J.-H., Shabanowitz, J., Hunt,<br />

D.F., Weber, M.J., and Sturgill, T.W. 1991. Identification<br />

of the regulatory phosphorylation sites<br />

in pp42/mitogen activated protein kinase (MAP<br />

kinase). EMBO J. 10:885-892.<br />

Pearson, G., English, J.M., White, M.A., and Cobb,<br />

M.H. 2001. ERK5 and ERK2 cooperate to regulate<br />

NF-kappaB and cell transformation. J. Biol.<br />

Chem. 276:7927-7931.<br />

Peraldi, P., Frodin, M., Barnier, J.V., Calleja, V.,<br />

Scimeca, J.C., Filloux, C., Calothy, G., and<br />

Van Obberghen, E. 1995. Regulation of the<br />

MAP kinase cascade in PC12 cells: B-Raf activates<br />

MEK-1 (MAP kinase or ERK kinase)<br />

and is inhibited by cAMP. FEBS Lett. 357:290-<br />

296.<br />

Pombo, C.M., Kehrl, J.H., Sanchez, I., Katz, P.,<br />

Avruch, J., Zon, L.I., Woodgett, J.R., Force, T.,<br />

and Kyriakis, J.M. 1995. Activation of the SAPK<br />

pathway by the human STE20 homologue germinal<br />

centre kinase. Nature 377:750-754.<br />

Posada, J., Yew, N., Ahn, N.G., Vande-Woude, G.F.,<br />

and Cooper, J.A. 1993. Mos stimulates MAP<br />

kinase in Xenopus oocytes and activates a MAP<br />

kinase kinase in vitro. Mol. Cell. Biol. 13:2546-<br />

2552.<br />

Raingeaud, J., Whitmarsh, A.J., Barrett, T., Derijard,<br />

B., and Davis, R.J. 1996. MKK3- and<br />

MKK6-regulated gene expression is mediated<br />

by the p38 mitogen-activated protein kinase<br />

signal transduction pathway. Mol. Cell Biol.<br />

16:1247-1255.<br />

Raman, M. and Cobb, M.H. 2003. MAP kinase<br />

modules: Many roads home. Curr. Biol.<br />

13:R886-R888.<br />

Rana, A., Gallo, K., Godowski, P., Hirai, S., Ohno,<br />

S., Zon, L., Kyriakis, J.M., and Avruch, J. 1996.<br />

The mixed lineage kinase SPRK phosphorylates<br />

and activates the stress-activated protein kinase<br />

activator, SEK-1. J. Biol. Chem. 271:19025-<br />

19028.<br />

Raviv, Z., Kalie, E., and Seger, R. 2004. MEK5<br />

and ERK5 are localized in the nuclei of resting<br />

as well as stimulated cells, while MEKK2<br />

translocates from the cytosol to the nucleus upon<br />

stimulation. J. Cell Sci. 117:1773-1784.<br />

Ray, L.B. and Sturgill, T.W. 1987. Characterization<br />

of insulin-stimulated microtubuleassociated<br />

protein kinase: Rapid isolation and<br />

stabilization of a novel serine/threonine kinase<br />

from 3T3-L1 cells. Proc. Natl. Acad. Sci. U.S.A.<br />

84:1502-1506.<br />

Robbins, D.J. and Cobb, M.H. 1992. Extracellular<br />

signal-regulated kinases 2 autophosphorylates<br />

on a subset of peptides phosphorylated in intact<br />

cells in response to insulin and nerve growth<br />

factor: analysis by peptide mapping. Mol. Biol.<br />

Cell 3:299-308.<br />

Roux, P.P. and Blenis, J. 2004. ERK and p38<br />

MAPK-activated protein kinases: A family<br />

of protein kinases with diverse biological<br />

functions. Microbiol. Mol. Biol. Rev. 68:320-<br />

344.<br />

Rubinfeld, H. and Seger, R. 2004. The ERK cascade<br />

as a prototype of MAPK signaling pathways.<br />

Methods Mol. Biol. 250:1-28.<br />

Sabourin, L.A. and Rudnicki, M.A. 1999. <strong>In</strong>duction<br />

of apoptosis by SLK, a Ste20-related kinase.<br />

Oncogene 18:7566-7575.<br />

Sakuma, H., Ikeda, A., Oka, S., Kozutsumi, Y.,<br />

Zanetta, J.P., and Kawasaki, T. 1997. Molecular<br />

cloning and functional expression of a cDNA<br />

encoding a new member of mixed lineage protein<br />

kinase from human brain. J. Biol. Chem.<br />

272:28622-28629.<br />

Salmeron, A., Ahmad, T.B., Carlile, G.W., Pappin,<br />

D., Narsimhan, R.P., and Ley, S.C. 1996. Activation<br />

of MEK-1 and SEK-1 by Tpl-2 protooncoprotein,<br />

a novel MAP kinase kinase kinase.<br />

EMBO J. 15:817-826.<br />

Sanchez, I., Hughes, R.T., Mayer, B.J., Yee, K.,<br />

Woodgett, J.R., Avruch, J., Kyriakis, J.M., and<br />

Supplement 28 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


Zon, L.I. 1994. Role of SAPK/ERK kinase-1<br />

in the stress-activated pathway regulating transcription<br />

factor c-Jun. Nature 372:794-798.<br />

Seger, R. and Krebs, E.G., 1995. The MAPK signaling<br />

cascade. FASEB J. 9:726-735.<br />

Seger, R., Ahn, N.G., Posada, J., Munar, E.S.,<br />

Jensen, A.M., Cooper, J.A., Cobb, M.H., and<br />

Krebs, E.G., 1992. Purification and characterization<br />

of MAP kinase activator(s) from epidermal<br />

growth factor stimulated A431 cells. J. Biol.<br />

Chem. 267:14373-14381.<br />

Sgouras, D.N., Athanasiou, M.A., Beal, G.J. Jr.,<br />

Fisher, R.J., Blair D.G., and Mavrothalassitis,<br />

G.J. 1995. ERF: An ETS domain protein<br />

with strong transcriptional repressor activity,<br />

can suppress ets-associated tumorigenesis and is<br />

regulated by phosphorylation during cell cycle<br />

and mitogenic stimulation. EMBO J. 14:4781-<br />

4793.<br />

Shi, C.S. and Kehrl, J.H. 1997. Activation of stressactivated<br />

protein kinase/c-Jun N-terminal kinase,<br />

but not NF-kappaB, by the tumor necrosis<br />

factor (TNF) receptor 1 through a TNF receptor–<br />

associated factor 2- and germinal center kinase<br />

related-dependent pathway. J. Biol. Chem.<br />

272:32102-32107.<br />

Stokoe, D., Campbell, D.G., Nakielny, S., Hidaka,<br />

H., Leevers, S.J., Marshall, C., and Cohen, P.<br />

1992. MAPKAP kinase-2: A novel protein kinase<br />

activated by mitogen-activated protein kinase.<br />

EMBO J. 11:3985-3994.<br />

Strahl, T., Gille, H., and Shaw, P.E. 1996. Selective<br />

response of ternary complex factor Sap1a to<br />

different mitogen-activated protein kinase subgroups.<br />

Proc. Natl. Acad. Sci. U.S.A. 93:11563-<br />

11568.<br />

Sturgill, T.W., Ray, L.B., Erikson, E., and Maller,<br />

J.L. 1988. <strong>In</strong>sulin-stimulated MAP-2 kinase<br />

phosphorylates and activates ribosomal protein<br />

S6 kinase II. Nature 334:715-718.<br />

Su, Y.C., Han, J., Xu, S., Cobb, M., and Skolnik,<br />

E.Y. 1997. NIK is a new Ste20-related kinase<br />

that binds NCK and MEKK1 and activates the<br />

SAPK/JNK cascade via a conserved regulatory<br />

domain. EMBO J. 16:1279-1290.<br />

Sun, W., Wei, X., Kesavan, K., Garrington, T.P.,<br />

Fan, R., Mei, J., Anderson, S.M., Gelfand,<br />

E.W., and Johnson, G.L. 2003. MEK kinase 2<br />

and the adaptor protein Lad regulate extracellular<br />

signal-regulated kinase 5 activation by epidermal<br />

growth factor via Src. Mol. Cell Biol.<br />

23:2298-2308.<br />

Terasawa, K., Okazaki, K., and Nishida, E. 2003.<br />

Regulation of c-Fos and Fra-1 by the MEK5-<br />

ERK5 pathway. Genes Cells 8:263-273.<br />

Tournier, C., Whitmarsh, A.J., Cavanagh, J., Barrett,<br />

T., and Davis, R.J. 1997. Mitogen-activated<br />

protein kinase kinase 7 is an activator of the c-<br />

Jun NH2-terminal kinase. Proc. Natl. Acad. Sci.<br />

U.S.A 94:7337-7342.<br />

Tung, R.M. and Blenis, J. 1997. A novel human<br />

SPS1/STE20 homologue, KHS, activates Jun Nterminal<br />

kinase. Oncogene 14:653-659.<br />

Varfolomeev, E.E. and Ashkenazi, A. 2004. Tumor<br />

necrosis factor: An apoptosis JuNKie? Cell<br />

116:491-497.<br />

Wang, X.S., Diener, K., Tan, T.H., and Yao, Z.<br />

1998. MAPKKK6, a novel mitogen-activated<br />

protein kinase kinase kinase, that associates with<br />

MAPKKK5. Biochem. Biophys. Res. Commun.<br />

253:33-37.<br />

Wang, X.Z. and Ron, D. 1996. Stress-induced phosphorylation<br />

and activation of the transcription<br />

factor CHOP (GADD153) by p38 MAP Kinase.<br />

Science 272:1347-1349.<br />

Waskiewicz, A.J., Flynn, A., Proud, C.G., and<br />

Cooper, J.A. 1997. Mitogen-activated protein<br />

kinases activate the serine/threonine kinases<br />

Mnk1 and Mnk2. EMBO J. 16:1909-1920.<br />

Whitmarsh, A.J., Shore, P., Sharrocks, A.D., and<br />

Davis, R.J. 1995. <strong>In</strong>tegration of MAP kinase signal<br />

transduction pathways at the serum response<br />

element. Science 269:403-407.<br />

Xu, Z., Maroney, A.C., Dobrzanski, P., Kukekov,<br />

N.V., and Greene, L.A. 2001. The MLK family<br />

mediates c-Jun N-terminal kinase activation<br />

in neuronal apoptosis. Mol. Cell Biol. 21:4713-<br />

4724.<br />

Yan, M., Dai, T., Deak, J.C., Kyriakis, J.M., Zon,<br />

L.I., Woodgett, J.R., and Templeton, D.J. 1994.<br />

Activation of stress-activated protein kinase by<br />

MEKK1 phosphorylation of its activator SEK1.<br />

Nature 372:798-800.<br />

Yang, B.S., Hauser, C.A., Henkel, G., Colman,<br />

M.S., Van Beveren, C., Stacey, K.J., Hume,<br />

D.A., Maki, R.A., and Ostrowski, M.C. 1996.<br />

Ras-mediated phosphorylation of a conserved<br />

threonine residue enhances the transactivation<br />

activities of c-Ets1 and c-Ets2. Mol. Cell Biol.<br />

16:538-547.<br />

Yang, C.C., Ornatsky, O.I., McDermott, J.C., Cruz,<br />

T.F., and Prody, C.A. 1998. <strong>In</strong>teraction of myocyte<br />

enhancer factor 2 (MEF2) with a mitogenactivated<br />

protein kinase, ERK5/BMK1. Nucl.<br />

Acids Res. 26:4771-4777.<br />

Yang, J.J. 2002. Mixed lineage kinase ZAK utilizing<br />

MKK7 and not MKK4 to activate the<br />

c-Jun N-terminal kinase and playing a role in<br />

the cell arrest. Biochem. Biophys. Res. Commun.<br />

297:105-110.<br />

Yao, Z. and Seger, R. 2004. The molecular mechanism<br />

of MAPK/ERK inactivation. Curr. Genomics<br />

5:385-393.<br />

Yao, Z., Zhou, G., Wang, X.S., Brown, A., Diener,<br />

K., Gan, H., and Tan, T.H. 1999. A novel human<br />

STE20-related protein kinase, HGK, that specifically<br />

activates the c-Jun N-terminal kinase signaling<br />

pathway. J. Biol. Chem. 274:2118-2125.<br />

Yung, Y., Dolginov, Y., Yao, Z., Rubinfeld, H.,<br />

Michael, D., Hanoch, T., Roubini, E., Lando,<br />

Z., Zharhary, D., and Seger, R. 1997. Detection<br />

of ERK activation by a novel monoclonal antibody.<br />

FEBS Lett. 408:292-296.<br />

Zhang, S., Han, J., Sells, M.A., Chernoff, J.,<br />

Knaus, U.G., Ulevitch, R.J., and Bokoch,<br />

G.M. 1995. Rho family GTPases regulate p38<br />

<strong>Signal</strong><br />

<strong>Transduction</strong><br />

14.3.33<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 28


The Detection of<br />

MAPK <strong>Signal</strong>ing<br />

14.3.34<br />

mitogen-activated protein kinase through the<br />

downstream mediator Pak1. J. Biol. Chem.<br />

270:23934-23936.<br />

Zhou, G., Bao, Z.Q., and Dixon, J.E. 1995.<br />

Components of a new human protein kinase<br />

signal transduction pathway. J. Biol. Chem.<br />

270:12665-12669.<br />

Contributed by Yoav Shaul and<br />

Rony Seger<br />

Department of Biological Regulation,<br />

The Weizmann <strong>In</strong>stitute of Science<br />

Rehovot, Israel<br />

Supplement 28 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


����������������������������� �� ������<br />

����������������������������������������������<br />

����� ����� ���������� �� � �� ��������� ���� ������ ��� ��������� ������ ��� ��� ����� ���� ����������<br />

���������������������������������������������������������������������������������������<br />

�������������������������� �� ��������������������������������������������������������������<br />

�����������������������������������������������������������������������������������<br />

������������������������������������ �� � ����������������������������������������������<br />

���������������������������������������������������������������������������������������<br />

�����������������������������������������������������������������������������������������������<br />

�����������������������������������������������������������������������������������������<br />

�������������������������<br />

������������������������������������������������������ �� � ��������������������������������<br />

�����������������������������������������������������������������������������������������<br />

����������������������������������������������������������������������������������<br />

��������������������������������������������������������������������������������<br />

��������������������������������������������������������������������������������������<br />

����������������������������������������������������������������������������������������<br />

����������<br />

�������������������� �� �����������������∼����������������������������������������������<br />

�����������������������������������������������������������������������������������<br />

�������������������������������� �� �������������������������������������������������������<br />

���������������������������������������������������������������������������������<br />

������������������� �� ���������������������������������������������������������������������<br />

����������������������������<br />

����������������������������� �� ������������������<br />

��������������<br />

��������������������������������������������������������������������������������������������<br />

��� ��������� ������� �������������� ������������ ���� ������������ ������ ���� ���������� ��<br />

�������������������������������������������������������������������������������������������<br />

������������������������������������������������������������������������������������<br />

������������������������������������������������������<br />

���������<br />

��������������������������<br />

���������������������������������������������������������������������������<br />

������������������������������������������������������������������������<br />

���������������������������������°�<br />

����������������������� � �� �����������������������������<br />

������������������������������������������������������������������������������<br />

������������������<br />

����������������������������������������������������<br />

������������������������������������������<br />

�������������������������������������<br />

�����������������������������������������°�<br />

�������������������������������<br />

���������������������������������������������������������������<br />

������������������������������������<br />

������������������������������������������������������<br />

�������������������������������������������<br />

���������<br />

�����<br />

��������<br />

������<br />

�������������<br />

�������<br />

���������������<br />

������<br />

������������


��������������<br />

����� �� ������<br />

�����������������<br />

������<br />

����������������<br />

����������������������������������������������������������������������������������<br />

���������������������������������°�<br />

��������������������×����×�� ⁄����������������������������������°���������������<br />

���������������������������������������������������������������������<br />

������������������������������������������������������������<br />

���������������������������������������������������������������������������������������<br />

��������������������������������������������������������������<br />

������ ���� �������� ������������ ������� ��� ���������� ��� �� ����������� ��°��� ��� �� �<br />

���������������������������������������������������������������������������������<br />

������������ ���������������������<br />

����������������������<br />

��� ������������������������������������������������������������������<br />

�����������������������������������������������������������������������������������������<br />

��������������������������������������������������������������������������������������������<br />

��������������������������������������������������������������������������������������������<br />

��������������������������������������������������������������������������������������<br />

������ ������������ ��� ������ ��� �������������� ������� ���� ������� ���� ���������� ����� ��<br />

��������������������������������������������������<br />

������������������<br />

���� �������������������������������������������������������������������������������<br />

�������������������°����������������������������������������������������������<br />

��������������������������������������������������<br />

���������������������������������������������������������������������������������<br />

���������������������������������<br />

���� ���������������������������������������������������������������������������������<br />

��������������������������������������������������������������������<br />

���������������������<br />

���� ����������������������������������������������������������������������������������<br />

��������������������������������������������������������������������������������<br />

���������������������������������������������������������������������������<br />

���� ����������������������������������������������������������������������������� ��� �����������������������������������������������������������������������������������<br />

������������������������������������������������������������������������ �������������������������������������������������������������������������������������������<br />

������������������������������������������������������������������������������������������������� �����������������������������������������������������������������������������������������<br />

�������������������������������������������������������������������������������������������


������������������<br />

���� ����������������������������������������������������������������������������������<br />

������������������������������������������������������������������������������������<br />

���������������������������������������������������<br />

�������������������������������������������������������������������������������������<br />

������������������������������������������������������������������������������<br />

���� ��������������������������������������������������������������������������������<br />

�����������������������������������������<br />

������������������������������������������������������������������������������������������� ���� �������� ������� ����� ������������� ���������� ���������� ��� ���� �������� ������ ���������<br />

�������������������������������<br />

���� �������������������������������������������������������������������������������������<br />

��������������������������������������������������������������������������������<br />

������������������������������������������������������������������������°���������<br />

������������������������������������������������������������������������������������������<br />

�������������������������������������������<br />

��� �� ���� ����������� ��� ������������ ������������� ��� ���������� ���� ����� ������ �������� ��<br />

������������������������������������������������������������������������������������������<br />

������� ������ ������� ����������� ������� ���������������������������������������������<br />

��������������� �������� ��� �������� ����� �������� ��� ���� ����� ����������� ��� ��������<br />

����������������������������������������������������������������������������������������������<br />

��������������������<br />

���������������������<br />

���� ���������������������������������������������������������������������������������������<br />

�����������������������������������������������������������������<br />

�����������������������������������������������<br />

���� ��������������������������������������������������������������������������������������<br />

���������������������������������������������������������������������������������<br />

������������������������������������������������<br />

���� ����������������������������������� � ���������������������������������������������������<br />

�������������������������������������������������������������°��<br />

����������������������������������������������������<br />

���� ������������������������������������������������������������������������������������<br />

�������������������������°��<br />

������������������������������������������������������������������������������������������<br />

������������������������������������������������������������<br />

�����������������������������������������������������������������������������������������������<br />

���� ���������������� ������ ��� ������ ���� ����������� ��������� ��������������� �� ������������<br />

�������������������������������������������������������������������������������������<br />

�����������������������������������������������������������������������°�����������������<br />

�����<br />

����������������������������������������������������������������������������������������������<br />

���������������������������������������������������������µ��������������������������������<br />

��������� ������������ ������������ ��� ����� ������� ��� ���� ������� ������ ��� ���������������<br />

�������������������������������������������������������������<br />

���� �������������������������������������������������������������������������������������<br />

�������������������������������������<br />

������<br />

�������������<br />

�������<br />

���������������<br />

������<br />

��������������������������������� ������������


���������<br />

��������<br />

��������������<br />

����� �� ������<br />

�����������������<br />

������<br />

�����������������������������������������������������������������������������������������������<br />

������������������������������������������������������������������������������������������������<br />

������������������������������������������������������������������������������������������<br />

�����������������������������<br />

���� �������������������������������������������������������������������������������������<br />

������������������������������������������������������°���������������������������<br />

��������������������������������<br />

������������������������������������������������������������������������������������������<br />

�����������������������������������������������������������������������������������������������<br />

�����������������������������������������������������������������������������������������������<br />

��������������������������������������������������������������������������������������������<br />

�������������������������������������������������������������������������������������������<br />

������������������������������������������������������������������������������������������<br />

��������������������������������������������������������������������������������������������<br />

��������������������������������������������������������������������<br />

����������������������������������������������<br />

�����������������������������<br />

�����������������������������������<br />

������������������������������������������<br />

����������������������������������������������������������������������<br />

������������������<br />

��� �������������������������������������������������������<br />

���� �����������������������������������������������������������������������������������<br />

����������������������������������������������������������������������������������<br />

����������������������������������������������������������������������������������<br />

���� �����������������������������������������������������������������������������������<br />

����������������������������������������� ��� ��������������������������������������������������������������������������������<br />

��� ����������������������������������������������������������������������������������<br />

��������°������������������������°������������������������������������<br />

������������������������������������������µ����������������������������������������������<br />

�����������������×�����°��<br />

��� ������������������������������������������������������������������������������<br />

�������<br />

����������������������<br />

�������������������������������������������������������������������������������������������������<br />

���������������������������������������������������<br />

�����������������������������������������������<br />

������������������������������<br />

���������������������<br />

�������������������������������������������������−��°��<br />

�����������������<br />

����������������������������������������������������������������<br />

����������������������������������������<br />

������������ ���������������������������������


�����������<br />

���������������������������������������������<br />

���������<br />

���������������������<br />

������������������������������������������������������������<br />

�������������������������������������������<br />

����������������������������������°��������������<br />

����������������������������������������������������������������������������������������<br />

��������������������������������������������������<br />

����������������������������������������������������������������������������<br />

�������������������������������������������������������������������������<br />

��������������������������������<br />

�������������������������������<br />

�����������������������������������������������<br />

���������<br />

������������������������������������������������������������<br />

���������������������<br />

�������������������������������������������<br />

����������������������������������°��������������<br />

����������������������������������������������������������������������������<br />

��������������������������������������������������<br />

�����������������������������<br />

����������������������������<br />

��������������<br />

�����������<br />

���������������������������������������������<br />

���������<br />

���������������������<br />

������������������������������������������������������������<br />

�������������������������������������������<br />

����������������������������������°��������������<br />

����������������������������������������������������������������������������<br />

����������������<br />

��������������<br />

�����������⋅������������������������<br />

���������������������<br />

������������⋅��������������������������������������������������������������������������<br />

�������������������������������������������−��°��<br />

��������������������������<br />

����������������������������������������������� ���<br />

������������������������������������<br />

����������������������������������������<br />

������������������������������������������������<br />

���������������������������������������������������<br />

��������������������������������������������������������<br />

������������������⋅������������������������<br />

����� �������������<br />

��������������������������������������������������<br />

����������������������������������������������������<br />

��������������������������������� ������������<br />

������<br />

������<br />

�������������<br />

�������<br />

���������������


��������������<br />

����� �� ������<br />

�����������������<br />

������<br />

����������<br />

����������������������<br />

�������������������������������������������<br />

��������� ���� ������������� ��������� ����� ���� ���������������������������������������������<br />

����������������������������������������������<br />

��������� �������������� ��� ���������������� ��<br />

����������������������������������������������<br />

������������������������������������������������<br />

������� ��� ����� ���������� �������� ���������� ��<br />

������������������������������������������������<br />

��������������������������������������������<br />

������������������������������������������������<br />

���������������������������������������������<br />

������������������������������������������<br />

������������������������������������������������� ��� ���������� ��������� ∼��� ��� ������������<br />

������������������������������������������<br />

����������������������������������������<br />

�����������������������������������������<br />

������ ���� ������� ��� ����� ��� �������� ��� ���<br />

�������������������������������������������������<br />

��������������������������������������������������<br />

�������������������������������������������������<br />

�����������������������������������������������<br />

���������������������������������������������� ����������������������������������������������� �������������������������������������������������<br />

������������������������������������������������ ���������������������������������������������� ��������������������������������������������<br />

�������������������������������������������������<br />

������������������������������������������������<br />

�������� ���� ���� ���������� ��� ���� ����������<br />

��������������������������������������������<br />

�������������������<br />

�������������� ��� �� ��� ������� ������������<br />

�����������������������������������������������<br />

�������������������������������������������<br />

�������������� ��������� ���� ����� ��� ������<br />

�������� ��� �� ��������� �������� ����������� ��<br />

������������������������������������������<br />

����������������������������������������������<br />

���������������������������������������������<br />

���� ���������� ���������� ����� �� ������� ���<br />

���������������������������������������������<br />

���������� ��������� ��� ������ ������ ��������<br />

���������������������������������������������<br />

���������������������������������������������<br />

�����������������������������������������������<br />

����������������������������������������������<br />

����������������������������������������������<br />

������� �������� ��� �������� ������ ��� ��������<br />

������������������������������������������������<br />

�������������������������������������������������<br />

����� ��� ������ ��� ����������� ��� �������������<br />

����������������������������������������������<br />

�����������<br />

�������������������� �� ����������������������<br />

�����������������������������������������������<br />

������������������������������������������������<br />

�����������������������������������������������<br />

����������������������������������������� �� �����<br />

��������������������������<br />

�����������������������������������������������<br />

��������������������������������������������<br />

��������������������������������������������<br />

���������������������������������������������<br />

������� ������� ��� �������� �������� ������ �<br />

���������������������������������������������<br />

������������ ��������� ���� ������� �� �����������<br />

�����������������������������������������������<br />

����������������������������������������������<br />

������������������������������������������������<br />

������ ��� ����������� �������� �������� ������ ���<br />

����������������������������������������<br />

��������������������������������������������<br />

�����������������<br />

��������������������������������������������<br />

���������������������������������������������<br />

�������� ��� �������� �������������� ��� ���� �������<br />

��������������������������������������������������<br />

����������������������������������������������<br />

����������������������������������������������<br />

�������������������������������������������������<br />

���� ���� ����� ���� ����� ������������ ������� ���<br />

��������������������������������������������<br />

����������� ������ ���� ������ ���� ������������<br />

��������� ��� ������ �������� ���� ������ ��������<br />

�������������������������������������������������<br />

������������������������<br />

�����������������������������������������<br />

���������������������������������������������<br />

���������������������������������������������<br />

��������� ����� ���� ����� ��� ���� ������ ���� ��<br />

�������������������������������������������<br />

� ⁄����������������������<br />

������������������������� ������ ������<br />

����������������������������������������������<br />

������������������������������������������������<br />

������ ������ �� ���� ����������� ��� �����������<br />

�����������������������������������������������<br />

���������������������������������������������<br />

��������������������������������������������<br />

�������������������������������������������<br />

�����������������������������������������������<br />

���������������������������������������������<br />

����������������������������������������������<br />

����������������������������������������������<br />

������������������������������������������������<br />

������������ ���������������������������������


������������������������������������������������<br />

������������������������������������������<br />

�������� ���������������������������������<br />

������������������������������������������<br />

�����������������������������������������������<br />

�����������������������������������������������<br />

����������������<br />

�������������������������������������������<br />

�����������������������������������������������<br />

���������� ��� �������� �������� ���������������<br />

��������������������������������������������<br />

������� ����� ��������� ���� ��� ���������� ��<br />

���������������������������������������������<br />

�����������������������°��������������������<br />

��������������������������������������������<br />

���������������������������������������������� �+<br />

������ �+ ����������������������������������������<br />

�����������������������������������������������<br />

����������������������������������������������<br />

��������������� ���� ��������� ��� ��� ������<br />

������������������������������������������������<br />

�������������������������������������������<br />

����� ��� �������� ���� ������ ��������� �����<br />

���������������������������������������������<br />

����������������������������������������������������<br />

����������������������������������������������<br />

�����������������������������������������������<br />

����������������������������<br />

�������������������<br />

�������������������������������������������<br />

����������������������������������������������<br />

����������������������������������������∼�����<br />

�������������������<br />

�������������������<br />

������������������������������������������<br />

���������������� �� �����������������������������<br />

���������������������������������������������������<br />

�� ���������� ��������� ��� ��� ���������� ��� ����<br />

�������� �������� ���� ��������� ��������� ��� ���<br />

�����������������������������������������������<br />

���������������������������������������������<br />

�������������������������������������������������<br />

��������������������������������������������������<br />

�������������������������������°�����−��°�<br />

����������� ��������� ���� ����� ������� ������ ��<br />

����������������������������������������������<br />

�����������������������������������������������<br />

����������������<br />

����������������<br />

���������������������������������������������������<br />

�����������������������������������������������<br />

�������������������������������������������<br />

����������������������������������������������������<br />

������ ����� ������ ������������ ��� ������������<br />

���������������������������������������������<br />

�����������������������������������������������<br />

�����������������������������������������������<br />

������� ���� �����������������������������������<br />

����������������������������������������������<br />

��������������������������������������������<br />

���������������������������������������������<br />

����������������������<br />

�������� ������ �������� ���� ���� �������� ��� �����<br />

���������������������� ��������������� ��� ����<br />

�����������������������������������������������<br />

��������������������������������������<br />

������������������������������������<br />

������������������<br />

����������������������<br />

������<br />

�������������<br />

�������<br />

���������������<br />

������<br />

��������������������������������� ������������


Phosphoamino Acid Analysis<br />

It is often valuable to identify the phosphorylated residue in a protein. <strong>In</strong> the case of<br />

proteins phosphorylated at serine, threonine, or tyrosine, this is readily accomplished by<br />

partial acid hydrolysis in HCl followed by two-dimensional thin-layer electrophoresis of<br />

the labeled phosphoamino acid (see Basic Protocol). Phosphothreonine and phosphotyrosine<br />

are more stable to hydrolysis in alkali than are RNA and phosphoserine. Therefore,<br />

mild alkaline hydrolysis of protein samples can be used to enhance the detection of<br />

phosphothreonine and phosphotyrosine (see Alternate Protocol).<br />

Although this procedure can be carried out with a protein eluted from a preparative gel<br />

and concentrated by trichloroacetic acid (TCA) or acetone precipitation, it is most easily<br />

accomplished by transfer of the protein of interest to a PVDF membrane. This technique<br />

is obviously not ideal if the protein being studied does not transfer efficiently.<br />

NOTE: Wear gloves and use blunt-end forceps to handle membranes.<br />

CAUTION: When working with radioactivity, take appropriate precautions to avoid<br />

contamination of the experimenter and the surroundings. Carry out the experiment and<br />

dispose of wastes in an appropriately designated area, following the guidelines provided<br />

by the local radiation safety department (also see APPENDIX 1D).<br />

ACID HYDROLYSIS AND TWO-DIMENSIONAL ELECTROPHORETIC<br />

ANALYSIS OF PHOSPHOAMINO ACIDS<br />

The protein to be acid hydrolyzed is transferred to a PVDF membrane using the same<br />

technique used for immunoblotting (UNIT 6.2) or for microsequencing. It is valuable, but<br />

not absolutely essential, to keep the filter wet following transfer. Following acid hydrolysis,<br />

phosphoamino acids are separated by two-dimensional thin-layer electrophoresis.<br />

Because electrophoresis equipment differs considerably in design, the details of the<br />

assembly and placement of the plate are not discussed here. It is assumed that a suitable<br />

apparatus is available for use by an experienced operator. Electrophoresis conditions are<br />

described for using the HTLE 7000 (CBS Scientific). They are almost certainly not correct<br />

for other equipment and will need to be altered according to the equipment manufacturer’s<br />

directions.<br />

Materials<br />

32P-labeled phosphoprotein (UNIT 14.4)<br />

<strong>In</strong>dia ink solution: 1 µl/ml <strong>In</strong>dia ink in TBS (UNIT 14.4)/0.02% (v/v) Tween 20,<br />

pH 6.5 (prepare fresh or store indefinitely at room temperature); or radioactive<br />

or phosphorescent alignment markers<br />

6 M HCl<br />

Phosphoamino acid standards mixture (see recipe)<br />

pH 1.9 electrophoresis buffer (see recipe)<br />

pH 3.5 electrophoresis buffer (see recipe)<br />

0.25% (w/v) ninhydrin in acetone in a freon (aerosol, gas-driven) atomizer/sprayer<br />

PVDF membrane (Immobilon-P, Millipore)<br />

110° oven<br />

Screw-cap microcentrifuge tubes<br />

20 cm × 20 cm × 100 µm glass-backed cellulose thin-layer chromatography<br />

plate (EM Sciences)<br />

Large blotter: two 25 × 25–cm layers of Whatman 3MM paper sewn together at<br />

the edges, with four 2-cm holes that align with the origins on the TLC plate<br />

Contributed by Bartholomew M. Sefton<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology (1999) 14.5.1-14.5.8<br />

Copyright © 1999 by John Wiley & Sons, <strong>In</strong>c.<br />

UNIT 14.5<br />

BASIC<br />

PROTOCOL<br />

<strong>Signal</strong><br />

<strong>Transduction</strong>:<br />

<strong>Protein</strong><br />

Phosphorylation<br />

14.5.1<br />

Supplement 3


Phosphoamino<br />

Acid Analysis<br />

14.5.2<br />

Glass tray or plastic box<br />

Whatman 3MM paper<br />

Thin-layer electrophoresis apparatus (e.g., HTLE 7000, CBS Scientific)<br />

Fan<br />

Small blotters: 4 × 25–cm, 5 × 25–cm, and 10 × 25–cm pieces of Whatman<br />

3MM paper<br />

50° to 80°C drying oven<br />

Sheets of transparency film for overhead projector<br />

Additional reagents and equipment for SDS-PAGE (UNIT 6.1), immunoblotting (UNIT<br />

6.2), and autoradiography (UNIT 6.3)<br />

Prepare sample<br />

1. Run radiolabeled phosphoprotein on a preparative SDS-polyacrylamide gel (UNIT 6.1).<br />

It is difficult to obtain good results with 0.5 ml water.<br />

Place the piece of filter paper in a screw-cap microcentrifuge tube.<br />

Keep the excised piece as small as possible.<br />

Hydrolyze sample<br />

5. Add enough 6 M HCl to submerge the piece of filter. Screw the cap on the tube tightly<br />

and incubate 60 min in 110°C oven.<br />

6. Let cool. Microcentrifuge 2 min at maximum speed, room temperature. Transfer the<br />

liquid hydrolysate to a fresh microcentrifuge tube and dry with a Speedvac evaporator.<br />

Drying takes ∼2 hr. Simultaneous drying of the hydrolysate and deblocked oligonucleotides<br />

in NH 4 OH must be avoided, as this will generate a cloud of ammonium chloride that will<br />

collect in the centrifuge tube and render the hydrolysate unsuitable for thin-layer electrophoresis.<br />

7. Dissolve the sample in 6 to 10 µl water by vortexing vigorously. Microcentrifuge 5<br />

min at maximum speed.<br />

Prepare plate for first-dimension electrophoresis<br />

8. Spot 25% to 50% of the sample, in 0.25- to 0.50-µl aliquots, on one origin of a 20<br />

cm × 20 cm × 100 µm glass-backed cellulose thin-layer chromatography plate (see<br />

Fig. 14.5.1 for arrangement of samples). Between each application, dry the sample<br />

spot with compressed air delivered through a Pasteur pipet plugged with cotton.<br />

Use long, thin plastic micropipet loading tips for loading, and do not let the tip touch the<br />

plate.<br />

Four samples can be analyzed simultaneously. The complete hydrolysate can be spotted on<br />

a single origin, but some streaking in the first dimension may be observed due to<br />

overloading. This problem can be avoided by using a fraction of the sample.<br />

Supplement 3 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


A<br />

C<br />

8 cm 3 cm<br />

plate with samples<br />

applied at 4 origins (+)<br />

blotter applied to plate<br />

in order to wet it<br />

8 cm<br />

3 cm<br />

9. Spot 1 µl nonradioactive phosphoamino acid standards mixture (containing phosphoserine,<br />

phosphothreonine, and phosphotyrosine) on top of each sample in 0.25to<br />

0.50-µl aliquots as above.<br />

10. Wet the large blotter (with four holes) by submerging it in pH 1.9 electrophoresis<br />

buffer in a large glass tray or plastic box. Briefly allow the excess buffer to drain off.<br />

Lower the wet blotter onto the prespotted plate with the origins on the plate in the<br />

centers of the four holes in the blotter (Fig. 14.5.1). Press on the blotter gently to<br />

achieve even wetting of the cellulose and concentration of the samples. When the<br />

plate is uniformly wet, remove the blotter.<br />

B<br />

D<br />

25 cm<br />

first-dimension blotter<br />

for electrophoresis at pH 1.9<br />

phosphoamino acids<br />

results of first-dimension<br />

electrophoresis at pH 1.9<br />

25 cm<br />

Figure 14.5.1 First-dimension electrophoretic separation of phosphoamino acids at pH 1.9. (A)<br />

Positions of the four origins on a single 20 × 20–cm plate; (B) blotter used for wetting the plate with<br />

pH 1.9 electrophoresis buffer; (C) placement of the blotter on the plate (underneath; indicated by<br />

dashed outline); and (D) orientation of the plate between the + and − electrodes with the positions<br />

of the phosphoamino acids after electrophoresis.<br />

The blotter should be quite damp but not sopping wet. Excess buffer can be wicked off onto<br />

filter paper.<br />

Areas of the plate that are too dry can be seen through the blotter and will appear to be<br />

whiter than the rest of the plate. If this happens, dab the blotter with a Kimwipe wetted<br />

with pH 1.9 electrophoresis buffer. If there are puddles of buffer on the plate, let them dry<br />

before carrying out electrophoresis.<br />

<strong>Signal</strong><br />

<strong>Transduction</strong>:<br />

<strong>Protein</strong><br />

Phosphorylation<br />

14.5.3<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 3


Phosphoamino<br />

Acid Analysis<br />

14.5.4<br />

A<br />

C<br />

25 cm<br />

second-dimension blotters<br />

for electrophoresis at pH 3.5<br />

90 o counterclockwise<br />

rotation of plate<br />

10 cm<br />

5 cm<br />

4 cm<br />

11. Place the thin-layer plate in the electrophoresis apparatus and overlap 0.5 cm of the<br />

right and left sides of the plate with wicks made of Whatman 3MM paper. If the<br />

apparatus has an air bag, be sure to inflate it. Close the cover and start electrophoresis.<br />

With an HTLE 7000, double-thickness Whatman 3MM wicks, and a plate with four<br />

samples, electrophorese 20 min at 1.5 kV.<br />

B<br />

D<br />

blotters applied to plate<br />

in order to wet it<br />

phosphamino acids<br />

results of second-dimension<br />

electrophoresis at pH 3.5 showing<br />

ninhydrin-stained standards<br />

Figure 14.5.2 Second-dimension electrophoretic separation of phosphoamino acids at pH 3.5. (A)<br />

The three pieces of Whatman 3MM paper used for wetting the plate with pH 3.5 electrophoresis buffer;<br />

(B) proper placement of the blotters on the plate (underneath; indicated by dashed outline); (C)<br />

reorientation of the plate for electrophoresis in the second dimension; and (D) orientation of the plate<br />

between the + and - electrodes with the position of the phosphoamino acids after electrophoresis.<br />

For the HTLE 7000 apparatus, use folded-over Whatman 3MM wicks that are 20 cm wide<br />

(the same as the plate) and not overly wet. Overly wet wicks will flood the plate and cause<br />

sample diffusion.<br />

For other electrophoresis apparatuses the appropriate duration of electrophoresis can be<br />

determined empirically by examining the rate of migration of the phosphoamino acid<br />

standards.<br />

Supplement 3 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


pH 3.5<br />

pH 1.9<br />

12. Following electrophoresis, remove the plate and quickly air dry with a fan without<br />

heating.<br />

It takes ∼20 min to dry the plate.<br />

phosphoserine<br />

phosphothreonine<br />

phosphotyrosine<br />

phosphopeptides generated<br />

by partial hydrolysis<br />

origin<br />

Figure 14.5.3 Hypothetical autoradiogram of a two-dimensional separation. Four samples of<br />

acid-hydrolyzed, 32 P-labeled proteins are applied at the origins, one in each of the four quandrants.<br />

This diagram shows the origins, the directions of electrophoresis, the positions of phosphoserine,<br />

phosphothreonine, and phosphotyrosine, the position of P i, and the position of partially hydrolyzed<br />

fragments of the proteins for the upper right-hand sample. Every protein generates different partial<br />

hydrolysis peptide fragments.<br />

Perform second-dimension electrophoresis<br />

13. Wet the small blotters in pH 3.5 electrophoresis buffer and use them to wet the plate using<br />

the method described in step 10 to achieve even wetting without puddling (Fig. 14.5.2).<br />

After electrophoresis at pH 1.9, phosphoamino acids are present as a streak extending from<br />

the origin towards the + electrode. Blotters are not applied directly over the phosphoamino<br />

acids to prevent sample blurring or smearing.<br />

14. Remove the blotters, rotate the plate 90° counterclockwise, and electrophorese 16<br />

min at 1.3 kV in pH 3.5 electrophoresis buffer if using the HTLE 7000 apparatus.<br />

15. At the end of the electrophoresis run, remove the plate and dry 20 to 30 min in an<br />

oven at 50° to 80°C. When dry, spray with 0.25% ninhydrin in acetone, then reheat<br />

in the oven 5 to 10 min to visualize the phosphoamino acid standards.<br />

16. Place radioactive or phosphorescent alignment marks on the plate and autoradiograph<br />

with an intensifying screen overnight to 10 days at −70°C.<br />

17. Following autoradiography, trace the alignment markers and the stained phosphoamino<br />

acid markers onto a transparent sheet used for overhead projectors. Save this template.<br />

Align the film with the plate and identify radioactive phosphoamino acids (Fig. 14.5.3).<br />

P i<br />

Use of fluorography or autoradiography to detect the labeled phosphoamino acids is<br />

preferable to use of a phosphorimager. The image on film is precisely the same size as the<br />

thin-layer plate, which allows the transparent film to be overlaid on the plate for an<br />

unambiguous spot identification. A phosphorimager can subsequently be used for quantification.<br />

<strong>Signal</strong><br />

<strong>Transduction</strong>:<br />

<strong>Protein</strong><br />

Phosphorylation<br />

14.5.5<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 3


ALTERNATE<br />

PROTOCOL<br />

Phosphoamino<br />

Acid Analysis<br />

14.5.6<br />

ALKALI TREATMENT TO ENHANCE DETECTION OF TYR- AND<br />

THR-PHOSPHORYLATED PROTEINS BLOTTED ONTO FILTERS<br />

Phosphothreonine and phosphotyrosine are much more stable to hydrolysis in alkali than<br />

RNA or phosphoserine. Detection of proteins containing phosphothreonine and phosphotyrosine<br />

in impure samples containing 32P-labeled RNA and serine-phosphorylated<br />

proteins can often be enhanced by mild alkaline hydrolysis of gel-fractionated samples.<br />

Although this technique was first developed for the treatment of fixed polyacrylamide<br />

gels, it is much more easily performed with proteins that have been first transferred to a<br />

PVDF membrane.<br />

Alkaline hydrolysis does not preclude subsequent phosphoamino acid analysis. A band<br />

from a blot that has been treated with alkali can be excised and subjected to acid hydrolysis<br />

as described in the Basic Protocol.<br />

Additional Materials (also see Basic Protocol)<br />

1 M KOH<br />

TN buffer: 10 mM Tris⋅Cl (pH 7.4 at room temperature)/0.15 M NaCl<br />

1 M Tris⋅Cl, pH 7.0 at room temperature<br />

Covered plastic container (e.g., Tupperware box)<br />

55°C oven or water bath<br />

1. Run radiolabeled sample on a preparative SDS–polyacrylamide gel and transfer<br />

proteins electrophoretically to a PVDF membrane (see Basic Protocol steps 1 and 2).<br />

A band containing as few as 10 cpm is detectable under optimal conditions with this<br />

technique.<br />

A nylon membrane may be used in place of a PVDF membrane, but in that case, the bands<br />

cannot subsequently be analyzed by acid hydrolysis, as nylon membrane will dissolve in 6<br />

M HCl.<br />

2. Wash membrane thoroughly with water: three 2-min incubations in 1 liter water are<br />

sufficient.<br />

These washes remove buffer and detergent.<br />

3. <strong>In</strong>cubate membrane 120 min at 55°C in an oven or water bath in sufficient 1 M KOH<br />

to cover the filter in a covered Tupperware container.<br />

4. Discard KOH. Wash membrane and neutralize remaining KOH by rinsing once for 5<br />

min in 500 ml TN buffer, once for 5 min in 500 ml of 1 M Tris⋅Cl (pH 7.0), and twice<br />

for 5 min in 500 ml water. Wrap the membrane in plastic wrap and autoradiograph<br />

(UNIT 6.3) overnight with flashed film and an intensifying screen at −70°C.<br />

Identification of the band of interest is most easily accomplished by coelectrophoresis of a<br />

radioactive marker protein of known identity.<br />

REAGENTS AND SOLUTIONS<br />

Use deionized or distilled water in all recipes and protocol steps. For common stock solutions, see<br />

APPENDIX 2A; for suppliers, see SUPPLIERS APPENDIX.<br />

pH 1.9 electrophoresis buffer<br />

50 ml 88% formic acid (0.58 M final)<br />

156 ml glacial acetic acid (1.36 M final)<br />

1794 ml H 2O<br />

Store indefinitely in a sealed bottle at room temperature<br />

Supplement 3 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


pH 3.5 electrophoresis buffer<br />

100 ml glacial acetic acid (0.87 M final)<br />

10 ml pyridine [0.5% (v/v) final]<br />

10 ml 100 mM EDTA (0.5 mM final)<br />

1880 ml H2O Store indefinitely in a sealed bottle at room temperature<br />

Phosphoamino acid standards mixture<br />

Prepare a solution of phosphoserine, phosphothreonine, and phosphotyrosine<br />

(Sigma) in water at a final concentration of 0.3 mg/ml each. Store in 1-ml aliquots<br />

indefinitely at −20°C.<br />

COMMENTARY<br />

Background <strong>In</strong>formation<br />

Phosphoamino acid analysis by the two-dimensional<br />

electrophoretic technique described<br />

in the basic protocol was first carried out with<br />

proteins isolated by elution from unfixed SDSpolyacrylamide<br />

gels (Hunter and Sefton,<br />

1980). However, this technique is laborious,<br />

especially if it involves grinding up pieces of<br />

high-percentage acrylamide gels, and the yields<br />

can be disappointing. Additionally, because the<br />

eluted protein must be precipitated in the presence<br />

of a carrier protein, spotting the whole<br />

sample on a single origin usually yields a badly<br />

smeared pattern. The grind-and-elute technique<br />

is, however, advantageous with proteins<br />

that are very refractory to electrophoretic transfer<br />

to PVDF membranes.<br />

The alkaline treatment of protein described<br />

in the alternate protocol was first developed by<br />

Jon Cooper and Tony Hunter, who treated fixed<br />

gels with KOH (Cooper and Hunter, 1981). The<br />

original technique is tricky because the gel<br />

becomes extremely sticky during incubation<br />

with KOH and swells. Additionally, the manipulations<br />

needed to recover proteins from the<br />

gel following treatment are very involved because<br />

the proteins are contaminated with products<br />

of the hydrolysis of polyacrylamide.<br />

Critical Parameters and<br />

Troubleshooting<br />

It is essential to use PVDF membranes to<br />

immobilize proteins for acid hydrolysis rather<br />

than nylon or nitrocellulose membranes, both<br />

of which dissolve in 6 M HCl. <strong>Protein</strong>s immobilized<br />

on either PVDF or nylon membranes<br />

may be subjected to alkaline hydrolysis with<br />

KOH (Contor et al., 1987), but nitrocellulose<br />

membranes are not suitable. <strong>Protein</strong>s immobilized<br />

on nylon cannot subsequently be analyzed<br />

by acid hydrolysis because nylon is dissolved<br />

by 6 M HCl.<br />

Two-dimensional thin-layer electrophoresis<br />

is required for unambiguous identification of<br />

phosphorylated residues, as some spots after<br />

one-dimensional electrophoresis do not represent<br />

pure species. For example, uridine monophosphate,<br />

which is generated during acid hydrolysis<br />

of RNA (a frequent contaminant of<br />

phosphoproteins), comigrates with phosphotyrosine<br />

during one-dimensional electrophoresis<br />

at pH 3.5.<br />

Streaking of the sample in the first dimension<br />

is a symptom of overloading, either with<br />

the phosphoprotein itself or with contaminants<br />

in the sample. This problem can be corrected<br />

by loading less sample. Streaking in the second<br />

dimension is usually the result of problems with<br />

wetting or running the plate and cannot be<br />

corrected by loading less sample.<br />

Some batches of blotting paper contain calcium,<br />

which interferes with electrophoresis of<br />

phosphoamino acids (probably by precipitating<br />

them). <strong>In</strong> the author’s experience Whatman<br />

3MM paper is quite reliable; other blotting<br />

papers are probably suitable as well. <strong>In</strong>clusion<br />

of EDTA in the pH 3.5 buffer alleviates this<br />

problem.<br />

This unit calls for glass-backed cellulose<br />

thin-layer plates rather than the plastic-backed<br />

variety, which are lighter and less expensive.<br />

This is because plastic-backed plates can under<br />

some circumstances cause sample streaking.<br />

They are, however, probably satisfactory for<br />

most experiments. If use of plastic-backed<br />

plates results in streaking, try glass-backed<br />

plates to see if that corrects the problem.<br />

Anticipated Results<br />

To detect a phosphoamino acid by autoradiography,<br />

a minimum of 10 cpm must be<br />

spotted and the plate exposed for a week with<br />

flashed film and an intensifying screen. Only<br />

15% to 20% of the radioactivity in a phospho-<br />

<strong>Signal</strong><br />

<strong>Transduction</strong>:<br />

<strong>Protein</strong><br />

Phosphorylation<br />

14.5.7<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 3


Phosphoamino<br />

Acid Analysis<br />

14.5.8<br />

protein is recovered as phosphoamino acids.<br />

The majority is present as 32 Pi, which is released<br />

by dephosphorylation of phosphoamino acids,<br />

with the remainder being peptide products resulting<br />

from partial acid hydrolysis. As a result,<br />

the thin-layer plates will contain a number of<br />

radioactive spots that are not phosphoamino<br />

acids (see Fig. 14.5.3). Partial hydrolysis products<br />

remain near the origin during electrophoresis<br />

at pH 1.9, but exhibit some mobility at pH<br />

3.5 (see Fig. 14.5.3). After two-dimensional<br />

electrophoresis, they are found above the origin<br />

and below the phosphoamino acids. 32 Pi has a<br />

high mobility at both pH 1.9 and pH 3.5 and is<br />

found in the upper left-hand corner of each<br />

quadrant of the plate (see Fig. 14.5.3). Because<br />

of these additional radioactive spots, it is essential<br />

to localize internal phosphoamino acid<br />

standards by staining with ninhydrin.<br />

Time Considerations<br />

After the preparative gel has been run and<br />

the protein transferred to the membrane, isolation<br />

of the membrane fragment containing the<br />

protein, followed by acid hydrolysis, takes


Determination of Akt/PKB <strong>Signal</strong>ing<br />

Akt—also known as protein kinase B (PKB)—is a central regulator of cell survival<br />

(Franke et al., 1997; Hemmings, 1997; Marte and Downward, 1997), and its activity is<br />

often used to assess the apoptotic effect of different experimental conditions. This Ser/Thr<br />

protein kinase is activated downstream of phosphoinositide 3-kinase (PI3K) in response<br />

to a wide variety of growth factors (Fig. 14.6.1). The activated form of the kinase targets<br />

a specific set of effector proteins involved in cell-survival signaling. The activation<br />

involves membrane translocation and dual phosphorylation on threonine at position 308<br />

and serine at position 473. Because the activation of Akt depends on this phosphorylation,<br />

it is possible to assess Akt activity not only with a kinase assay but also by determining<br />

its level of phosphorylation.<br />

This unit provides a protocol for assaying the phosphorylation and the dynamics of<br />

dephosphorylation of Akt/PKB in cultured cells (see Basic Protocol). A protocol is also<br />

provided for assaying membrane translocation in response to Akt activation (see Support<br />

Protocol).<br />

DETERMINATION OF Akt/PKB SIGNALING IN CULTURED CELLS<br />

This protocol can be applied to nearly all cultured cell lines with few or no modifications.<br />

<strong>In</strong> this particular example, the chosen cell system involves cells expressing or deficient<br />

in the β1 integrin because of the links between integrin signaling, Akt activation, and cell<br />

survival. This protocol describes PDGF stimulation of GD25 β1 integrin–null cells<br />

(Fassler et al., 1995) expressing wild-type β1 integrin or its mutant variant W/A, which<br />

is deficient in Akt signaling (Pankov et al., 2003). Specific treatments and time-course<br />

sampling of cultured cells are described; these allow determination of the phosphorylation<br />

level of Akt, its sensitivity to growth factor stimulation, and the mode of its inactivation<br />

by dephosphorylation. All these results can be obtained in a single nonradioactive<br />

experiment by using standard techniques such as immunoblotting (UNIT 6.2) and immunodetection<br />

with phosphospecific antibodies (UNIT 14.2). Cell cultures are serum-starved,<br />

stimulated with growth factor, and maintained for 2 hr after the stimulation for assessing<br />

the dynamics of Akt dephosphorylation. Samples are taken after each treatment, and Akt<br />

activity is determined with phosphospecific antibodies.<br />

Materials<br />

GD25 cells obtained from R. Fassler, Max Planck <strong>In</strong>stitute of Biochemistry,<br />

Martinsried, Germany, and expressing wild-type β1 integrin (β1 cells) or<br />

integrin mutant W/A (mutant cells)<br />

Dulbecco’s modified Eagle medium supplemented with 10% fetal bovine serum<br />

(DMEM/10% FBS; APPENDIX 2A)<br />

Starvation medium: DMEM containing 1% bovine serum albumin (DMEM/1%<br />

BSA)<br />

0.5 µM okadaic acid (OA; 1 mM stock solution in DMSO, APPENDIX 1B) in<br />

DMEM/1% BSA<br />

Platelet-derived growth factor-BB (PDGF-BB), freshly prepared at 10 µg/ml in 10<br />

mM acetic acid<br />

AG 1433 (e.g., Calbiochem) PDGF kinase inhibitor, 10 mM stock solution in<br />

dimethyl sulfoxide (DMSO)<br />

PBS (APPENDIX 2A), ice cold<br />

Modified radioimmunoprecipitation assay (mRIPA) buffer (see recipe), ice cold<br />

2× SDS sample buffer (APPENDIX 2A)<br />

10% separating gels with 4% stacking gels (UNIT 6.1)<br />

Contributed by Roumen Pankov<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology (2004) 14.6.1-14.6.12<br />

Copyright © 2003 by John Wiley & Sons, <strong>In</strong>c.<br />

UNIT 14.6<br />

BASIC<br />

PROTOCOL<br />

<strong>Signal</strong><br />

<strong>Transduction</strong>:<br />

<strong>Protein</strong><br />

Phosphorylation<br />

14.6.1<br />

Supplement 22


Determination of<br />

Akt/PKB<br />

<strong>Signal</strong>ing<br />

14.6.2<br />

PI3K<br />

PH<br />

T308<br />

Akt/PKB<br />

Ptdlns(3,4,5)P3 PH<br />

S473<br />

PDK1<br />

T308- P<br />

Akt/PKB<br />

phosphorylation<br />

(activation)<br />

PP2A<br />

dephosphorylation<br />

(inactivation)<br />

OA<br />

PDK2<br />

S473- P<br />

membrane<br />

Akt/PKB<br />

Pre-stained protein standards (e.g., Novex)<br />

Transfer buffer (UNIT 6.2)<br />

Ponceau S solution (UNIT 6.2)<br />

Tris-buffered saline with 0.1% Tween 20 (TTBS, APPENDIX 2A)<br />

Blocking solution: TTBS containing 5% dry nonfat milk (TTBS/milk)<br />

Primary antibodies: polyclonal anti-phospho Akt (Ser 473) (e.g., Cell <strong>Signal</strong>ing,<br />

Biosource), monoclonal anti-actin (e.g., Sigma)<br />

Dry nonfat milk<br />

Secondary horseradish peroxidase (HRP)–conjugated anti-rabbit or anti-mouse<br />

antibodies (e.g., Amersham Biosciences)<br />

Enhanced chemiluminescence (ECL) detection reagent (UNIT 14.2)<br />

35-mm tissue culture dishes<br />

Plastic cell scraper (rubber policeman)<br />

1.5-ml microcentrifuge tubes, prechilled<br />

Sonicator/ultrasonic processor<br />

Boiling water bath<br />

Two nitrocellulose membranes cut to gel size<br />

PH<br />

GSK3<br />

Caspase 9<br />

Forkhead<br />

family<br />

T308- P<br />

Bad<br />

S473- P<br />

p70S6K<br />

eNOS<br />

Figure 14.6.1 Activation of Akt/PKB and its effectors. Akt is activated by phosphatidylinositol<br />

3-kinase (PI3K) products Ptd<strong>In</strong>s(3,4,5)P 3 and Ptd<strong>In</strong>s(3,4,)P 2. These phosphoinositides target<br />

inactive Akt to the plasma membrane via its pleckstrin homology (PH) domain. At the membrane,<br />

Akt is phosphorylated on two residues: threonine 308 (T308) by phosphoinositide-dependent kinase<br />

1 (PDK1) and serine 473 (S473) by an unidentified PDK2. The dual phosphorylation is necessary<br />

for full activation of Akt. Activated Akt in turn phosphorylates its targets, thus modulating their<br />

function. Akt effectors include glycogen synthase kinase-3 (GSK3), caspase 9, Forkhead family of<br />

transcription factors, Bad, p70 ribosomal S6 kinase (p70S6K), IκB kinases (IKKs), and endothelial<br />

nitric oxide synthase (eNOS). Akt is inactivated through dephosphorylation by protein phosphatase<br />

2A (PP2A), and this process can be blocked by okadaic acid (OA).<br />

Supplement 22 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology<br />

IKKs


Four Whatman 3MM filter papers cut to gel size<br />

SDS-PAGE/transfer apparatus (e.g., Bio-Rad, Novex)<br />

Constant-voltage/current power supply (e.g., Bio-Rad)<br />

Flat containers for washing gels and membranes<br />

Shaker<br />

Heat-sealable plastic bags<br />

Heat sealer<br />

X-ray film (e.g., Hyperfilm; Amersham Biosciences)<br />

Film cassette for X-ray film<br />

X-ray film developer<br />

Additional reagents and equipment for tissue culture (UNIT 1.1), SDS-PAGE (UNIT 6.1),<br />

and immunoblotting (UNIT 6.2)<br />

NOTE: All tissue culture incubations should be performed in a humidified 37°C, 10%<br />

CO 2 incubator. Use pre-warmed cell culture medium for all treatments.<br />

Treat cells<br />

1. Plate twelve 35-mm tissue culture dishes each of GD25 cells expressing wild-type<br />

β1 integrin and mutant cells (1.0 × 10 6 cells/dish) in 2 ml DMEM/10% FBS and allow<br />

them to attach and spread for 3 to 4 hr.<br />

2. Wash dishes with 2 ml starvation medium two times, then add 2 ml/dish of the<br />

starvation medium and serum-starve the cells overnight.<br />

At this point the dishes should be ∼80% confluent. Depending on the cell type being used,<br />

adjustment of the initial number of plated cells may be necessary.<br />

3. Treat half of the dishes (six dishes of β1 cells and six dishes of mutant cells) with 0.5<br />

µM okadaic acid (OA) (protein phosphatase inhibitor) in DMEM/1% BSA for 15<br />

min. Label the dishes “OA”. Maintain the same concentration of OA in the medium<br />

to be used to treat these dishes throughout the entire experiment. To ensure similar<br />

treatment, dispense 25 ml of pre-warmed DMEM/1% BSA and add 12.5 µl of 1 mM<br />

okadaic acid stock solution to the 25 ml of medium to be used for the “OA” sets of<br />

dishes. Add 12.5 µl of DMSO to the other 25 ml medium for the untreated sets.<br />

After this treatment, four sets of six samples are formed (two for each cell line). These are<br />

untreated cells of each β1 cells (β1) and W/A mutant cells (mutant), and okadaic acid–<br />

treated β1 cells (β1/OA) and mutant cells (mutant/OA).<br />

4. Aspirate the starvation medium and stimulate cells on five dishes of each set with 20<br />

ng/ml PDGF-BB in 2 ml DMEM/1% BSA for 15 min. Leave four dishes, one from<br />

each set (β1, β1/OA, W/A, and W/A/OA) without stimulation in fresh DMEM/1%<br />

BSA and label them as controls. To ensure similar treatment, dispense 40 ml of<br />

pre-warmed DMEM/1% BSA and add 80 µl of 10 µg/ml stock solution of PDGF-BB,<br />

mix well, divide into two 20-ml aliquots, and add 10 µl of 1 mM okadaic acid stock<br />

solution to the 20 ml of medium to be used for the “OA” sets of dishes. Add 10 µl of<br />

DMSO to the other 20 ml of PDGF-containing medium.<br />

5. Rinse all dishes one time with DMEM/1% BSA. Put aside the control dishes and one<br />

of each PDGF-stimulated dishes (β1, β1/OA, W/A, and W/A/OA) for lysis. To the<br />

remaining four dishes of each set, add 2 ml/dish of the same medium containing 30<br />

µM AG 1433 PDGF kinase inhibitor (four of the β1 and four of the mutant<br />

PDGF-stimulated dishes). Treat the “OA” set of dishes (four of the β1/OA and four<br />

of the W/A/OA PDGF-stimulated dishes) with the same AG 1433–containing medium<br />

supplemented with 0.5 µM okadaic acid. <strong>In</strong>cubate the AG 1433–containing<br />

dishes for 30, 60, 90, and 120 min at 37°C. Specifically, dispense 40 ml of pre-warmed<br />

<strong>Signal</strong><br />

<strong>Transduction</strong>:<br />

<strong>Protein</strong><br />

Phosphorylation<br />

14.6.3<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 22


Determination of<br />

Akt/PKB<br />

<strong>Signal</strong>ing<br />

14.6.4<br />

DMEM/1% BSA and add 120 µl of 10 mM stock solution of AG 1433, mix well, and<br />

divide into 20-ml aliquots and add 10 µl of 1 mM okadaic acid stock solution to the<br />

20 ml of medium to be used for the “OA” sets of dishes. Add 10 µl of DMSO to the<br />

other 20 ml of AG 1433-containing medium.<br />

AG 1433 is used to eliminate residual receptor kinase activity after the PDGF stimulation<br />

and to identify the rate of dephosphorylation.<br />

Prepare cellular lysates<br />

6. Rinse the dishes that were put aside for lysis (control and PDGF-stimulated β1,<br />

β1/OA, W/A, and W/A/OA) with 2 ml ice-cold PBS two times. Keep the dishes on<br />

ice, and use ice-cold buffers to slow down biological processes and prevent protein<br />

degradation.<br />

7. Add 100 µl/dish of ice-cold mRIPA buffer plus inhibitors, scrape the cells with a<br />

plastic scraper or rubber policeman, and transfer the lysate into prechilled and<br />

prelabeled 1.5-ml microcentrifuge tubes. <strong>In</strong>cubate the lysates for an additional 10<br />

min on ice.<br />

Prepare gel samples<br />

8. Add 100 µl/sample of 2× SDS sample buffer, sonicate (two 5-sec, 50-W pulses) on<br />

ice.<br />

The samples will become quite viscous after the addition of the SDS sample buffer. It is<br />

necessary to shear the released DNA by sonication to eliminate the viscosity and to allow<br />

correct loading of the samples on SDS-PAGE gels.<br />

9. Boil samples in a water bath for 3 min or heat at 95°C for 5 min on a heating block.<br />

10. Remove the PDGF-stimulated and AG 1433–treated β1, β1/OA, W/A, and W/A/OA<br />

dishes after 30, 60, 90, and 120 min.<br />

11. Rinse with 2 ml ice-cold PBS two times and repeat steps 7, 8, and 9 for the samples<br />

at each timepoint.<br />

The samples can be stored sealed and frozen at least 1 month at −20°C.<br />

Separate samples by SDS-PAGE<br />

12. Cast two 10% separating gels with 4% stacking gels (UNIT 6.1).<br />

Use 15-well combs so that all 24 samples can be loaded on two gels.<br />

13. Load 20 µl of each sample/gel lane and a separate sample containing prestained<br />

protein standards on the gel.<br />

Load each set of samples starting with the control sample, followed by the PDGF-stimulated<br />

sample, taken immediately after the stimulation, followed by the samples that have<br />

been kept in AG 1433–containing medium for 30, 60, 90, and 120 min for each sample set.<br />

Load the prestained protein standards into the first or the last lane so that the orientation<br />

of the gel can be identified after it is removed from the apparatus. Fill the empty lanes of<br />

the gels with 1× SDS sample buffer to prevent distortion of the separation in the adjacent<br />

lanes.<br />

14. Run the gels at 150 V until the bromophenol blue dye reaches the bottom of the gel<br />

(see UNIT 6.1).<br />

Supplement 22 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


Transfer separated proteins from gel to membrane<br />

15. When the electrophoresis is complete, remove the gels from the gel plates, cut off<br />

the stacking gels and incubate the separating portion of the gels in 50 ml transfer<br />

buffer for 15 min.<br />

Use gloves to handle the gels and membranes since oils from hands can block the transfer.<br />

16. Assemble the transfer sandwich consisting of pad, Whatman 3MM filter paper,<br />

nitrocellulose membrane, equilibrated acrylamide gel, second Whatman 3MM filter<br />

paper, and second pad (Fig. 6.2.1).<br />

All pads, filter papers, and nitrocellulose membranes should be handled using gloves and<br />

prewetted with transfer buffer. The transfer cassette should be assembled underneath the<br />

transfer buffer to avoid trapping air bubbles. Ensure the orientation of the gel (judged by<br />

the position of the prestained protein standards) such that the correct order of the samples<br />

after transfer onto the nitrocellulose membrane is maintained.<br />

17. Place the transfer sandwich into the electroblotting apparatus filled with transfer<br />

buffer with the nitrocellulose membrane on the cathode side of the gel. Connect the<br />

apparatus to the power supply and transfer proteins for 1 hr at 100V (constant voltage)<br />

with cooling (UNIT 6.2).<br />

Transfer time depends on the size of the proteins, acrylamide percentage, and the thickness<br />

of the gel. The completeness of the transfer can be easily judged by the transfer of the<br />

prestained protein standards.<br />

18. At the end of the transfer, turn off the power supply and disassemble the apparatus<br />

and transfer cassette. Remove the nitrocellulose membranes and stain with 50 ml<br />

Ponceau S solution in a flat container for 5 min. Destain the membranes by rinsing<br />

several times with distilled water.<br />

Two membranes can be incubated in the same container by orienting them back to back.<br />

Staining with Ponceau S does not interfere with the subsequent antibody reactions and<br />

provides a good estimation of the protein loading, separation, and quality of the transfer.<br />

The Ponceau S solution can be reused several times.<br />

Probe the membranes with antibodies<br />

19. Rinse the membranes once with TTBS and incubate in 50 ml blocking solution for<br />

30 min at room temperature with gentle shaking.<br />

Milk proteins in the blocking buffer are used to saturate free protein-binding sites and to<br />

prevent the nonspecific binding of the antibody. Do not incubate the membrane longer than<br />

1 hr in this buffer since blocking buffer also has a slight stripping effect and may cause<br />

detachment of the transferred sample proteins.<br />

20. Dilute primary anti-phospho Akt antibody according to the supplier’s instructions in<br />

10 ml TTBS containing 3% dry nonfat milk. Place the membranes in heat-sealable<br />

plastic bags, add diluted antibody, and seal the bag with a heat sealer. <strong>In</strong>cubate the<br />

membranes overnight at 4°C with gentle shaking.<br />

Two membranes can be incubated in the same bag by orienting them back to back. Remove<br />

all air bubbles from the bag before sealing it.<br />

21. Remove the membranes from the bag and wash them three times, 15 min each with<br />

50 ml TTBS in flat container with vigorous shaking.<br />

Do not allow the membranes to dry out after the incubation with primary antibody.<br />

<strong>Signal</strong><br />

<strong>Transduction</strong>:<br />

<strong>Protein</strong><br />

Phosphorylation<br />

14.6.5<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 22


SUPPORT<br />

PROTOCOL<br />

Determination of<br />

Akt/PKB<br />

<strong>Signal</strong>ing<br />

14.6.6<br />

22. Dilute the secondary antibody in 10 ml TTBS, 3% dry nonfat milk according to the<br />

supplier’s instructions. Place the membranes in a new heat-sealable bag, add diluted<br />

antibody and seal the bag. <strong>In</strong>cubate for 30 to 45 min at room temperature with gentle<br />

shaking.<br />

Either HRP- or AP-conjugated secondary antibodies can be used. HRP-conjugated secondary<br />

antibodies can be combined with the high-sensitivity ECL detection system. This<br />

system allows detection of signals from weak antibodies although attention should be paid<br />

if accurate quantification of the signal is necessary (see Commentary).<br />

23. Repeat step 21.<br />

24. Use the ECL immunodetection protocol (UNIT 6.2) to detect phosphorylated Akt.<br />

<strong>In</strong>cubate the membranes with ECL solution for 1 min, dry the excess fluid by touching<br />

the edge of the membrane to a piece of filter paper, wrap the membranes in plastic<br />

wrap, and expose to X-ray film for 1 min.<br />

25. <strong>In</strong>cubate the membranes in 50 ml blocking buffer for 15 min at room temperature<br />

with shaking.<br />

26. Repeat steps 20 to 24 with new primary antibody (e.g., anti-actin).<br />

This second reaction is used as an internal control for loading.<br />

If both primary antibodies are generated in the same species (e.g., both are mouse or both<br />

are rabbit) and the molecular weights of the antigens are different (e.g., 60 kDa for Akt and<br />

45 kDa for actin) the membranes can be incubated with a mixture of the primary antibodies,<br />

and the two signals can be detected simultaneously on the same X-ray film.<br />

DETERMINATION OF Akt/PKB TRANSLOCATION TO THE PLASMA<br />

MEMBRANE<br />

An important step in Akt activation involves its targeting to the plasma membrane. This<br />

translocation is dependent on the pleckstrin homology (PH) domain localized at the<br />

N-terminus of the Akt molecule and the presence of phosphatidylinositol 3-kinase<br />

products Ptd<strong>In</strong>s(3,4,5)P3 and Ptd<strong>In</strong>s(3,4,)P2. This protocol describes the preparation of membrane and cytosolic fractions from starved<br />

and PDGF-stimulated GD25 β1 integrin-null cells expressing wild-type β1 integrin or its<br />

mutant variant W/A that is deficient in Akt signaling. The distribution of Akt is determined<br />

in each fraction by immunoblotting and immunodetection with antibodies. The same<br />

protocol can be applied to almost all cultured cell lines with little or no modifications.<br />

Additional Materials (also see Basic Protocol)<br />

Cytosolic buffer (see recipe)<br />

Membrane buffer (see recipe)<br />

Dry ice<br />

60-mm dishes<br />

Treat cells<br />

1. Plate two 60-mm dishes each of β1 and mutant cells (2.5 × 10 6 cells/dish) in<br />

DMEM/10% FBS and allow them to attach and spread for 3 to 4 hr.<br />

2. Wash dishes with 5 ml DMEM/1% BSA (starvation medium) two times, then add 5<br />

ml/dish of DMEM/1% BSA and serum-starve the cells overnight.<br />

At this point the dishes should be ∼80% confluent. Depending on the cell type being used,<br />

adjustment of the initial number of plated cells may be necessary.<br />

Supplement 22 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


3. Aspirate the starvation medium and stimulate one dish from each cell line with 20<br />

ng/ml PDGF-BB in 5 ml DMEM/1% BSA for 15 min. Leave one β1 and one mutant<br />

dish without stimulation in fresh DMEM/1% BSA and label them as controls. To<br />

ensure similar treatment, dispense 10 ml of pre-warmed DMEM/1% BSA and add<br />

20 µl of 10 µg/ml stock solution of PDGF-BB, mix well, and add to the dishes to be<br />

stimulated.<br />

Prepare cytosol fractions<br />

4. Rinse the control and PDGF-stimulated dishes with 5 ml cytosolic buffer two times.<br />

Keep the dishes on ice and use ice-cold buffers to slow down the biological processes<br />

and prevent protein degradation.<br />

5. Add 350 µl/dish of ice-cold cytosolic buffer, scrape the cells with a plastic scraper<br />

or rubber policeman, and transfer the lysate into prelabeled 1.5-ml microcentrifuge<br />

tubes.<br />

6. Place the tubes on dry ice until frozen. Thaw the cells in a 37°C water bath. Repeat<br />

freeze-thaw cycle two additional times.<br />

Freeze-thaw cycles will break plasma membranes and liberate most of the cytosolic<br />

proteins.<br />

7. Centrifuge 15 min at 19,000 × g, 4°C. Transfer the supernatant into prelabeled 1.5-ml<br />

microcentrifuge tubes, mix with equal volume of 2× SDS sample buffer, and leave<br />

on ice.<br />

This supernatant represents the cytosolic fraction.<br />

Prepare membrane fraction<br />

8. Resuspend the pellet in fresh 350 µl cytosolic buffer, centrifuge as in step 7, and<br />

discard the supernatant.<br />

This washing step clears most of the remaining cytosolic proteins from the pellet.<br />

9. Suspend the pellet in 50 µl membrane buffer and centrifuge 15 min at 10,000 × g,<br />

4°C.<br />

This step solubilizes cellular membranes. Pipet the pellet up and down through a micropipet<br />

tip several times, but avoid excessive foaming.<br />

10. Transfer the supernatant into prelabeled 1.5-ml microcentrifuge tubes and mix with<br />

an equal volume of 2× SDS sample buffer.<br />

Analyze fractions<br />

11. Boil all the samples (supernatants from steps 7 and 10) in a boiling water bath for 3<br />

min or heat at 95°C for 5 min on a heating block.<br />

The samples can be stored sealed and frozen at least 1 month at −20°C.<br />

12. Proceed with SDS-PAGE and immunoblotting (see Basic Protocol 1, steps 12 through<br />

24). Use anti-Akt antibody to probe the distribution of the total Akt between the<br />

cytosolic and membrane fractions.<br />

<strong>Signal</strong><br />

<strong>Transduction</strong>:<br />

<strong>Protein</strong><br />

Phosphorylation<br />

14.6.7<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 22


Determination of<br />

Akt/PKB<br />

<strong>Signal</strong>ing<br />

14.6.8<br />

REAGENTS AND SOLUTIONS<br />

Use deionized or distilled water in all recipes and protocol steps. For common stock solutions, see<br />

APPENDIX 2A; for suppliers, see SUPPLIERS APPENDIX.<br />

Cytosolic buffer<br />

20 mM Tris⋅Cl, pH 7.5 (APPENDIX 2A)<br />

150 mM NaCl<br />

50 µM leupeptin (APPENDIX 1B), add fresh<br />

50 µM pepstatin (APPENDIX 1B), add fresh<br />

1 mM PMSF (APPENDIX 1B), add fresh<br />

1 mM sodium vanadate (APPENDIX 1B), add fresh<br />

50 mM NaF, add fresh<br />

Store up to 3 months at 4°C<br />

The cystolic buffer is derived from Kobayashi et al. (2001).<br />

Membrane buffer<br />

20 mM Tris⋅Cl, pH 7.5 (APPENDIX 2A)<br />

150 mM NaCl<br />

1% (v/v) Triton X-100<br />

50 µM leupeptin (APPENDIX 1B), add fresh<br />

50 µM pepstatin (APPENDIX 1B), add fresh<br />

1 mM PMSF (APPENDIX 1B), add fresh<br />

1 mM sodium vanadate (APPENDIX 1B), add fresh<br />

50 mM NaF, add fresh<br />

Store up to 3 months at 4°C<br />

The membrane buffer is derived from Kobayashi et al. (2001).<br />

Modified radioimmunoprecipitation assay (mRIPA) buffer<br />

50 mM HEPES, pH.5<br />

150 mM NaCl<br />

10% (v/v) glycerol<br />

0.1% (w/v) SDS (APPENDIX 2A)<br />

1% (w/v) sodium deoxycholate<br />

1% (v/v) Triton X-100<br />

1.5 mM MgCl 2<br />

1 mM EGTA<br />

50 µM leupeptin (APPENDIX 1B), add fresh<br />

50 µM pepstatin (APPENDIX 1B), add fresh<br />

1 mM PMSF (APPENDIX 1B), add fresh<br />

1 mM sodium vanadate (APPENDIX 1B), add fresh<br />

50 mM NaF, add fresh<br />

Store up to 3 months at 4°C<br />

COMMENTARY<br />

Background <strong>In</strong>formation<br />

Akt (c-Akt) is the cellular homolog of the<br />

viral oncoprotein v-Akt. It was first identified<br />

as a protein kinase with high homology to<br />

protein kinases A and C and was therefore<br />

termed PKB (protein kinase B) or RAC (related<br />

to A and C). Mammals have three closely related<br />

Akt genes that are expressed differentially<br />

at both mRNA and protein levels (Datta et al.,<br />

1999; Brazil and Hemmings, 2001). The family<br />

of Akt proteins contains a central kinase domain<br />

with specificity for serine or threonine residues<br />

in substrate proteins and a carboxyl terminus<br />

containing a hydrophobic motif (HM) and a<br />

proline-rich domain. The N-terminal region of<br />

the molecule includes a pleckstrin homology<br />

(PH) domain, which together with the HM play<br />

important roles in the Akt activation process<br />

(Scheid and Woodgett, 2003). The activation<br />

mechanism involves direct binding of PI3K<br />

Supplement 22 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


products phosphatidylinositol 3,4,5-trisphosphate<br />

and phosphatidylinositol 3,4-bisphosphate<br />

to the PH domain of Akt (Chan et al.,<br />

1999). As a consequence, Akt is localized to the<br />

plasma membrane where PI3K-generated 3′phosphorylated<br />

phospholipids reside (Fig.<br />

14.6.1). This translocation is now known to be<br />

an important step in Akt activation (Testa and<br />

Bellacosa, 1997). Myristylated c-Akt, which is<br />

specifically targeted to the plasma membrane,<br />

is constitutively active similarly to the oncogenic<br />

v-Akt, which is permanently targeted to<br />

the plasma membrane by the viral gag sequence,<br />

and exhibits constant kinase activity.<br />

Membrane-localized Akt undergoes conformational<br />

changes leading to the exposure and<br />

phosphorylation of two residues—Thr308 in<br />

the activation loop, proximal to the catalytic<br />

core, and Ser473 in the HM. This dual phosphorylation<br />

is necessary for the full activation<br />

of Akt. The kinase that phosphorylates Thr308<br />

has been named 3-phosphoinositide-dependent<br />

kinase 1 (PDK1) because it also requires lipids<br />

for its activity (Vanhaesebroeck and Alessi,<br />

2000). Phosphorylation of Akt on Thr308<br />

causes a charge-induced change in conformation<br />

allowing substrate binding and an elevated<br />

rate of catalysis. The second important phosphorylation<br />

event associated with Akt activation<br />

occurs at Ser473. The mechanism of this<br />

phosphorylation is not completely understood<br />

and may involve autophosphorylation or distinct<br />

serine kinases like integrin-linked kinase<br />

(ILK; Persad and Dedhar, 2003). The function<br />

of phosphorylation at this site is also not fully<br />

clarified, though the necessity of this modification<br />

for Akt activity is well documented. For<br />

example, kinase activity is significantly reduced<br />

by mutations of this residue, and a similar<br />

effect is observed after ceramide-promoted<br />

dephosphorylation at this site. It has been proposed<br />

that phosphorylation at Ser473 may<br />

change the properties of the hydrophobic motif,<br />

shifting it to a docking site for PDK1 (Scheid<br />

and Woodgett, 2003). After activation, Akt appears<br />

to detach from the inner leaflet of the<br />

plasma membrane and to translocate through<br />

the cytosol to the nucleus (Andjelkovic et al.,<br />

1997; Meier and Hemmings, 1999).<br />

Cells can inhibit or reverse the activation of<br />

Akt by several mechanisms (Hill and Hemmings,<br />

2002). One of them includes the lipid<br />

phosphatase PTEN (phosphatase and tensin<br />

homolog deleted on chromosome 10; Yamada<br />

and Araki, 2001), which decreases the levels of<br />

phosphatidylinositol 3,4,5-trisphosphate and<br />

phosphatidylinositol 3,4-bisphosphate within<br />

cells, thus preventing membrane translocation<br />

of Akt. Direct inactivation of Akt occurs by<br />

dephosphorylation of Thr308 and Ser473. This<br />

process is mediated by the ubiquitous Ser/Thr<br />

protein phosphatase 2A (PP2A; see Millward<br />

et al., 1999) and can be blocked by the phosphatase<br />

inhibitor okadaic acid. A negative regulator<br />

termed CTMP (carboxy-terminal modulator<br />

protein), which attenuates the activation<br />

of Akt at plasma membrane, has also been<br />

identified (Maira et al., 2001). Thus, the level<br />

of Akt activity in steady state is the result of an<br />

equilibrium between activation and inhibition<br />

events.<br />

Extensive research has clarified the intracellular<br />

mechanisms of Akt activation by upstream<br />

PI3K and PDK1. Less is known about the<br />

means through which Akt regulates cell growth,<br />

proliferation, and survival, even though a number<br />

of downstream Akt substrates have been<br />

identified (Fig. 14.6.1; Chan et al., 1999; Datta<br />

et al., 1999; Vanhaesebroeck and Alessi, 2000).<br />

While the Akt phosphorylation consensus sequence<br />

is defined (RXRXXS/THydrophobic),<br />

to date only a small number of Akt substrates<br />

have been positively or tentatively identified.<br />

Ongoing studies on Akt signaling and the<br />

possibility of using this kinase as a drug target<br />

for cancer, diabetes, and stroke, make probing<br />

for Akt activity a frequently used task. This can<br />

be achieved by measuring Akt kinase activity<br />

directly or by assaying the level of phosphorylation<br />

as described in this unit. Determination<br />

of Akt kinase activity follows the general<br />

scheme applicable for most kinases (e.g., see<br />

UNIT 14.3) and involves immunoprecipitation of<br />

the enzyme with antibodies and then performing<br />

a phosphorylation reaction in vitro. While<br />

this approach offers a direct and relatively accurate<br />

determination of Akt activity, the method<br />

is laborious and often involves use of radioactivity.<br />

Determination of Akt activation state by<br />

assaying the level of phosphorylation after specific<br />

treatments is quicker and employs basic<br />

non-radioactive laboratory techniques. Moreover,<br />

the same samples (in some cases the same<br />

membrane used for immunoblotting with anti-<br />

Akt antibodies) can be used for determination<br />

of the activity of upstream Akt regulators and<br />

the phosphorylation level of downstream Akt<br />

substrates, making this method more versatile<br />

than the classical kinase assay.<br />

Critical Parameters and<br />

Troubleshooting<br />

Several parameters play critical roles for<br />

success in determination of Akt activation and<br />

<strong>Signal</strong><br />

<strong>Transduction</strong>:<br />

<strong>Protein</strong><br />

Phosphorylation<br />

14.6.9<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 22


Determination of<br />

Akt/PKB<br />

<strong>Signal</strong>ing<br />

14.6.10<br />

A<br />

no<br />

inhibitor<br />

okadaic<br />

acid<br />

B<br />

– PDGF<br />

+ PDGF<br />

β1 cells<br />

PDGF PDGF<br />

inhibition. <strong>In</strong>itial reduction of the phosphorylation<br />

level of Akt is achieved by a period of<br />

starvation, which varies depending on the type<br />

of cells and should be determined experimentally.<br />

For some cell lines like primary human<br />

fibroblasts, withdrawal from serum for 4 hr is<br />

sufficient, while for most immortalized cell<br />

lines, longer periods of starvation work better.<br />

The length of serum starvation of the chosen<br />

cell line needs to be such that it will ensure a<br />

five-fold or higher increase of Akt phosphorylation<br />

after stimulation with growth factor.<br />

mutant cells<br />

contr 30 60 90 120 contr 30 60 90 120<br />

β1 cells<br />

mutant<br />

cells<br />

C M C M<br />

WB total-Akt<br />

WB<br />

p-Akt (Ser 473 )<br />

actin<br />

p-Akt (Ser 473 )<br />

Figure 14.6.2 Probing of Akt signaling by the methods described in this unit. (A) Determination<br />

of Akt signaling in cultured cells. GD25 cells expressing either wild-type (β1 cells) or tryptophan<br />

mutant (mutant cells) integrins were cultured overnight in the absence of serum. Cells were then<br />

stimulated with 20 ng/ml PDGF-BB for 15 min, the growth factor was washed away, and the cells<br />

were maintained in medium without serum supplemented with 30 µM PDGF kinase inhibitor AG<br />

1433. Samples were taken after starvation (contr), immediately after stimulation (PDGF, ↓), and at<br />

the indicated time points. The experiment was performed in the absence (no inhibitor) or presence<br />

of 0.5 µM okadaic acid. Lysates from the samples were analyzed by immunoblotting (WB) with<br />

anti-phospho Ser 473 Akt [p-Akt (Ser 473 )] or anti-actin (actin) antibodies. Actin was used as an<br />

internal control for loading. (B) Determination of Akt translocation to the plasma membrane. Cells<br />

were starved overnight and stimulated with 20 ng/ml PDGF (+ PDGF) or left without stimulation<br />

(–PDGF) and used to prepare cytoplasmic (C) and membrane (M) fractions. Samples from these<br />

fractions were analyzed by immunoblotting with anti-total Akt (WB total-Akt) antibodies. <strong>In</strong>creased<br />

amount of Akt is detected in the membrane fraction of the PDGF stimulated cells.<br />

actin<br />

The response to PDGF by different cell lines<br />

varies significantly. If the increase of Akt phosphorylation<br />

after stimulation is not sufficient,<br />

activation with another growth factor, e.g.,<br />

EGF, may be used. If a different growth factor<br />

is applied, the corresponding growth factor<br />

receptor (GFR) kinase inhibitor should be<br />

added to the medium instead of AG 1433 (e.g.,<br />

AG 1478 if EGF is utilized). Addition of a<br />

growth factor kinase inhibitor is necessary to<br />

block residual activity of the receptor after<br />

withdrawal of the growth factor. This treatment<br />

is critical, since residual GFR activity may<br />

Supplement 22 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


mask the Akt inactivation pattern by prolonging<br />

the dephosphorylation time. Experimental<br />

blocking of dephosphorylation is achieved by<br />

treatment with okadaic acid. <strong>In</strong>cubations with<br />

this potent protein phosphatase inhibitor, especially<br />

for prolonged times, may cause cell<br />

rounding and even detachment from the substrate.<br />

Okadaic acid sensitivity should be determined<br />

experimentally for each cell type to be<br />

used.<br />

Obtaining a high signal-to-noise ratio after<br />

immunoblotting is essential for the successful<br />

determination of Akt signaling. This can be<br />

ensured by: (1) use of specific antibodies that<br />

recognize the phosphorylated Akt but not its<br />

unphosphorylated form (now offered by several<br />

companies like Cell <strong>Signal</strong>ing, Biosource);<br />

(2) use of freshly added phosphatase and protease<br />

inhibitors added to the lysis buffers to<br />

prevent Akt dephosphorylation and degradation<br />

after cell disruption; (3) loading sufficient<br />

amount of proteins from the cellular lysate that<br />

will ensure trouble-free detection of the Akt by<br />

the antibodies (this is easily achieved by keeping<br />

the samples for SDS-PAGE concentrated—<br />

e.g., >5 × 10 5 cells/minigel lane); (4) following<br />

the proper techniques for SDS-PAGE and immunoblotting<br />

(see UNITS 6.1 & 6.2).<br />

Accurate comparison and quantification by<br />

densitometry of the amounts of phosphorylated<br />

Akt in different samples can be achieved if the<br />

detection system is kept in a linear range. The<br />

enhanced chemiluminescence (ECL) system<br />

should be optimized to obtain linearity by adjustments<br />

of the amount of the protein loaded<br />

on the gel, concentrations of primary and secondary<br />

antibody, and the X-ray film exposure<br />

time. If the weakest signal is detectable and the<br />

strongest signal is still within the linear range<br />

of the film (e.g., not saturated), then the rest of<br />

the samples are also in the linear range of the<br />

system, which can be used for quantification.<br />

Anticipated Results<br />

Typical results expected after probing for<br />

Akt activity (see Basic Protocol) or Akt membrane<br />

translocation (see Support Protocol) are<br />

presented in Figure 14.6.2A and B, respectively.<br />

Comparison between the starved cells<br />

(contr) and cells after PDGF stimulation<br />

(PDGF) should demonstrate a several-fold increase<br />

in the amount of phosphorylated Akt.<br />

Attenuation of this response after experimental<br />

manipulations of the cell cultures may indicate<br />

effects on the upstream pathways leading to Akt<br />

activation. Evaluation of the amount of phosphorylated<br />

Akt in the samples taken after PDGF<br />

stimulation at different time points provides<br />

information about the rate of Akt dephosphorylation<br />

(inhibition). While in the samples from<br />

β1 cells, this decrease is modest, the Akt in the<br />

samples from mutant cells is rapidly dephosphorylated.<br />

Such a result indicates activation of<br />

some of the systems for Akt inhibition (see<br />

Background <strong>In</strong>formation). Performing the<br />

same experiment in the presence of a PP2A<br />

inhibitor, okadaic acid completely reverses this<br />

effect, indicating that activation of this phosphatase<br />

is involved in the observed increased<br />

dephosphorylation rate in W/A mutant cells. If<br />

OA is ineffective, additional experiments<br />

should be designed to test the role of other Akt<br />

inhibitors (see Background <strong>In</strong>formation). Activation<br />

of Akt is dependent on its membrane<br />

translocation. A typical increase in membranebound<br />

Akt after growth factor stimulation is<br />

presented in Figure 14.6.2B. A modest but<br />

detectable increase in total Akt in the membrane<br />

fraction is observed in both cell lines after<br />

PDGF stimulation. Failure to detect such<br />

translocation may indicate defects in the function<br />

of the PH domain of Akt or insufficient<br />

phosphatidylinositol 3,4,5-trisphosphate and<br />

phosphatidylinositol 3,4-bisphosphate (see<br />

Background <strong>In</strong>formation).<br />

Time Considerations<br />

The entire procedure described in the Basic<br />

Protocol can be completed in 3 days. This<br />

period includes the time for cell attachment<br />

after plating (4 hr); starvation (12 hr); PDGF<br />

stimulation and the necessary incubations up to<br />

preparation of the SDS-PAGE samples (3 hr);<br />

SDS-PAGE and electrotransfer (6.5 hr for mini<br />

gels or 9.5 hr for normal size gels); overnight<br />

incubation with the primary antibody; and<br />

completion of the immunoreactions with ECL<br />

processing (4 hr). Since this procedure takes >1<br />

day, it is helpful to use one night for starvation<br />

of the cells and the next night for incubation<br />

with the primary phosphospecific antibody.<br />

There are a number of points where the procedure<br />

can be interrupted: (1) after the preparation<br />

of the SDS-PAGE samples; (2) after the<br />

electrotransfer (membranes can be stored wet<br />

or dry in resealable plastic bags at 4°C); and (3)<br />

after the completion of the first immunoreaction<br />

(membranes can be stored wet in resealable<br />

plastic bags at 4°C). A similar timeframe applies<br />

for the procedure described in the Support<br />

Protocol.<br />

<strong>Signal</strong><br />

<strong>Transduction</strong>:<br />

<strong>Protein</strong><br />

Phosphorylation<br />

14.6.11<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 22


Determination of<br />

Akt/PKB<br />

<strong>Signal</strong>ing<br />

14.6.12<br />

Literature Cited<br />

Andjelkovic, M., Alessi, D.R., Meier, R., Fernandez,<br />

A., Lamb, N.J.C., Frech, M., Cron, P., Cohen,<br />

P., Lucoc, J.M., and Hemmings, B.A. 1997.<br />

Role of translocation in the activation and function<br />

of protein kinase B. J. Biol. Chem.<br />

272:31515-31524.<br />

Brazil, D.P. and Hemmings, B.A. 2001. Ten years of<br />

protein kinase B signalling: A hard Akt to follow.<br />

Trends Biochem. Sci. 26:657-664.<br />

Chan, T.O., Rittenhouse, S.E., and Tsichlis, P.N.<br />

1999. AKT/PKB and other D3 phosphoinositide-regulated<br />

kinases: Kinase activation by<br />

phosphoinositide-dependent phosphorylation.<br />

Annu. Rev. Biochem. 68:965-1014.<br />

Datta, S.R., Brunet, A., and Greenberg, M.E. 1999.<br />

Cellular survival: A play in three Akts. Genes<br />

Dev. 13:2905-2927.<br />

Fassler, R., Pfaff, M., Murphy, J., Noegel, A., Johansson,<br />

S., Timpl, R., and Albrecht, R. 1995.<br />

Lack of beta 1 integrin gene in embryonic stem<br />

cells affects morphology, adhesion, and migration<br />

but not integration into the inner cell mass<br />

of blastocysts. J. Cell Biol. 128:979-988.<br />

Franke, T.F., Kaplan, D.R., and Cantley, L.C. 1997.<br />

PI3K: Downstream AKT ion blocks apoptosis.<br />

Cell 88:435-437.<br />

Hemmings, B.A. 1997. Akt signaling: Linking<br />

membrane events to life and death decisions.<br />

Science 275:628-603.<br />

Hill, M.M. and Hemmings, B.A. 2002. <strong>In</strong>hibition of<br />

protein kinase B/Akt. Implications for cancer<br />

therapy. Pharmacol. Ther. 93:243-251.<br />

Kobayashi, S., Shirai, T., Kiyokawa, E., Mochizuki,<br />

N., Matsuda, M., and Fukui, Y. 2001. Membrane<br />

recruitment of DOCK180 by binding to<br />

Ptd<strong>In</strong>s(3,4,5)P3. Biochem. J. 354:73-78.<br />

Maira, S.M., Galetic, I., Brazil, D.P., Kaech, S.,<br />

<strong>In</strong>gley, E., Thelen, M., and Hemmings, B.A.<br />

2001. Carboxyl-terminal modulator protein<br />

(CTMP), a negative regulator of PKB/Akt and<br />

v-Akt at the plasma membrane. Science<br />

294:374-380.<br />

Marte, B.M. and Downward, J. 1997. PKB/Akt:<br />

Connecting phosphoinositide 3-kinase to cell<br />

survival and beyond. Trends Biochem. Sci.<br />

22:355-358<br />

Meier, R. and Hemmings, B.A. 1999. Regulation of<br />

protein kinase B. J. Recept. <strong>Signal</strong> Transduct.<br />

Res. 19:121-128.<br />

Millward, T.A., Zolnierowicz, S., and Hemmings,<br />

B.A. 1999. Regulation of protein kinase cascades<br />

by protein phosphatase 2A. Trends Biochem.<br />

Sci. 24:186-191.<br />

Pankov, R., Cukierman, E., Clark, K., Matsumoto,<br />

K., Hahn, C., Poulin, B., and Yamada, K.M.<br />

2003. Specific beta 1 integrin site selectively<br />

regulates Akt/protein kinase B signaling via local<br />

activation of protein phosphatase 2A. J. Biol.<br />

Chem. 278:18671-18681.<br />

Persad, S. and Dedhar, S. 2003. The role of integrinlinked<br />

kinase (ILK) in cancer progression. Cancer<br />

Metastasis Rev. 22:375-384.<br />

Scheid, M.P. and Woodgett, J.R. 2003. Unravelling<br />

the activation mechanisms of protein kinase<br />

B/Akt. FEBS Lett. 546:108-112.<br />

Testa, J.R. and Bellacosa, A. 1997. Membrane<br />

translocation and activation of the Akt kinase in<br />

growth factor-stimulated hematopoietic cells.<br />

Leuk. Res. 21:1027-1031.<br />

Vanhaesebroeck, B. and Alessi, D.R. 2000. The<br />

PI3K-PDK1 connection: More than just a road<br />

to PKB. Biochem. J. 346:561-576.<br />

Yamada, K.M. and Araki, M. 2001. Tumor suppressor<br />

PTEN: Modulator of cell signaling, growth,<br />

migration and apoptosis. J. Cell Sci. 114:2375-<br />

2382.<br />

Contributed by Roumen Pankov<br />

National <strong>In</strong>stitute of Dental<br />

and Craniofacial Research<br />

National <strong>In</strong>stitutes of Health<br />

Bethesda, Maryland<br />

Supplement 22 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


Analyzing FAK and Pyk2 in Early<br />

<strong>In</strong>tegrin <strong>Signal</strong>ing Events<br />

<strong>In</strong>tegrins are a family of heterodimeric α/β transmembrane receptors that bind to extracellular<br />

matrix proteins (ECM) proteins, and the signals generated by activated integrins<br />

regulate cell motility (Schwartz, 2001; Hynes, 2002). As integrins do not possess intrinsic<br />

signaling activity, integrin-stimulated signaling events promoting cell motility are<br />

initiated by integrin-associated kinases, e.g., focal adhesion kinase (FAK). FAK is one of<br />

several intracellular protein-tyrosine kinases (including the Src family, Pyk2, c-Abl, and<br />

Syk) that are activated by cell adhesion to ECM proteins such as fibronectin, collagen, or<br />

vitronectin. <strong>In</strong>tegrin activation of FAK promotes increased FAK tyrosine phosphorylation<br />

and leads to the formation of an FAK-Src signaling complex (Schlaepfer et al., 1999;<br />

Schlaepfer and Mitra, 2004). Fibroblasts lacking FAK spread poorly and display migration<br />

defects in response to integrin stimuli (Ilic et al., 1995). Although the FAK-related<br />

kinase Pyk2 is expressed in FAK-null fibroblasts (FAK−/−), Pyk2 is not as effective<br />

in promoting FAK−/− cell motility as the FAK-Src signaling complex (Sieg et al.,<br />

1998). This unit describes methods for culturing FAK+/+ and FAK−/− mouse embryo<br />

fibroblasts (MEFs; see Support Protocol 1) and stimulating these cells by replating onto<br />

fibronectin-coated dishes (see Basic Protocol 1). It also contains support protocols for<br />

cell starvation (see Support Protocol 2), preparation of protein cell lysates (see Support<br />

Protocol 3), and conditions and antibodies available for immunoprecipitation of FAK,<br />

Pyk2, and c-Src (see Support Protocol 4).<br />

Cell replating onto fibronectin activates FAK, and procedures are described for analyzing<br />

FAK-associated autophosphorylation activity (see Basic Protocol 2) with alternate protocols<br />

describing assays for measuring FAK-Pyk2 phosphorylation of a peptide substrate<br />

(see Alternate Protocol 1) and changes in c-Src-associated in vitro kinase activity (see<br />

Alternate Protocol 2). These catalytic measurement assays are complemented by methods<br />

using antibodies available for evaluating activity changes in FAK, Pyk2, or c-Src<br />

using immunoblotting techniques with phospho-specific antibodies (see Basic Protocol<br />

3). <strong>In</strong> addition, the biochemical analyses are complemented by cell biological methods to<br />

evaluate integrin-stimulated haptotaxis migration (see Basic Protocol 4) and time-lapse<br />

imaging to monitor wound closure motility in culture (see Basic Protocol 5). <strong>In</strong> these cell<br />

motility assays, transient plasmid expression vector transfection can be used to overexpress<br />

various proteins to test their effects on cell motility (Alternate Protocol 3). Finally,<br />

protocols are provided for visualizing activated FAK, Pyk2, and c-Src in cells plated onto<br />

extracellular matrix proteins (see Basic Protocol 6) with support methods for staining<br />

filamentous actin in cells (see Alternate Protocol 4), an easy means to visualize changes<br />

in cell shape and indirectly localize integrin-containing focal adhesions that are found at<br />

the ends of actin stress fibers.<br />

NOTE: All culture incubations should be performed in a humidified 37 ◦ C, 10% CO2<br />

incubator unless otherwise specified. Some media, e.g., DMEM, require higher levels of<br />

CO2 to maintain pH 7.4.<br />

NOTE: All solutions and equipment coming into contact with cells must be sterile, and<br />

proper aeseptic technique should be used accordingly.<br />

Contributed by Joie A. Bernard-Trifilo, Ssang-Taek Lim, Shihe Hou, Dusko Ilic, and<br />

David D. Schlaepfer<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology (2006) 14.7.1-14.7.35<br />

Copyright C○ 2006 by John Wiley & Sons, <strong>In</strong>c.<br />

UNIT 14.7<br />

<strong>Signal</strong><br />

<strong>Transduction</strong>:<br />

<strong>Protein</strong><br />

Phosphorylation<br />

14.7.1<br />

Supplement 30


BASIC<br />

PROTOCOL 1<br />

Analyzing FAK<br />

and Pyk2 in Early<br />

<strong>In</strong>tegrin <strong>Signal</strong>ing<br />

14.7.2<br />

REPLATING ASSAYS FOR SIGNALING STUDIES<br />

Although anti-integrin antibodies can be used to facilitate integrin clustering, one of the<br />

strongest activators of integrin signaling is replating or passaging cells onto ECM-coated<br />

culture dishes. <strong>In</strong> the span of 1 hr, cells will rapidly bind to the ECM protein provided<br />

and will undergo cell spreading and morphology changes. Fibronectin binds to variety of<br />

α/β integrin pairs expressed on cells and is the strongest activator of FAK. Other ECM<br />

proteins can be used in replating assays, although the effective concentrations needed<br />

to stimulate integrin signaling are varied and dependent on cell type. This protocol describes<br />

the optimal conditions for replating FAK+/+ and FAK−/− cells on fibronectin to<br />

achieve maximal FAK or Pyk2-Src activation, respectively. It also provides a method for<br />

collecting protein lysates from these cells for further signaling studies. For comparative<br />

purposes, cell lysates are collected from adherent serum-starved cells, cells that have<br />

been held in suspension, cells replated onto fibronectin, and cells that have been replated<br />

onto a positively-charged ligand such as poly-L-lysine where rapid cell adhesion does<br />

not depend on integrin engagement.<br />

Materials<br />

Fibronectin (from bovine plasma; Sigma-Aldrich)<br />

Poly-L-lysine (mol. wt. 70,000 to 150,000 or 150,000 to 300,000; Sigma-Aldrich)<br />

Replating and migration medium (see recipe)<br />

FAK+/+ and FAK−/− MEFs, serum-starved (Support Protocol 2)<br />

Phosphate buffered saline (PBS; APPENDIX 2A)<br />

Trypsin/EDTA: 0.25% (w/v) trypsin/1 mM EDTA (<strong>In</strong>vitrogen)<br />

Trypsin inhibitor solution (see recipe)<br />

10-cm plastic tissue culture plates (Falcon)<br />

4 ◦ C incubator<br />

15-ml centrifuge tubes (Corning)<br />

Tabletop centrifuge<br />

10-ml transfer pipets, sterile<br />

50-ml conical centrifuge tubes (Corning)<br />

Light microscope<br />

Coat plates and prepare cells<br />

1a. To prepare fibronectin plates: Dilute fibronectin to 10 µg/ml in PBS and distribute<br />

5 ml per 10-cm plastic tissue culture plate. <strong>In</strong>cubate at 4 ◦ C overnight.<br />

1b. To prepare poly-L-lysine plates: Dilute poly-L-lysine to 50 µg/ml in PBS and distribute<br />

5 ml per 10-cm plastic tissue culture plate. <strong>In</strong>cubate at 4 ◦ C overnight.<br />

2. Prior to preparing cells, aspirate fibronectin or poly-L-lysine solutions, add 3 ml of<br />

replating and migration medium, aspirate, and place dishes at 37 ◦ C.<br />

The number of cell plates prepared depends on the number of experimental points to be<br />

evaluated. For example, to perform a time course of FAK activation, it is recommended<br />

that fibronectin and poly-L-lysine replating time points of 20, 40, 60, and 180 min be<br />

performed (see Support Protocol 3).<br />

3. Reserve one plate of serum-starved cells for a control. Wash serum-starved cells with<br />

PBS by adding 10 ml PBS and aspirating it off with a transfer pipet. Add 2.5 ml<br />

trypsin/EDTA per dish. Tap side of plates to facilitate cell release.<br />

4. Add 5 ml trypsin inhibitor solution warmed to 37 ◦ C. Transfer cells to a 15-ml<br />

centrifuge tube. Centrifuge 3 min at 750 × g, 21 ◦ C, in a tabletop centrifuge and<br />

aspirate supernatant.<br />

Supplement 30 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


Replate cells<br />

5. Resuspend cells in 37 ◦ C replating and migration medium to 2 × 10 5 cells/ml. Keep<br />

cells in suspension at least 30 min and rotate tube gently at least every 5 min to keep<br />

cells from clumping, settling, and sticking to the plastic.<br />

It is convenient to pool all suspended cells into 50-ml conical centrifuge tubes such<br />

that subsequent cell distribution in replating assays is consistent. FAK−/− cells will<br />

sometimes clump together in suspension and forced pipetting to break apart clumps is<br />

recommended prior to replating. Keep additional cells in suspension during replating.<br />

6. Add 5 ml cell suspension to a 10-cm plate pre-coated with fibronectin or poly-L-lysine<br />

(from step 3) and incubate at 37 ◦ C.<br />

7. Periodically visualize replated cells under a microscope for changes in cell attachment<br />

and spreading.<br />

Maximal FAK activation occurs when cells have bound to fibronectin and are undergoing<br />

rapid cell spreading (between 20 and 60 min). Cells on poly-L-lysine will adhere, but will<br />

be very slow to spread.<br />

8. Proceed with Support Protocol 3 to prepare cell lysates of control cells (adherent<br />

serum-starved cells), experimental cells (replated on fibronectin or poly-L-lysine),<br />

and unplated serum-starved cells in suspension (45 min post replating).<br />

The unplated serum-starved cells in suspension and serum-starved experimental cells will<br />

be very important in correctly evaluating changes in FAK activation in immunoblotting<br />

(Basic Protocol 3) and in vitro kinase assays (Basic Protocol 2).<br />

GROWTH OF FAK+/+ AND FAK−/− FIBROBLASTS<br />

FAK-null MEFs were derived from an E8.0-day-old mouse embryo that had null mutations<br />

in genes for FAK and p53 (Ilic et al., 1995). Therefore, the cells are genetically<br />

FAK−/− p53−/−. Control FAK+/+ cells were derived in 1995 from an E8.0-day-old<br />

mouse embryo that had null mutations in p53 but not in FAK. Therefore, the cells are<br />

genetically FAK+/+ p53−/−. Both cell lines were derived from embryos of littermates<br />

obtained by crossing FAK+/− p53−/− female and FAK+/− p53−/− male mice.<br />

FAK+/+ and FAK−/− MEFs are grown on gelatin precoated plates because this was<br />

used during cell outgrowth from embryos. Although the fibroblasts are p53-null, the<br />

cells will become senescent (exhibited by an increase in cell size and the lack of cell<br />

proliferation) at high passage numbers.<br />

Materials<br />

Gelatin<br />

Phosphate buffered saline (PBS; APPENDIX 2A)<br />

FAK+/+ mouse embryo fibroblasts (ATCC CRL-2645) FAK−/− mouse embryo<br />

fibroblasts (ATCC CRL-2644): grown on plates as per ATCC product sheet<br />

Trypsin/EDTA: 0.25% (w/v) trypsin/1 mM EDTA (<strong>In</strong>vitrogen), 37 ◦ C<br />

Cell growth medium (see recipe), warmed to 37 ◦ C<br />

42 ◦ C water bath<br />

0.22-µm GP Express Plus filter membrane (Millipore)<br />

10-cm plastic tissue culture plates (Falcon)<br />

10-ml transfer pipets, sterile<br />

Light microscope<br />

15-ml conical centrifuge tubes (Corning)<br />

SUPPORT<br />

PROTOCOL 1<br />

<strong>Signal</strong><br />

<strong>Transduction</strong>:<br />

<strong>Protein</strong><br />

Phosphorylation<br />

14.7.3<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 30


SUPPORT<br />

PROTOCOL 2<br />

Analyzing FAK<br />

and Pyk2 in Early<br />

<strong>In</strong>tegrin <strong>Signal</strong>ing<br />

14.7.4<br />

Prepare gelatin-coated plates<br />

1. Dissolve 0.5 g gelatin in 500 ml PBS to make 0.1% (w/v) solution.<br />

2. Heat in 42 ◦ C water bath to dissolve gelatin.<br />

3. Sterilize by passing through a Millipore 0.22-µm GP Express Plus filter membrane.<br />

Store up to 2 weeks at 4 ◦ C.<br />

4. Coat 10-cm plastic tissue culture plates with 5 ml sterile 0.1% gelatin solution and<br />

incubate 1 hr at 37 ◦ C<br />

5. Aspirate gelatin solution. Do not wash plates.<br />

Trypsinize cells<br />

6. Aspirate growth medium from a 10-cm plate of FAK−/− or FAK+/+ mouse embryo<br />

fibroblasts.<br />

7. Wash cells with 5 ml PBS.<br />

8. Add 2.5 ml warm trypsin/EDTA per plate. Tap side of plates to facilitate cell release.<br />

9. <strong>In</strong>cubate 2 to 3 min. Verify cell detachment under a microscope.<br />

FAK−/− cells adhere to the culture plates more firmly than FAK+/+ cells and will take<br />

longer to be released by trypsin/EDTA treatment. Senescent FAK−/− cells exhibit very<br />

strong adhesion to gelatin-coated dishes.<br />

10. <strong>In</strong>activate trypsin/EDTA by adding 5 ml cell growth medium.<br />

Replate cells<br />

11. Wash cells off plates by pipetting, and transfer them into 15-ml conical centrifuge<br />

tubes.<br />

12. Centrifuge cells in a tabletop centrifuge 3 min at 750 × g, 21 ◦ C.<br />

13. Aspirate supernatant and discard, retaining the pellet.<br />

14. Resuspend cells in fresh growth medium, count (see UNIT 1.1), and add growth medium<br />

to obtain the desired density. Add to gelatin-coated plates containing cell growth<br />

medium.<br />

Total volume is 8 to 10 ml medium per 10-cm plate.<br />

Consistent subcultivation is very important as cells that remain confluent for more than<br />

24 hr exhibit alterations in cell morphology and motility properties. <strong>In</strong> routine passage,<br />

FAK−/− cells may proliferate faster than FAK+/+ cells, so cell counting and normalization<br />

of cell numbers is required for equivalent experimental analyses.<br />

Both FAK−/− and FAK+/+ cells contain neomycin resistance genes and G418<br />

(neomycin) selection can be applied (500 µg/ml), although this is not absolutely required.<br />

15. Passage the cells when they are confluent.<br />

Split cells 1:10 to 1:15 every 3 days. Do not allow cells to become overly confluent, as<br />

this can result in a premature senescent phenotype.<br />

SERUM STARVATION OF CELLS<br />

For the stimulation and analysis of FAK activity and phosphorylation (Basic <strong>Protocols</strong> 1,<br />

2, and 3) and assays that involve cell replating onto extracellular matrix (ECM) proteins<br />

(Basic <strong>Protocols</strong> 4, 5, and 6), it is important to start with cells that are adherent and in<br />

a quiescent or nonproliferative state. This is accomplished by lowering the percent of<br />

serum to 0.5% in the growth medium.<br />

Supplement 30 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


Additional Materials (also see Support Protocol 1)<br />

Starvation medium: prepared by making cell growth medium (see recipe) with FBS<br />

reduced to 0.5%.<br />

1. Passage cells (see Support Protocol 1) by plating 1 × 10 6 cells onto gelatin-coated<br />

10-cm dishes in growth medium.<br />

This is a subconfluent density, and it is important that cells do not reach confluency prior<br />

to initiation of cell motility analyses.<br />

2. After 24 hr, wash cells with PBS.<br />

3. Add 8 ml of starvation medium and incubate 16 to 24 hr at 37 ◦ C. Use cells immediately<br />

after starvation.<br />

Greater than 95% of FAK−/− and FAK+/+ cells should remain adherent under serumstarvation<br />

conditions.<br />

PREPARATION OF CELL LYSATES<br />

Activated FAK is associated with the cytoskeleton-rich fraction of cells that is not easily<br />

solubilized with low-detergent-containing buffers. The following lysate preclearing steps<br />

are used as the first step for immunoprecipitation, blotting, and in vitro kinase assays.<br />

All procedures are to be performed at 4◦C. Materials<br />

Experimentally treated, control adherent, and control suspended cells (Basic<br />

Protocol 1)<br />

Phosphate-buffered saline (PBS; APPENDIX 2A), 4 ◦ C<br />

RIPA cell lysis buffer (see recipe), 4 ◦ C<br />

50% (w/v) Sephadex G-100 (Sigma G100-120) slurry in PBS (APPENDIX 2A)<br />

Cell scraper (Corning)<br />

Refrigerated centrifuge<br />

1.5-ml microcentrifuge tubes<br />

1-ml disposable syringes<br />

21-G Luer-Lok needles<br />

Tube rotation device (e.g., Labquake, Barnstadt-Thermolyne)<br />

Microcentrifuge<br />

−80 ◦ C freezer (optional)<br />

1. Wash experimentally treated and adherent control cells with 10 ml cold PBS.<br />

2. At 45 min after replating the experimental cells (see Basic Protocol 1), centrifuge<br />

control suspended cells 3 min at 750 × g, 21 ◦ C. Resuspend cells in PBS and repeat<br />

centrifugation.<br />

3. Add 750 µl cold RIPA cell lysis buffer to each 10-cm plate (or 1 × 10 6 suspended<br />

cells).<br />

4. Scrape adherent cells using cell scraper and transfer to a 1.5-ml microcentrifuge<br />

tube.<br />

5. Using a 1-ml disposable syringe and 21-G Luer-Lok needle, pull cell lysate into<br />

syringe and shear cellular DNA by extrusion. Repeat at least five times.<br />

Be careful using the sharp needle and do not use too much force as this will result in<br />

excessive bubbling of the lysate.<br />

SUPPORT<br />

PROTOCOL 3<br />

<strong>Signal</strong><br />

<strong>Transduction</strong>:<br />

<strong>Protein</strong><br />

Phosphorylation<br />

14.7.5<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 30


SUPPORT<br />

PROTOCOL 4<br />

Analyzing FAK<br />

and Pyk2 in Early<br />

<strong>In</strong>tegrin <strong>Signal</strong>ing<br />

14.7.6<br />

6. Add 100 µl 50% Sephadex G-100 slurry in PBS to each tube. Rotate tubes 10 min<br />

at 4 ◦ C.<br />

Sephadex G-100 beads will reduce DNA contamination and non-specific protein binding<br />

for subsequent immunoprecipitation analyses.<br />

7. Centrifuge 10 min at 16,000 × g, 4 ◦ C.<br />

8. Transfer supernatant (cleared total cell lysate) into new 1.5-ml microcentrifuge tubes.<br />

If the bead pellet is distributed along the sidewall of the microcentrifuge tubes, rotate<br />

tube direction 180◦ in centrifuge rotor and centrifuge an additional 5 min.<br />

9. Store cleared lysate indefinitely at −80 ◦ C or proceed with subsequent analyses.<br />

IMMUNOPRECIPITATION OF FAK, Pyk2, AND c-Src<br />

FAK is expressed at high levels in FAK+/+ fibroblasts. The FAK-related kinase, Pyk2,<br />

is expressed at low levels in FAK+/+ fibroblasts and at high levels in FAK−/− fibroblasts.<br />

Upon replating on fibronectin, both FAK and Pyk2 will form transient signaling<br />

complexes with the c-Src protein-tyrosine kinase. Replating of cells on fibronectin can<br />

also lead to the activation of c-Src through dephosphorylation of Tyr-527 located in<br />

the C-terminal domain of the regulatory region. This protocol describes standard immunoprecipitation<br />

methods used to isolate FAK, Pyk2, or multi-protein complexes with<br />

c-Src.<br />

Materials<br />

Primary antibody (see Table 14.7.1 and Table 14.7.2)<br />

Lysate of treated or control cells (Support Protocol 3)<br />

50% (w/v) protein A-agarose beads (fast flow immobilized protein A; Repligen,<br />

http://www.repligen.com) inPBS(APPENDIX 2A)<br />

50% (w/v) protein G-Plus-agarose beads (Calbiochem) in PBS (APPENDIX 2A)<br />

Triton lysis buffer (see recipe), 4 ◦ C<br />

HNTG buffer (see recipe), 4 ◦ C<br />

1.5-ml microcentrifuge tubes<br />

Tube rotation device (e.g., Labquake, Barnstadt-Thermolyne)<br />

Centrifuge<br />

Transfer pipets<br />

1. Add1to2µg of primary antibody to 0.75 ml lysate of treated or control cells in a<br />

microcentrifuge tube.<br />

If using cells from a frozen lysate, thaw at 37◦C then maintain at 4◦C. Use a FAK or Pyk2 antibody for subsequent analysis of FAK/Pyk2 kinase activity or<br />

phosphorylation. (Basic Protocol 2 or Alternate Protocol 1).<br />

Use an Src antibody for subsequent Src-associated analysis (Alternate Protocol 2).<br />

2. Rotate from 3 to 14 hr at 4 ◦ C.<br />

3. Add 30 µl of protein A– or protein G–bead slurry and rotate 60 min at 4 ◦ C.<br />

<strong>Protein</strong> A beads are used to capture rabbit polyclonal antibodies and protein G beads<br />

are used to bind goat polyclonal and mouse monoclonal antibodies (Table 14.7.1 and<br />

Table 7.2.1).<br />

4. Centrifuge beads 1 min at 1000 × g, 4 ◦ C. Remove supernatant with a transfer pipet.<br />

5. Add 800 µl Triton lysis buffer to beads, invert tube to suspend the bead pellet, and<br />

centrifuge 1 min at 1000 × g, 4 ◦ C. Remove supernatant with a transfer pipet and<br />

repeat step two more times.<br />

Supplement 30 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


6. Add 800 µl of HNTG buffer, invert the tube to suspend the bead pellet, and centrifuge<br />

1 min at 1000 × g, 4 ◦ C. Remove supernatant with a transfer pipet and repeat step<br />

two more times.<br />

From this point, the immunoprecipitated samples can be analyzed in either the in vitro<br />

kinase assay (Basic Protocol 2) or resolved by SDS-PAGE (UNIT 6.1) and processed by<br />

immunoblotting (UNIT 6.2 and Basic Protocol 3).<br />

IN VITRO KINASE ASSAY<br />

<strong>In</strong>tegrin binding to fibronectin leads to rapid cell spreading, and FAK, Pyk2, and c-Src<br />

tyrosine kinases become activated. The process can be characterized through changes associated<br />

with in vitro kinase activity. Assays are designed to detect auto-phosphorylation<br />

or the intramolecular phosphorylation of an added substrate such as a synthetic poly<br />

(Glu:Tyr) peptide for FAK and Pyk2, or the phosphorylation of a recombinant fragment<br />

of the FAK C-terminal domain by c-Src.<br />

Materials<br />

Immunoprecipitated samples (Support Protocol 4, step 6)<br />

FAK-Pyk2 kinase buffer (see recipe), 4 ◦ C<br />

Src kinase buffer (see recipe), 4 ◦ C<br />

10 µCi/µl [γ 32 P]ATP (>3,000 Ci/mmol; PerkinElmer)<br />

Magnesium/ATP cocktail (Upstate Biotechnology or see recipe)<br />

2× Laemmli SDS buffer (see recipe)<br />

Coomassie blue stain (see recipe)<br />

Molecular weight marker (Precision Plus, Bio-Rad)<br />

Destaining solution (see recipe)<br />

Microcentrifuge<br />

1.5-ml microcentrifuge tubes<br />

32 ◦ C water bath<br />

Plexiglas shielding<br />

Gloves<br />

Geiger counter<br />

Plexiglas box<br />

Micro tube cap locks (RPI 145063; http://www.rpicorp.com)<br />

Whatman 3MM filter paper<br />

Gel dryer<br />

Immobilon PVDF membrane (Millipore IPFL 000-10)<br />

Additional reagents and equipment for SDS-PAGE (UNIT 6.1), autoradiography<br />

(UNIT 6.3), and transfer of proteins to membranes for immunoblotting (UNIT 6.2)<br />

CAUTION: When working with radioactivity, take appropriate precautions to avoid<br />

contamination of the experimenter and the surroundings. Carry out the experiment and<br />

dispose of wastes in appropriately designated areas, following guidelines provided by<br />

the local radiation safety officer (also see APPENDIX 1A).<br />

1. Wash the immunoprecipitated samples (Support Protocol 4, step 6) with<br />

800 µl cold FAK-Pyk2 kinase buffer two times, centrifuging 2 min at 16,000 ×<br />

g, 4 ◦ C, each time.<br />

2. Aspirate supernatant, but leave a small amount above pellet (∼20 to 30 µl).<br />

3. For FAK-Pyk2 autophosphorylation assays, add 2.5 µlof10µCi/µl[γ 32 P] ATP and<br />

5 µl magnesium/ATP cocktail to the immune complexes. Slightly flick tubes to mix<br />

and place in 32 ◦ C water bath for 15 min.<br />

BASIC<br />

PROTOCOL 2<br />

<strong>Signal</strong><br />

<strong>Transduction</strong>:<br />

<strong>Protein</strong><br />

Phosphorylation<br />

14.7.7<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 32


Analyzing FAK<br />

and Pyk2 in Early<br />

<strong>In</strong>tegrin <strong>Signal</strong>ing<br />

14.7.8<br />

Figure 14.7.1 Measurements of Pyk2 of FAK-associated in vitro kinase activity. Lysates from<br />

serum-starved (attached), suspended (S) fibronectin-plated (FN), and poly-L-lysine-plated (PL)<br />

FAK−/− cells (A and B) or FAK+/+ cells (C and D) were prepared and divided into equal aliquots<br />

for either Pyk2 immunoprecipitates (IPs) or FAK IPs, respectively. (A) Pyk2 IPs were labeled by<br />

the addition of [γ- 32 P]ATPinaninvitrokinase(IVK)assay. 32 P-labeled proteins were transferred<br />

to membranes and visualized by autoradiography. (B) The same membrane shown in (A) was cut<br />

and analyzed by either anti-Pyk2 or anti-Src family PTK blotting. (C) FAK IPs were labeled by the<br />

addition of [γ- 32 P]ATP in an IVK assay and the same membrane (D) was cut and analyzed by<br />

either anti-FAK or anti-Src family protein-tyrosine kinase (PTK) immunoblotting. Molecular weight<br />

standards are indicated in kDa to the left. (previously published in the EMBO Journal; Siegetal.,<br />

1998)<br />

Supplement 32 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


CAUTION: Place Plexiglas shielding around gel area to prevent radiation exposure.<br />

Remember to check gloves and work areas with a Geiger counter after the kinase assay<br />

is done. Use a Plexiglas box for moving radioactive materials within the laboratory and<br />

dispose of radioactive waste into designated storage according to institutional requirements.<br />

4. Add 50 µl 2× Laemmli SDS buffer to stop kinase reactions. Secure 1.5-ml tubes<br />

with micro tube cap locks.<br />

5. Boil samples for 3 min at 100 ◦ C.<br />

6. Microcentrifuge agarose beads 2 min at 16,000 × g, 21 ◦ C. Load supernatants and<br />

molecular weight marker onto a 7.5% SDS-PAGE gel (see UNIT 6.1).<br />

For autoradiography<br />

7a. After gel is run (∼4 hr), cut one top corner to mark orientation. Place gel in Coomassie<br />

blue stain for 1 hr and then destain gel for 6 to 12 hr in multiple changes of destaining<br />

solution on a shaking platform. Wash a final time in water.<br />

8a. Place gel onto Whatman 3MM filter paper and dry using a gel dryer.<br />

9a. Expose gel to film or phosphor-imager screen (UNIT 6.3) to quantify 32 P incorporated<br />

into FAK (∼116 kDa), Pyk2 (∼110 kDa) or associated c-Src (∼60 kDa).<br />

See Fig. 14.7.1 A and C.<br />

For autoradiography and subsequent immunoblotting<br />

7b. Transfer the gel to a PVDF membrane via semidry electrophoretic transfer (see<br />

UNIT 6.2).<br />

8b. Stain min with Coomassie blue stain. Destain 10 min in destaining solution and wash<br />

a final time in water.<br />

9b. Place membrane between protective plastic sheets and expose gel to film or phosphorimager<br />

screen to quantify 32 P incorporated into FAK (∼116 kDa), Pyk2 (∼110 kDa)<br />

or associated c-Src (∼60 kDa). See UNIT 6.3 for more information.<br />

<strong>In</strong> this manner, subsequent immunoblotting (see Basic Protocol 3) can be performed on<br />

the kinase reactions to verify the amount of FAK or Pyk2 in the immune complex or the<br />

amount of c-Src associated with the activated FAK and/or Pyk2 complex reaction (see<br />

Fig. 14.7.1B and D).<br />

FAK-PYK2 POLY GLU:TYR PHOSPHORYLATION<br />

This procedure is used to measure the autophosphorylation of FAK/Pyk2 (as in Basic<br />

Protocol 2) combined with the transphosphorylation of an added generic substrate<br />

peptide.<br />

Additional Materials (also see Basic Protocol 2)<br />

Immunoprecipitated samples (see Support Protocol 4, step 6)<br />

10 mg/ml poly(Glu:Tyr; 4:1) mol. wt. 20,000 to 50,000: sodium salt<br />

(Sigma-Aldrich) prepared in PBS and stored up to 2 years at −20 ◦ Cin1-ml<br />

aliquots<br />

Magnesium/ATP cocktail (Upstate Biotechnology or see recipe)<br />

10 µCi/µl [γ 32 P]ATP (>3,000 Ci/mmol; PerkinElmer)<br />

FAK-Pyk2 kinase buffer<br />

0.75% phosphoric acid<br />

100% acetone<br />

Scintillation fluid (Sigma)<br />

2 × 2–cm Whatman 3MM filter paper squares<br />

ALTERNATE<br />

PROTOCOL 1<br />

<strong>Signal</strong><br />

<strong>Transduction</strong>:<br />

<strong>Protein</strong><br />

Phosphorylation<br />

14.7.9<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 30


ALTERNATE<br />

PROTOCOL 2<br />

Analyzing FAK<br />

and Pyk2 in Early<br />

<strong>In</strong>tegrin <strong>Signal</strong>ing<br />

14.7.10<br />

Conical 50-ml centrifuge tube<br />

Scintillation vials<br />

Scintillation counter<br />

Additional reagents and equipment for preparing immunoprecipitated samples<br />

(Support Protocol 4)<br />

CAUTION: When working with radioactivity, take appropriate precautions to avoid<br />

contamination of the experimenter and the surroundings. Carry out the experiment and<br />

dispose of wastes in appropriately designated areas, following guidelines provided by<br />

the local radiation safety officer (also see APPENDIX 1A).<br />

1. Wash the immunoprecipitated samples (from Support Protocol 4, step 6) with 800 µl<br />

cold FAK-Pyk2 kinase buffer two times, centrifuging 2 min at 16,000 × g, 4 ◦ C, each<br />

time.<br />

2. Remove supernatant, but leave a small amount above pellet (∼20 to 30 µl).<br />

3. Add 5 µl 10 mg/ml poly(Glu:Tyr), 5 µl magnesium/ATP cocktail, and 2.5 µl of<br />

10 µCi/µl [γ 32 P]ATP (25 µCi) to the immunoprecipitated samples. Slightly flick<br />

tubes to mix and place in 32 ◦ C water bath for 15 min. <strong>In</strong>clude a negative control for the<br />

phosphorylation assay, substituting 35 µl kinase buffer for the immunoprecipitated<br />

samples.<br />

CAUTION: Place Plexiglas shielding around gel area to prevent radiation exposure.<br />

Remember to check gloves and work areas with a Geiger counter after the kinase assay<br />

is done. Use a Plexiglas box for moving radioactive materials within the laboratory and<br />

dispose of radioactive waste into designated storage according to institutional requirements.<br />

The negative control will measure the level of background binding of [ 32P ATP] to the<br />

assay squares.<br />

The total volume of immune complex reaction is ∼50 µl yielding a final concentration of<br />

50 µM ATP from the magnesium/ATP cocktail and 1 mg/ml poly Glu:Tyr.<br />

4. Transfer a 10-µl aliquot onto the center of a labeled (with a #2 pencil) 2 × 2–cm<br />

Whatman filter paper square.<br />

There should be enough volume for triplicates for each immune complex reaction.<br />

5. Allow the radiolabeled substrate to bind to filter paper for at least 1 min. Transfer<br />

filter papers to a 50-ml conical tube containing 40 ml 0.75% phosphoric acid. Gently<br />

invert tube to wash the assay squares for 5 min. Repeat three times and discard liquid<br />

as radioactive waste.<br />

Ten or more assays squares can be washed per 50-ml tube.<br />

6. Wash assay squares once with 40 ml of 100% acetone for 5 min. Discard liquid waste<br />

and transfer assay squares to scintillation vial. Add scintillation fluid and evaluate<br />

using a scintillation counter.<br />

For information on creating a standard curve, see http://www. perkinelmer.com.<br />

MEASUREMENTS OF Src-ASSOCIATED KINASE ACTIVITY<br />

As c-Src contains both stimulatory (Tyr-416) and inhibitory (Tyr-527) phosphorylation<br />

sites that act to regulate catalytic activity, measurements to analyze changes in<br />

c-Src-associated kinase activity are performed by c-Src immune complex phosphorylation<br />

of an FAK C-terminal domain fragment that contains the known c-Src phosphorylation<br />

sites, FAK Tyr-861 and FAK Tyr-925.<br />

Supplement 30 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


Additional Materials (also see Basic Protocol 2)<br />

10 mg/ml GST-FAK 853-1052 (Schlaepfer lab)<br />

Enolase (Sigma-Aldrich E-0379), optional<br />

50 mM HCl, optional<br />

1 M PIPES, pH 7, optional<br />

30◦C water bath, optional<br />

CAUTION: When working with radioactivity, take appropriate precautions to avoid<br />

contamination of the experimenter and the surroundings. Carry out the experiment and<br />

dispose of wastes in appropriately designated areas, following guidelines provided by<br />

the local radiation safety officer (also see APPENDIX 1A).<br />

1. Wash the immunoprecipitated samples (from step 6 in Support Protocol 4) with<br />

800 µl cold FAK-Pyk2 kinase buffer two times, centrifuging 2 min at 16,000 × g,<br />

4 ◦ C, each time.<br />

2. Remove supernatant, but leave a small amount above pellet (∼20 to 30 µl)<br />

3. Add 5 µl of 10 mg/ml GST-FAK 853-1052, 5 µl magnesium/ATP cocktail, and 2.5 µl<br />

of 10 µCi/µl[γ 32 P]ATP (25 µCi) to the immunoprecipitated samples. Slightly flick<br />

tubes to mix and place in 32 ◦ C water bath for 15 min.<br />

CAUTION: Place Plexiglas shielding around gel area to prevent radiation exposure.<br />

Remember to check gloves and work areas with a Geiger counter after the kinase assay<br />

is done. Use a Plexiglas box for moving radioactive materials within the laboratory and<br />

dispose of radioactive waste into designated storage according to institutional requirements.<br />

The total volume of immune complex reaction is ∼50 µl yielding a final concentration of<br />

50 µM ATP from the magnesium/ATP cocktail and 1 mg/ml GST-FAK 853-1052.<br />

Alternatively, acid-denatured enolase may be used as a substrate. Enolase must be<br />

freshly prepared: Add 10 µl of enolase (1 mg/ml) to 2 µl of 50 mM HCl and incubate<br />

10 min at 30◦C. Neutralize with 2 µl 1 M PIPES, pH 7.0, and use 2 µl acid-denatured<br />

enolase per kinase reaction.<br />

4. Proceed with Basic Protocol 2, steps 4 through 9 to perform SDS-PAGE and autoradiography<br />

or autoradiography and immunoblotting.<br />

IMMUNOBLOTTING WITH FAK/PYK2 PHOSPHO-SPECIFIC ANTIBODIES<br />

While in vitro kinase assays will reflect changes in catalytic activity, immunoblotting<br />

with FAK/PYK2 phospho-specific antibodies can be used to assess specific phosphorylation<br />

site modification(s) within the kinases. For example, FAK and Pyk2 first become<br />

phosphorylated at their autophosphorylation sites Y397 and Y402 respectively. Upon<br />

phosphorylation and binding of c-Src in an active signaling complex, c-Src can phosphorylate<br />

other sites on FAK and Pyk2. Additionally, there are several serine-threonine sites<br />

on FAK that can be phosphorylated by other cellular kinases. Finally, phospho-specific<br />

antibodies have been developed to indirectly measure the activation state of c-Src.<br />

Materials<br />

2× Laemmli SDS buffer (see recipe)<br />

Immunoprecipitated samples (Support Protocol 4, step 6)<br />

100% and 20% methanol<br />

Transfer buffer (see UNIT 6.2)<br />

EZBlue gel staining reagent (Sigma)<br />

BSA blocking buffer (see recipe)<br />

Primary antibody (see Tables 14.7.1 and 14.7.2)<br />

BASIC<br />

PROTOCOL 3<br />

<strong>Signal</strong><br />

<strong>Transduction</strong>:<br />

<strong>Protein</strong><br />

Phosphorylation<br />

14.7.11<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 30


Analyzing FAK<br />

and Pyk2 in Early<br />

<strong>In</strong>tegrin <strong>Signal</strong>ing<br />

14.7.12<br />

Tris-buffered saline with Tween (TBST, see recipe)<br />

Secondary antibody: Horseradish peroxidase (HRP)-conjugated appropriate<br />

species (Pierce)<br />

Enhanced chemiluminescence (ECL) western detection solution (Amersham RPN<br />

2132)<br />

Western blot stripping buffer (see recipe)<br />

Immobilon PVDF membrane (Millipore)<br />

Rotating shaker<br />

Additional reagents and equipment for gel electrophoresis (UNIT 6.1) and<br />

electrophoretic transfer (UNIT 6.2)<br />

Perform gel electrophoresis<br />

1. Add 50 µl of2× Laemmli SDS buffer to the immunoprecipitated samples from<br />

Support Protocol 4, step 6 and boil samples 3 min at 100 ◦ C.<br />

2. Centrifuge 2 min at 16,000 × g, 21 ◦ C. Using the supernatants perform SDS-PAGE<br />

(UNIT 6.1), including molecular size markers.<br />

Transfer proteins to PVDF membrane<br />

3. Transfer proteins to a PVDF membrane using an electrophoretic transfer unit<br />

(UNIT 6.2).<br />

PVDF membrane should be prepared by soaking in 100% methanol followed by the<br />

appropriate transfer buffer before use.<br />

4. After transfer is complete, stain protein bands with EZBlue gel staining reagent.<br />

Rinse membrane in water and destain in 20% methanol until background staining<br />

disappears.<br />

5. Photocopy membrane for record keeping purposes and to note positions of protein<br />

size markers.<br />

Probe membrane<br />

6. Place membrane in BSA blocking buffer for 1 hr at room temperature.<br />

7. Remove blocking buffer and incubate membranes with primary antibodies 3 hr at<br />

room temperature or overnight at 4 ◦ C.<br />

A 1:1000 dilution (∼0.5 µg/ml in BSA blocking buffer) is a good starting point for using<br />

an antibody for the first time.<br />

8. Wash membranes by rotational shaking with TBST for 10 min. Repeat three times<br />

using fresh TBST.<br />

9. Dilute secondary antibody 1:5000 to 1:10,000 in TBST (e.g., 5 µl in 15 ml) and<br />

incubate membranes with the antibody 1 hr at room temperature.<br />

HRP-conjugated secondary antibodies commonly used are: goat anti-mouse IgG, <strong>Protein</strong><br />

A, donkey anti-rabbit IgG, and mouse anti-goat IgG.<br />

10. Wash membranes by rotational shaking with TBST for 10 min. Repeat three times<br />

using fresh TBST.<br />

11. <strong>In</strong>cubate in 5 ml ECL solution for 5 min at 21 ◦ C. Expose to film 30 sec to 10 min to<br />

achieve optimal exposure.<br />

Although many phospho-specific antibodies can be used to probe FAK, Pyk2, or<br />

c-Src activation states in whole cell lysates, multiple immunoreactive bands detected<br />

can complicate the interpretation of results. This is not a problem when analyzing FAK,<br />

Pyk2, or c-Src by immunoprecipitation.<br />

Supplement 30 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


Table 14.7.1 Commercially Available Antibodies to FAK, Pyk2, and c-Src a<br />

Antibody Company Source Application Catalog number<br />

FAK, clone 4.47 Upstate mouse (mAb) WB, IP, IC, IH 05-537<br />

FAK clone 2A7 Upstate mouse (mAb) IP, IC 05-182<br />

FAK Upstate rabbit WB, IP, IH 06-543<br />

FAK, BC3 Upstate rabbit IP, IC 06-446<br />

FAK BioSource rabbit IP, WB AHO0502<br />

FAK BD PharMingen rabbit WB, IP 556368<br />

FAK BD <strong>Transduction</strong> mouse (mAb) WB, IP, IC, IH 610087<br />

FAK Cell <strong>Signal</strong>ing rabbit WB, IH 3285<br />

FAK BioSource rabbit WB, IP, IC AH0502<br />

FAK BioSource rabbit WB, IP, IC AMO0672<br />

FAK Chemicon rabbit IP AB1605<br />

FAK Chemicon mouse (mAb) WB, IP, IC MAB2156<br />

FAK (H-1) Santa Cruz mouse (mAb) WB, IP, IC, IH sc-1688<br />

FAK (A-17) Santa Cruz rabbit WB, IP, IC sc-557<br />

FAK (C-20) Santa Cruz rabbit WB, IP, IC sc-558<br />

FAK (C-903) Santa Cruz rabbit WB, IP, IC, IH sc-932<br />

Pyk2 Upstate rabbit WB, IP, IC 06-559<br />

Pyk2, clone 74 Upstate mouse (mAb) WB, IP 05-488<br />

Pyk2 Upstate rabbit WB, IP, IC 07-437<br />

Pyk2 Cell <strong>Signal</strong>ing rabbit WB, IP 3292<br />

Pyk2 BD <strong>Transduction</strong> mouse (mAb) WB, IP, IC, IH 610548<br />

Pyk2 (H-102) Santa Cruz mouse (mAb) WB, IP, IC sc-9019<br />

Pyk2 (N-19) Santa Cruz rabbit WB, IP, IC sc-1514<br />

Pyk2 (C-19) Santa Cruz rabbit WB, IP, IC sc-1515<br />

c-Src, clone GD11 Upstate mouse WB, IP 05-184<br />

c-Src, clone N6L Upstate rabbit (mAb) WB 05-889<br />

c-Src, clone NL19 Upstate rabbit (mAb) WB, IP 05-772<br />

c-Src BioSource mouse (mAb) WB AHO1152<br />

c-Src BioSource rabbit WB 44-655G<br />

c-Src BioSource rabbit WB 44-656G<br />

c-Src Chemicon sheep WB, IP CB769<br />

c-Src, clone 36D10 Cell <strong>Signal</strong>ing rabbit (mAb) WB, IP, IC, IH 2109<br />

c-Src, clone L4A1 Cell <strong>Signal</strong>ing mouse (mAb) WB, IP 2110<br />

c-Src Cell <strong>Signal</strong>ing rabbit WB, IP, IC, IH 2108<br />

c-Src (H-12) Santa Cruz mouse (mAb) WB, IP, IC sc-5266<br />

c-Src (B-12) Santa Cruz mouse (mAb) WB, IP, IC sc-8056<br />

c-Src (N-16) Santa Cruz rabbit WB, IP, IC sc-19<br />

c-Src (Src 2) Santa Cruz rabbit WB, IP, IC sc-18<br />

aAbbreviation: mAb, monoclonal antibody; WB, western (immuno)blot; IP, immunoprecipitation; IC, immunocytochemistry;<br />

IH, immunohistochemistry.<br />

<strong>Signal</strong><br />

<strong>Transduction</strong>:<br />

<strong>Protein</strong><br />

Phosphorylation<br />

14.7.13<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 30


Analyzing FAK<br />

and Pyk2 in Early<br />

<strong>In</strong>tegrin <strong>Signal</strong>ing<br />

14.7.14<br />

Table 14.7.2 Commercially Available Phospho-Specific Antibodies to FAK, Pyk2, and c-Src a<br />

Antibody Company Source Application Catalog number<br />

FAK pY397 BioSource rabbit WB, IC, IH 44-624G<br />

FAK pY397<br />

clone 141-9<br />

BioSource rabbit (mAb) WB, IC 44-625G<br />

FAK pY407 BioSource rabbit WB, IC, IH 44-650G<br />

FAK pY576 BioSource rabbit WB 44-652G<br />

FAK pY577 BioSource rabbit WB, IC 44-614G<br />

FAK pS722 BioSource rabbit WB 44-588<br />

FAK pS732 BioSource rabbit WB 44-590G<br />

FAK pS843 BioSource rabbit WB 44-594<br />

FAK pY861 BioSource rabbit WB, IC 44-626G<br />

FAK pS910 BioSource rabbit WB 44-596<br />

FAK pY397<br />

clone 14<br />

BD/<strong>Transduction</strong> mouse (mAb) WB, IC 611722<br />

FAK pY397<br />

clone 18<br />

BD/<strong>Transduction</strong> mouse (mAb) WB, IC 611806<br />

FAK<br />

pY576/pY577<br />

Cell <strong>Signal</strong>ing rabbit WB 3281<br />

FAK pY397 Santa Cruz rabbit WB, IC sc-11765-R<br />

FAK pY397 Santa Cruz rabbit WB, IC sc-21868-R<br />

FAK pY407 Santa Cruz goat WB, IC sc-16664<br />

FAK pY576 Santa Cruz rabbit WB, IC sc-16563-R<br />

FAK pY477 Santa Cruz goat WB, IC sc-16665<br />

FAK<br />

pY576/pY577<br />

Santa Cruz rabbit WB, IC sc-21831-R<br />

FAK<br />

pY576/pY577<br />

Santa Cruz goat WB, IC sc-21831<br />

FAK pS722 Santa Cruz goat WB, IC sc-16662<br />

FAK pY861 Santa Cruz goat WB, IC sc-16663<br />

FAK pS910 Santa Cruz goat WB, IC sc-16666<br />

FAK pY925 Santa Cruz goat WB, IC sc-11766<br />

FAK pY397 Chemicon mouse (mAb) WB, IC MAB1144<br />

FAK pY397 Upstate rabbit WB, IC 07-012<br />

FAK pY576 Upstate rabbit WB, IC 07-157<br />

Pyk2 pY402 BioSource rabbit WB, IH 44-618G<br />

Pyk2 pY579 BioSource rabbit WB, IC 44-632G<br />

Pyk2<br />

pY579/pY580<br />

BioSource rabbit WB 44-636G<br />

Pyk2 pY580 BioSource rabbit WB 44-634G<br />

Pyk2 pY881 BioSource rabbit WB, IH 44-620<br />

Pyk2 pY402 Cell <strong>Signal</strong>ing rabbit WB, IP 3291<br />

continued<br />

Supplement 30 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


Table 14.7.2 Commercially Available Phospho-Specific Antibodies to FAK, Pyk2, and c-Src a ,<br />

continued<br />

Antibody Company Source Application Catalog number<br />

>Pyk2 pY402 Santa Cruz rabbit WB, IC sc-11767-R<br />

Pyk2 pY579 Santa Cruz goat WB, IC sc-16822<br />

Pyk2<br />

pY579/pY580<br />

Santa Cruz goat WB, IC sc-16824<br />

Pyk2 pY580 Santa Cruz goat WB, IC sc-16823<br />

Pyk2 pY881 Santa Cruz goat WB, IC sc-16825<br />

Pyk2 pY402<br />

clone RR102<br />

Upstate mouse (mAb) IP 05-679<br />

Active Src<br />

clone 28<br />

BioSource mouse (mAb) WB, IC, IH AHO0051<br />

Src pY416 BioSource rabbit WB, IC 44-660G<br />

Src pY527 BioSource rabbit WB, IH 44-662G<br />

Src pY527<br />

clone 31<br />

BD/<strong>Transduction</strong> mouse (mAb) WB 612668<br />

Src pY416 Cell <strong>Signal</strong>ing rabbit WB, IC, IH 2101<br />

Src pY416<br />

clone 7G9<br />

Cell <strong>Signal</strong>ing mouse (mAb) WB, IP 2102<br />

Non-phospho<br />

Src pY527<br />

Cell <strong>Signal</strong>ing rabbit WB 2107<br />

Src pY527 Cell <strong>Signal</strong>ing rabbit WB, IH 2105<br />

Src pY527 Santa Cruz goat WB, IC sc-16846<br />

Src pY416<br />

clone 2N8<br />

Upstate rabbit (mAb) WB 05-857<br />

Src pY416<br />

clone 9A6<br />

Upstate mouse (mAb) WB 05-677<br />

aAbbreviations: mAb, monoclonal antibody; WB, western (immuno)blot; IP Immunoprecipitation; IC, immunocytochemistry;<br />

IH, immunohistochemistry.<br />

Reprobe membranes<br />

12. For sequential probing of membranes with different antibodies, strip bound antibodies<br />

from membranes by incubating 15 min in western blot stripping buffer at 65 ◦ C.<br />

Wash membrane thoroughly with water.<br />

13. Repeat immunoblotting procedure from step 4 to step 9.<br />

Blots can be stripped two to three times to analyze FAK and Pyk2 immune complexes<br />

with various phospho-specific antibodies. It is recommended that a different species of<br />

primary antibody be used (rabbit, mouse, or goat) in the subsequent blotting analyses<br />

to ensure that signals detected are not from the first set of antibodies used to probe the<br />

membrane.<br />

HAPTOTAXIS MOTILITY ASSAY: MATRIX-STIMULATED MIGRATION<br />

FAK is rapidly activated via tyrosine phosphorylation and binds directly to c-Src, resulting<br />

in the formation of a FAK-Src signaling complex that leads to the activation of various<br />

downstream signaling cascades. <strong>In</strong> the preceding protocols, emphasis was placed on<br />

biochemical evaluations of FAK, Pyk2, or Src activation or phosphorylation after cell<br />

binding to extracellular matrix proteins. <strong>In</strong> addition to biochemical signaling changes<br />

BASIC<br />

PROTOCOL 4<br />

<strong>Signal</strong><br />

<strong>Transduction</strong>:<br />

<strong>Protein</strong><br />

Phosphorylation<br />

14.7.15<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 30


Analyzing FAK<br />

and Pyk2 in Early<br />

<strong>In</strong>tegrin <strong>Signal</strong>ing<br />

14.7.16<br />

inside cells, cell binding to matrix proteins such as fibronectin can result in enhanced cell<br />

spreading and the initiation of cell migration. Notably, FAK−/− cells spread poorly and<br />

exhibit refractory motility responses in response to a fibronectin stimulus. Although it has<br />

been shown that FAK reexpression within FAK−/− cells can reverse the motility defects,<br />

the molecular pathways through which FAK promotes cell motility and the inability of<br />

Pyk2 in FAK−/− cells to function as a replacement for FAK remain active areas of<br />

research. There are various assays whereby cell motility can be measured. To specifically<br />

evaluate the contribution of integrin signaling, haptotaxis (a directed response of cells<br />

in a gradient of adhesion) motility assays are performed in the absence of serum where<br />

FAK signaling plays important roles in promoting efficient cell movement towards the<br />

extracellular matrix.<br />

Materials<br />

FAK−/− and FAK+/+ cells, subconfluent (see Support Protocol 1)<br />

Human plasma fibronectin (Sigma-Aldrich F2006): 2 to 10 µg/ml in replating and<br />

migration medium (see recipe), 37 ◦ C<br />

BSA-coating control: 10 µg BSA/ml in replating and migration medium (see<br />

recipe)<br />

Trypsin/EDTA: 0.25% (w/v) trypsin/1 mM EDTA (<strong>In</strong>vitrogen)<br />

Trypsin inhibitor solution (see recipe)<br />

PBS ++ : phosphate-buffered saline (PBS; APPENDIX 2A) with 0.1 g/liter CaCl2 and<br />

0.5 mM MgCl2<br />

Cell fixative: PBS with 1.85% (v/v) formaldehyde and 0.05% (v/v) glutaraldehyde<br />

10% (w/v) crystal violet stain (Sigma) in ethanol<br />

0.1 M sodium borate, pH 9.0<br />

Parafilm<br />

Millicell PCF chamber inserts, 8-µm pore (Millipore PITP01250)<br />

Flat-tipped forceps<br />

15-ml centrifuge tube<br />

Tabletop centrifuge<br />

Hemacytometer<br />

24 well-tissue culture dishes (Costar)<br />

Cotton swabs<br />

<strong>In</strong>verted light microscope<br />

Spectrophotometer with A600 capability, optional<br />

Additional reagents and equipment for serum-starving cells (Support Protocol 2)<br />

and counting cells (UNIT 1.1)<br />

Starve cells<br />

1. Twenty-four hr before the motility assay, serum starve subconfluent FAK−/− and<br />

FAK+/+ cells (see Support Protocol 2).<br />

Cells should be subconfluent during starvation. High-density or contact-inhibited cells<br />

do not respond well to motility stimuli during the short time period of the assay.<br />

Prepare assay chamber<br />

2. Pipet 100 µl of human plasma fibronectin onto Parafilm. Carefully place Millicell<br />

PCF chamber inserts one at a time on top the fibronectin-containing droplets. Prepare<br />

three chambers per experimental point and include a BSA-coating control.<br />

The use of flat tipped forceps is best for the handling of individual chambers.<br />

Be sure to cover the entire membrane and to avoid bubbles as this will result in poor<br />

ligand coverage. This method is designed to coat just the under surface of the Millicell<br />

chamber with fibronectin.<br />

Supplement 30 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


3. <strong>In</strong>cubate chambers 2 hr at room temperature. Cover the Parafilm and chambers on<br />

the bench top with a plastic container to avoid evaporation.<br />

4. Rinse each chamber gently in PBS and let dry for at least 10 min at room temperature.<br />

Prepare cells<br />

5. Wash serum-starved cells with 10 ml PBS and aspirate off. Add 2.5 ml trypsin/EDTA<br />

per dish. Tap side of plates to facilitate cell release.<br />

6. Add 5 ml trypsin inhibitor solution warmed to 37 ◦ C. Transfer cells to 15-ml centrifuge<br />

tube. Centrifuge 3 min at 750 × g,21 ◦ C, in a tabletop centrifuge and aspirate<br />

supernatant.<br />

7. Resuspend cells to ∼2 × 10 5 cells/ml in 37 ◦ C replating and migration medium. Keep<br />

in suspension at least 30 min and rotate tube at least every 5 min to keep cells from<br />

clumping, settling, and sticking to the plastic.<br />

8. During incubation period, count cells using a hemacytometer (UNIT 1.1) and dilute<br />

a suspension of cells to a density of 33 × 10 4 cells/ml in replating and migration<br />

medium<br />

Perform migration assay<br />

9. Add 400 µl replating and migration medium to each experimental well of a 24-well<br />

tissue culture dish. Carefully place chambers into wells making sure there are no<br />

bubbles.<br />

10. Add 300 µl cell suspension to each chamber (total of 1 × 10 5 cells).<br />

11. <strong>In</strong>cubate 3 to 4 hr at 37◦C with 10% CO2.<br />

Fibroblasts will show maximal migration within this period.<br />

Variations of this assay can be used to examine different types of motility. For example,<br />

chambers can be coated on the top and bottom to study random motility. Additionally,<br />

growth factors can be added to the lower chamber to investigate cell chemotaxis responses.<br />

Fix, stain, and count cells<br />

12. Fill two 24-well tissue culture plates with 0.5 ml PBS ++ and one with 0.5 ml cell<br />

fixative. Transfer chambers to PBS ++ and incubate 2 min to wash. Move chambers<br />

to fixative for 5 min then into fresh PBS ++ for 2 min.<br />

13. Dilute 10% crystal violet stain stock 1:100 in 0.1 M sodium borate, pH 9.0. Place<br />

chambers into 0.5 ml of 0.1% crystal violet for 30 min.<br />

14. Remove chambers from stain and wash repeatedly in a large volume of water (e.g.,<br />

in a 500 ml beaker).<br />

15. Use a cotton swab to wipe excess cells and stain from the top side of the chamber<br />

membrane while taking care not to touch the bottom side of the chamber membrane.<br />

Let chambers dry overnight.<br />

Chambers are now ready for analysis. Cells that migrate to the bottom of the chamber<br />

towards the ligand will be stained purple with crystal violet while nonmigrating cells on<br />

the upper surface have been removed.<br />

16. Count cells using a standard 10× objective on an inverted microscope. Use the lid<br />

of the 24-well plate to support the chamber. Count fields at 2, 4, 6, 8, 10, and 12<br />

o’clock positions and in the center of the membrane.<br />

If there are too many cells per field to be accurately counted, the crystal violet stain can be<br />

eluted from the membrane in 10% acetic acid and values can be obtained by measuring<br />

light absorption in a spectrophotometer at 600 nm (A600).<br />

<strong>Signal</strong><br />

<strong>Transduction</strong>:<br />

<strong>Protein</strong><br />

Phosphorylation<br />

14.7.17<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 30


ALTERNATE<br />

PROTOCOL 3<br />

Analyzing FAK<br />

and Pyk2 in Early<br />

<strong>In</strong>tegrin <strong>Signal</strong>ing<br />

14.7.18<br />

Motility values are determined by the average number of cells per field when counting<br />

three chambers per experimental point. The BSA-coated chambers should contain less<br />

than 1% of the total as migratory cells.<br />

ANALYZING CELL MOTILITY USING PLASMID-TRANSFECTED CELLS<br />

The haptotaxis protocol is a good way to evaluate integrin-stimulated signaling events<br />

affecting cell migration. <strong>In</strong> many instances, there is a need to test the role of particular<br />

signaling proteins in altering cell motility responses. This is best accomplished through<br />

the transient transfection of cells with plasmid expression vectors combined with the<br />

cotransfection of a marker such as β-galactosidase (lac Z) to identify the plasmidtransfected<br />

cells, the assumption being that the cells that have been transfected with the<br />

lac Z plasmid and show β-galactosidase activity have also taken up the cotransfected<br />

FAK plasmid. This protocol is used to show that FAK re-expression can rescue the<br />

motility defects of FAK−/− cells.<br />

Additional Materials (also see Basic Protocol 4)<br />

pcDNA3.1 FAK (contact Schlaepfer lab)<br />

FAK−/− cells (see Support Protocol 1)<br />

pcDNA3.1 LacZ (<strong>In</strong>vitrogen)<br />

Phosphate-buffered saline (PBS; APPENDIX 2A)<br />

PBS ++ : phosphate-buffered saline (APPENDIX 2A) with 0.1 g/liter CaCl2 and 0.5 mM<br />

MgCl2<br />

Opti-MEM I reduced-serum medium (<strong>In</strong>vitrogen)<br />

PLUS reagent (<strong>In</strong>vitrogen)<br />

Lipofectamine (<strong>In</strong>vitrogen)<br />

Cell growth medium (see recipe) containing 20% (v/v) FBS (instead of 10%)<br />

Starvation medium: Cell growth medium (see recipe) with FBS reduced to 0.5%<br />

Lac Z staining solution (see recipe)<br />

Additional reagents and equipment for bacterial transformation (Seidman et al.,<br />

1997), plasmid miniprep (Engebrecht et al., 1991), and DNA quantification<br />

(APPENDIX 3D)<br />

Prepare plasmids<br />

1. Prepare high purity supercoiled plasmid DNA from bacteria (see Seidman et al.,<br />

1997; Engebrecht et al., 1991; and APPENDIX 3D). Combine 5 µg of pCDNA3.1 FAK<br />

with 3 µg pcDNA3.1 LacZ for each 10-cm plate.<br />

Make sure the DNA is sterile by using alcohol precipitation.<br />

Maximum amount of DNA per 10-cm plate transfection is 8.0 µg.<br />

Prepare cells<br />

2. Plate 7.5 × 10 5 FAK−/− cells onto gelatin-coated 10-cm plates (see Support Protocol<br />

1) and let grow overnight at 37 ◦ C.<br />

3. Aspirate medium and wash once with PBS to remove serum.<br />

4. Add 4 ml of Opti-MEM I reduced-serum medium and place cells in the 37 ◦ C<br />

incubator for 30 to 45 min.<br />

Prepare transfection mix<br />

5. Aliquot 0.5 ml Opti-MEM I reduced-serum medium into two 1.5-ml microcentrifuge<br />

tubes (label tubes A and B).<br />

6. Add 8 µg plasmid DNA (FAK plus LacZ) to tube A and resuspend by tapping with<br />

your fingers.<br />

Supplement 30 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


7. Add 48 µl PLUS reagent to the DNA in tube A and mix by tapping.<br />

8. Add 32 µl Lipofectamine reagent to tube B. Mix by tapping and incubate for 15 min.<br />

9. Add contents of tube B to tube A and mix by tapping. <strong>In</strong>cubate for 30 min at 21◦C. IMPORTANT NOTE: Do not mix by pipetting at this step.<br />

Transfect cells<br />

10. Add the DNA/lipid complexes from step 9 to the cells from step 4 and allow cell<br />

transfection to proceed for 5 hr at 37 ◦ C in the 10% CO2 incubator.<br />

11. Add 5 ml cell growth medium containing 20% FBS to stop transfection. Continue<br />

incubation to 24 hr without changing the medium.<br />

Prepare cells for motility assays<br />

12. To set up cells for motility assays, wash with 10 ml PBS and place in 10 ml serum<br />

starvation medium and incubate overnight at 37 ◦ C in 10% CO2.<br />

13. Use cells for motility experiments 48 hr after transfection to ensure good protein<br />

expression from plasmids.<br />

14. Proceed with the motility assay (Basic Protocol 4, steps 2 to 11).<br />

15. Save excess cells not used in the motility assay to make protein lysates (Support<br />

Protocol 3) and to analyze by SDS-PAGE (UNIT 6.1) followed by immunoblotting<br />

(Basic Protocol 3 and UNIT 6.2).<br />

This is required in order to verify transient protein overexpression (i.e., FAK and Lac Z)<br />

in the population of cells used for the motility assay.<br />

Fix and count cells<br />

16. After haptotaxis assays have proceeded for 3 to 4 hr, fill two 24-well tissue culture<br />

plates with 0.5 ml PBS ++ and one with 0.5 ml cell fixative. Transfer chambers to<br />

PBS ++ and incubate for 2 min (wash). Move chambers to fixative for 5 min then<br />

into fresh PBS ++ for 2 min. Repeat final PBS wash.<br />

It is important to not leave cells in fixative for too long as this will result in less<br />

β-galactosidase activity.<br />

17. Use a cotton swab to wipe excess cells from the top side of the chamber membrane<br />

while taking care not to touch the bottom side of the chamber membrane. Do not let<br />

chambers get too dry.<br />

18. Add 0.5 ml Lac Z staining solution to wells of a 24-well tissue culture plate and<br />

incubate chambers 2 to 12 hr at 37 ◦ C or until blue-green color is observed.<br />

19. Rinse chambers by gently immersing them in PBS and enumerate the blue β-gal<br />

positive cells under light microscopy.<br />

20. To store plates fix chambers 10 min with 1 ml 10% formalin in PBS at room<br />

temperature, rinse with PBS, and store in PBS up to 1 week at 4 ◦ C.<br />

It is assumed that the cells that have been transfected with the Lac Z plasmid and show<br />

β-galactosidase activity have also taken up the cotransfected FAK plasmid. If the protein<br />

of interest is tagged with a fluorescent marker such as green fluorescent protein, then the<br />

direct identification of transfected cells is facilitated, making it possible to observe the<br />

behavior of such cells in time-lapse imaging studies (see Basic Protocol 5).<br />

<strong>Signal</strong><br />

<strong>Transduction</strong>:<br />

<strong>Protein</strong><br />

Phosphorylation<br />

14.7.19<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 30


BASIC<br />

PROTOCOL 5<br />

Analyzing FAK<br />

and Pyk2 in Early<br />

<strong>In</strong>tegrin <strong>Signal</strong>ing<br />

14.7.20<br />

SCRATCH-WOUND HEALING ASSAY WITH TIME-LAPSE IMAGING<br />

Wound healing assays (UNIT 12.4) are ideal for visualizing cellular dynamics during stimulated<br />

migration. <strong>In</strong> particular, time-lapse imaging allows for analysis of lamellipodia<br />

extension and membrane ruffling into the wounded area. Wound healing assays do not,<br />

however, address directional motility because the cells are plated at high density and<br />

movement is limited into the wound. Random migration assays can be preformed to<br />

address directional motility by plating cells at low density and following the imaging<br />

protocol outlined below.<br />

Materials<br />

Extracellular matrix molecule (ECM) of interest (e.g., 2 µg fibronectin/ml PBS)<br />

70% confluent 24-hr serum-starved cells (see Support Protocol 2)<br />

DMEM with and without 0.5 µg/ml mitomycin-C<br />

Phosphate-buffered saline (PBS; APPENDIX 2A)<br />

Serum, optional<br />

Mitomycin-C (Sigma)<br />

Medium 199 (<strong>In</strong>vitrogen) with 0.5 µg/ml mitomycin-C<br />

Mineral oil (Sigma)<br />

25-mm glass coverslips (1 oz., Fisher) and 6-well tissue culture plates or<br />

35-mm Bioptechs delta-T dishes (Fisher)<br />

Forceps<br />

1- to 10-µl micropipet tips<br />

Transfer pipets, sterile<br />

<strong>In</strong>verted microscope with 20× objective, 37 ◦ C heated stage, and<br />

acquisition/analysis software (e.g., Improvision Openlab;<br />

https://www.improvision.com)<br />

Etched-grid coverslips (Bellco), optional<br />

Coat coverslips<br />

1. Place 25-mm round glass coverslips into wells of a 6-well tissue culture plate. Precoat<br />

glass coverslip or delta-T dishes with matrix molecule of interest (e.g., 2 µg<br />

fibronectin/ml PBS) for 2 hr at 37 ◦ C.<br />

Other ECM molecules may be prepared in the same concentrations in PBS as fibronectin.<br />

Too high a ligand concentration will inhibit cell motility. If migration is slow or nonexistent,<br />

try decreasing the ligand concentration.<br />

Add cells<br />

2. Prepare a cell suspension of 1 × 10 6 70% confluent 24 hr serum-starved cells/ml in<br />

DMEM (see Basic Protocol 1, steps 4 to 5).<br />

Serum starve cells for 24 hr before initiating wound healing assay.<br />

Cells should be ∼70% confluent during starvation.<br />

3. Wash coverslips or delta-T dishes with PBS and plate 2 × 10 6 cells onto coverslips<br />

in a 6-well tissue culture plate or directly onto the delta-T dish.<br />

Coverslips in 6-well tissue culture plates are used if subsequent procedures include an<br />

imaging chamber. Bioptechs delta-T dishes are self-contained.<br />

4. <strong>In</strong>cubate at 37 ◦ C with 10% CO2 for 2 hr.<br />

The incubation time can be adjusted to accommodate other cells types if needed. This<br />

step is to facilitate equal cell adhesion and spreading on the matrix-coated glass surface.<br />

Supplement 30 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


Wound the cultures<br />

5. Remove plates with coverslips from incubator. Using forceps to stabilize the coverslip<br />

in the well, carefully scratch the confluent monolayer of cells down the center using<br />

a micropipet tip.<br />

If using a delta-T dish, use a similar technique to scratch the center of the glass insert<br />

while holding the dish steady.<br />

This step is critical and will require practice in order to achieve consistent wounds. <strong>In</strong><br />

order to reliably compare results from experiment to experiment, the wound distance must<br />

be equivalent each time.<br />

6. Rinse the coverslip/delta-T dish three times with 2 ml PBS to remove loose cells.<br />

If the cell monolayer is not washed effectively after scratching, loose cells can settle into<br />

the wounded area and result in an inaccurate interpretation of wound healing ability.<br />

7. Place coverslip in fresh DMEM medium with 0.5 µg/ml mitomycin-C and incubate<br />

at 37 ◦ C with 10% CO2 for 1 hr.<br />

Add 0.5 µg/ml mitomycin-C to all medium changes from this point. This will inhibit cell<br />

mitogenesis and, therefore, control for wound closure due to cell proliferation.<br />

Serum can be added (1% to 5% v/v, depending on cell type and required stimulation) at<br />

this point to stimulate cell motility if needed.<br />

Assess motility<br />

8. Aspirate medium and move coverslip into imaging chamber (if using the delta-T<br />

dishes, the imaging chamber is the unit itself). Add 1 ml of medium 199 with<br />

0.5 µg/ml mitomycin-C (with serum addition as needed).<br />

9. Carefully layer 0.5 ml mineral oil on top of the medium to prevent evaporation during<br />

imaging and place imaging chamber/delta-T dish in heated stage on the microscope<br />

and set to 37 ◦ C.<br />

10. Using a 10× or 20× objective, center the wound such that the image captured will<br />

show both sides of the cell monolayer flanking the wounded region. Using Improvision<br />

Openlab or comparable acquisition software, begin the time-lapse sequence<br />

and collect one image every 2 to 5 min for 12 to 15 hr or until the wound is closed.<br />

Alternatively, if time-lapse software is not available, etched-grid coverslips can be used<br />

(Bellco). These coverslips have a grid system that allows tracking and measuring wound<br />

closure over time with a light microscope while leaving the coverslips in the incubator in<br />

between phase-image collection.<br />

IMMUNOLOCALIZATION OF FOCAL ADHESION PROTEINS<br />

Immunostaining is the best approach to determining whether a protein of interest is<br />

localized to integrin-enriched focal adhesions. For valid interpretation of the staining<br />

results, two controls are essential: (1) immunoblot evaluation of the antibody against the<br />

protein before immunostaining and (2) cells costained with markers for focal adhesion<br />

proteins. The antibody to be used is suitable for cell staining analyses if it yields one<br />

band by immunoblotting analyses of whole cell lysates. The presence of multiple bands,<br />

even though the main one is the strongest, easily leads to misinterpretation of results.<br />

The most commonly used focal adhesion markers are vinculin and paxillin. Some of the<br />

best markers for activated focal adhesions are antibodies that recognize tyrosine-397phosphorylated<br />

FAK or active Src-family members.<br />

BASIC<br />

PROTOCOL 6<br />

<strong>Signal</strong><br />

<strong>Transduction</strong>:<br />

<strong>Protein</strong><br />

Phosphorylation<br />

14.7.21<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 30


Analyzing FAK<br />

and Pyk2 in Early<br />

<strong>In</strong>tegrin <strong>Signal</strong>ing<br />

14.7.22<br />

Materials<br />

Matrix-coating substrates: prepared according to manufacturer’s directions and<br />

diluted (commonly to 10 µg/ml) in PBS (APPENDIX 2A)<br />

Fibronectin, human plasma (Roche)<br />

Laminin, human placenta (Sigma)<br />

Vitronectin, human plama (Sigma)<br />

Poly-L-lysine (70,000–150,000 or 150,000–300,000; Sigma)<br />

Collagen, Type I, human placenta (Calbiochem)<br />

Collagen, Type II, bovine (Calbiochem)<br />

Collagen, Type IV, human placenta (Calbiochem)<br />

Collagen, Type V, human (Calbiochem)<br />

FAK−/− and FAK+/+ cells (see Support Protocol 1)<br />

Replating and migration medium (see recipe), warm or growth medium (see<br />

recipe), 37◦C Phosphate-buffered saline (PBS; APPENDIX 2A)<br />

3.8% (w/v) paraformaldehyde fixative (see recipe)<br />

Acetone, cold (stored at −20◦C) or<br />

0.5% (v/v) Triton X-100/0.05% (v/v) Tween 20/PBS or<br />

0.2% Triton X-100/PBS or<br />

0.2% (v/v) Triton X-100/3.8% (w/v) paraformaldehyde/PBS or<br />

0.1% (v/v) Triton X-100/0.1% (w/v) sodium citrate or<br />

Methanol, cold<br />

Blocking antibody (e.g., ChromPure donkey IgG, unconjugated; Jackson<br />

Immunoresearch) or<br />

2% (w/v) BSA in PBS<br />

1to10µg/ml PBS (APPENDIX 2A) primary antibodies for focal adhesion markers<br />

anti-paxillin (ZO35; Zymed/<strong>In</strong>vitrogen)<br />

anti-vinculin (VIN-11-5; Sigma)<br />

anti-FAK (clone #77; BD-<strong>Transduction</strong>)<br />

anti-FAK (Ab-1; LabVision)<br />

anti-phospho Y397FAK (BioSource)<br />

anti-active Src family members (clone #28; BioSource)<br />

Secondary antibodies: e.g., fluorescein (FITC)-conjugated donkey antibodies<br />

(excitation/emission maxima 492/520 nm; Jackson Immunoresearch) or<br />

FITC-conjugate<br />

anti-mouse IgG<br />

anti-mouse IgM<br />

anti-rabbit IgG<br />

anti-goat IgG<br />

anti-rat IgG<br />

Rhodamine X (RRX)-conjugated donkey antibodies (excitation/emission maxima<br />

570/590 nm; Jackson Immunoresearch) or Rhodamine X (RRX)-conjugated<br />

anti-mouse IgG<br />

anti-mouse IgM<br />

anti-rabbit IgG<br />

anti-goat IgG<br />

anti-rat IgG<br />

Hoechst 33342 (excitation/emission maxima 350/460; Molecular Probes)<br />

Vectashield mounting medium (Vector)<br />

Nail polish, clear<br />

12-mm round coverslips, German glass (Bellco Glass)<br />

4-well tissue culture plates (Nunc)<br />

12-well tissue culture plates (Costar)<br />

18- to 22-G needle with a slightly bent tip<br />

Flat-ended forceps with beveled, unserrated tips, stainless steel (Millipore)<br />

Supplement 30 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


6-well tissue culture plates<br />

Rotating platform shaker<br />

Vacuum source<br />

Porcelain spot plates with 12 cavities (CoorsTek)<br />

Light microscope with fluorescence excitation and detecting capability<br />

1. Coat 12-mm round coverslips with matrix-coating substrate (e.g., by incubating with<br />

10 µg/ml fibronectin 45 min at room temperature).<br />

The most commonly used adhesion molecule to induce formation of focal contacts is<br />

fibronectin, but the same volumes and concentrations are recommended for laminin,<br />

vitronectin, poly-L-lysine, and collagen. The coating time should be extended to 2 hr for<br />

collagen, and the coverslips should be washed with PBS to neutralize the acidity of the<br />

collagen solutions.<br />

Plate cells<br />

2. Prepare FAK−/− and FAK+/+ cell suspension of 2 × 10 4 cells/ml in 37 ◦ C replating<br />

and migration medium or growth medium (see Basic Protocol 1, steps 5 to 6), and<br />

add 0.5 ml cell suspension per well of a 4-well tissue culture plate containing a<br />

coated coverslip.<br />

Blocking with BSA is not required because cells will not attach to the uncoated glass<br />

surface.<br />

At this concentration the adherent cells will be spread apart.<br />

If the purpose is to determine activation or localization of the protein by adhesion molecule<br />

of interest, replating and migration medium should be used, otherwise growth medium is<br />

appropriate.<br />

The well size of 4-well tissue culture plates is the same as in 24-well plates. However, the<br />

wells are not so deep, and it is easier to take coverslips out.<br />

3. <strong>In</strong>cubate at 37 ◦ C for desired time.<br />

Activation (phosphorylation) of the focal adhesion proteins is the highest during cell<br />

spreading. For fibroblasts, the best time to capture localization of the activated proteins<br />

in focal adhesions is ∼1 hr after plating. At that time most of cells will be spread. Some<br />

cells will still be spreading and often both types can be visualized within a single field.<br />

Activated focal adhesion proteins at the leading edge of migrating cell are best visualized<br />

5 to 6 hr after wounding a cell monolayer with a micropipet tip. Activation is higher in<br />

the presence of serum. The most commonly used serum concentration is 10%, but one<br />

could also see activation at much lower serum concentrations.<br />

Fix and permeabilize cells<br />

4. Aspirate medium and rinse briefly 2 to 3 times in ∼1 ml PBS by adding ∼1mlPBS<br />

and aspirating or decanting it.<br />

For most cells<br />

5a. Add ∼1 ml 3.8% paraformaldehyde/PBS, pH 7.4 to fix cells. <strong>In</strong>cubate 20 min at<br />

room temperature and rinse with PBS as above.<br />

6a. Transfer coverslips into a porcelain spot plate filled with cold acetone (stored at<br />

−20 ◦ C) to permeabilize the cells. Keep on ice for 10 min. Remove acetone and add<br />

∼1 ml PBS to rehydrate for 3 to 5 min.<br />

Transfer of coverslips to a porcelain plate is necessary only when using acetone, which<br />

will dissolve plastic tissue culture dishes.<br />

<strong>Signal</strong><br />

<strong>Transduction</strong>:<br />

<strong>Protein</strong><br />

Phosphorylation<br />

14.7.23<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 30


Analyzing FAK<br />

and Pyk2 in Early<br />

<strong>In</strong>tegrin <strong>Signal</strong>ing<br />

14.7.24<br />

Fixation and permeabilization are the most critical steps for successful immunostaining.<br />

Even for the same protein, this step can differ from cell type to cell type and from<br />

antibody to antibody. Most focal adhesion proteins are detectable when cells are fixed<br />

in paraformaldehyde and permeabilized in acetone. If the staining is weak or negative,<br />

changing fixation and permeabilization should be the first step to troubleshoot.<br />

For weakly staining cells (alternative 1)<br />

5b. Add ∼1 ml 3.8% (w/v) paraformaldehyde/PBS, pH 7.4 to fix cells. <strong>In</strong>cubate 20 min<br />

at room temperature.<br />

6b. Remove paraformaldehyde and add ∼1 ml 0.5% (v/v) Triton X-100 + 0.05% (v/v)<br />

Tween 20/PBS for 2 min to permeabilize the cells.<br />

For weakly staining cells (alternative 2)<br />

5c. Add ∼1 ml 3.8% (w/v) paraformaldehyde/PBS, pH 7.4 to fix cells. <strong>In</strong>cubate 20 min<br />

at room temperature.<br />

6c. Remove paraformaldehyde and add ∼1 ml to 0.2% (v/v) Triton X-100/PBS for 2<br />

min to permeabilize the cells.<br />

For weakly staining cells (alternative 3)<br />

5d. Add ∼1 ml 0.2% (v/v) Triton X-100/3.8% (w/v) paraformaldehyde/PBS and incubate<br />

2 min at room temperature to fix and permeabilize cells. Rinse several times with<br />

3.8% paraformaldehyde/PBS as in step 4.<br />

6d. Add ∼1 ml 3.8% paraformaldehyde/PBS and continue fixing for 20 min at room<br />

temperature.<br />

For weakly staining cells (alternative 4)<br />

5e. Add ∼1 ml 3.8% (w/v) paraformaldehyde/PBS, pH 7.4 to fix cells. <strong>In</strong>cubate 20 min<br />

at room temperature.<br />

6e. Add ∼1 ml 0.1% (v/v) Triton X-100/0.1% (w/v) sodium citrate and keep 2 to 5 min<br />

on ice to permeabilize the cells.<br />

For weakly staining cells (alternative 5)<br />

5f. Transfer coverslips into a porcelain spot plate filled with cold acetone (stored at<br />

−20◦C) to fix and permeabilize cells. Keep on ice for 10 min.<br />

<strong>In</strong> some cases in the more common protocol described in step 5a, paraformaldehyde<br />

fixation can interfere with staining. <strong>In</strong> these cases coverslips are directly exposed to<br />

acetone, which can also act as a fixative.<br />

6f. Remove acetone and add ∼1 ml PBS to rehydrate for 3 to 5 min.<br />

Staining of actin stress fibers is impossible when fixation/permeabilization is done with<br />

ONLY acetone or methanol (alternatives 5 and 6).<br />

For weakly staining cells (alternative 6)<br />

5g. Add ice-cold methanol (stored at −20◦C) to fix and permeabilize cells. Keep on ice<br />

for 10 min.<br />

6g. Aspirate methanol, rinse briefly in ∼1 ml PBS and leave in PBS for 3 to 5 min to<br />

rehydrate.<br />

Staining of actin stress fibers is impossible when fixation/permeabilization is done with<br />

ONLY acetone or methanol (alternatives 5 and 6).<br />

Supplement 30 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


Block and immunostain cells<br />

7. Pace a 30-µl drop of PBS containing blocking antibodies and primary antibodies for<br />

focal adhesion markers on the inner side of 12-well plate lid (facing up), and place<br />

the coverslip with fixed and permeabilized cells on top, with the attached cells facing<br />

the drop of antibody solution. Cover with the bottom of the plate and incubate 1 hr<br />

at room temperature or as long as overnight at 4 ◦ C, depending on convenience and<br />

the effectiveness of staining with various samples and procedures.<br />

Using a 30-µl drop of PBS containing blocking antibodies and primary antibodies for<br />

focal adhesion markers on the inner side of a 12-well plate lid helps prevent evaporation,<br />

ensure equal exposure, and use less antibody solution.<br />

Flip coverslip over the 30-µl drop of PBS containing blocking and primary antibodies<br />

using an 18- to 22-G needle with a slightly bent tip to lift and flat-ended forceps to hold<br />

and transfer the coverslip. Sharp-ended forceps tend to crack the coverslip. Alternatively,<br />

if the cell type is sensitive to flipping the coverslips for incubations and cells detach,<br />

utilize a humidified chamber (to avoid evaporation) and add 50 µl of antibody directly<br />

on top of the coverslips.<br />

Blocking is done with whole IgG of the host animal for the secondary antibody. For<br />

example, the primary antibody is made in mouse. If the secondary antibody is fluoresceinconjugated<br />

donkey anti-mouse, donkey whole IgG should be used for blocking. If the<br />

secondary antibody is fluorescein-conjugated goat anti-mouse, goat whole IgG should<br />

be used for blocking, etc. Blocking antibodies are sold in concentrations ∼10 mg/ml.<br />

Recommended dilution for blocking purposes is 1:100 (∼100 µg/ml). To keep costs low,<br />

the authors use secondary antibodies that are all made in donkey, requiring only one<br />

reagent (ChromPure donkey whole IgG) for blocking purposes.<br />

Alternatively, blocking can be performed with 2% (w/v) BSA in PBS. <strong>In</strong> this case, blocking<br />

is done at the same time as sample incubation with the primary antibody, saving time. BSA<br />

blocking is less specific than IgG, and in rare cases BSA might be too strong a blocking<br />

agent.<br />

Dilution of primary antibodies can vary and should be optimized for each antibody.<br />

Generally a range of 1 to 10 µg/ml is effective. A starting point for optimization would<br />

be a 1:100 dilution of a commercial antibody, which is usually sold in concentrations 0.1<br />

to1mg/ml.<br />

For co-immunostaining, incubate samples with both primary antibodies and with blocking<br />

antibodies at the same time. If incubations are for several hours, samples can be left at<br />

room temperature. If incubation is performed overnight, the incubation should be at 4◦C. 8. Lift the coverslip by injecting 150 µl PBS under it, and place it in a well of a 6-well<br />

tissue culture plate, attached cells facing up. Wash in three changes of ∼3 mlPBS<br />

5 min each time at ∼50 rpm on rotating platform shaker.<br />

Smaller size wells (e.g., wells of 12- or 24-well plates) do not allow sufficient movement<br />

of PBS to wash unbound antibodies from the samples.<br />

9. Pace a 30-µl drop of PBS containing secondary antibodies and 10 µg/ml Hoechst<br />

33342 on the inner side of a 12-well plate lid (facing up), and place the coverslip<br />

with fixed and permeabilized cells on top with the attached cells facing the drop of<br />

antibody solution. Cover with plate bottom and incubate 40 min at room temperature.<br />

Hoechst 33342 binds DNA, and it is an excellent bright nuclear marker visible at UV<br />

excitation wavelengths. It does not leak to green or red channels. It is of immense help<br />

for orientation and focusing of samples during microscopy.<br />

For visualization of actin stress fibers, fluorescent phalloidin conjugate is added together<br />

with secondary antibody for costaining of two antigens: one is detected by the primary<br />

antibody, and the other (actin stress fibers) is detected directly by fluorophore-conjugated<br />

phalloidin.<br />

<strong>Signal</strong><br />

<strong>Transduction</strong>:<br />

<strong>Protein</strong><br />

Phosphorylation<br />

14.7.25<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 30


ALTERNATE<br />

PROTOCOL 4<br />

Analyzing FAK<br />

and Pyk2 in Early<br />

<strong>In</strong>tegrin <strong>Signal</strong>ing<br />

14.7.26<br />

10. Wash in three changes of ∼3 ml PBS three times 5 min each time at ∼50rpmona<br />

rotating platform shaker.<br />

11. Mount on microscope slides in Vectashield mounting medium. Aspirate excess<br />

mounting medium under the coverslip using a Pasteur pipet attached to vacuum.<br />

To prevent sliding, fix the edge of the coverslip with clear nail polish. Wait 15 to 20<br />

min for the nail polish to dry, then analyze samples under the microscope.<br />

Samples can be preserved at 4 ◦ C in the dark for varying lengths of time, depending on<br />

the strength of the staining. For example, actin staining can be preserved for a month<br />

or longer. Weak staining will fade beyond recognition within several days. The authors<br />

recommend analysis within 2 to 3 days after staining.<br />

IMMUNOLOCALIZATION OF ACTIN STRESS FIBERS<br />

Visualization of actin stress fibers with fluorescent phalloidin, a toxin with high binding<br />

affinity for actin filaments, is easy and almost certainly yields dazzling results. Unlike<br />

indirect immunostaining with antibodies, phalloidin staining is strong, and the contrast<br />

between stained and unstained areas is high. Because focal adhesions are located at<br />

the end of actin stress fibers, phalloidin staining is also used as a localization marker<br />

and as a quick assay to assess cell shape. Costaining actin stress fibers with fluorescent<br />

phalloidin–conjugate and DNA-binding Hoechst dye can be a rewarding experience for<br />

a new investigator who is performing immunofluorescence cell staining for the first time.<br />

Additional Materials (also see Basic Protocol 6)<br />

0.4 to 1 U/ml (10 to 30 nM) fluorescein-conjugated phalloidin (Molecular Probes)<br />

or rhodamine-conjugated phalloidin (Molecular Probes) in PBS<br />

Rotating platform shaker<br />

Vacuum source<br />

Prepare cells<br />

1. Coat coverslips, prepare FAK−/− and FAK+/+ cell suspension, and plate the cells<br />

(Basic Protocol 6, steps 1 to 3).<br />

2. <strong>In</strong>cubate at 37 ◦ C for desired time.<br />

Fix and permeabilize cells<br />

3. Aspirate medium and rinse briefly 2 to 3 times in ∼1 ml PBS by adding ∼1mlPBS<br />

and aspirating or decanting it.<br />

4. Add ∼1 ml 3.8% paraformaldehyde/PBS, pH 7.4, to fix cells. <strong>In</strong>cubate 20 min at<br />

room temperature and rinse with PBS as above.<br />

5. Transfer coverslips into a porcelain spot plate filled with cold acetone (stored at<br />

−20 ◦ C) to permeabilize the cells. Keep on ice for 10 min. Remove acetone and add<br />

∼1 ml PBS to rehydrate for 3 to 5 min.<br />

6. Place a 30-µl drop containing 0.4 to 1 U/ml (10 to 30 nM) fluorescein-conjugated<br />

phalloidin with 10 µg/ml Hoechst 33342 in PBS on the inner side of a 12-well tissue<br />

culture plate lid (facing up), and place the coverslip with fixed and permeabilized<br />

cells on top with the attached cells facing the drop of solution. Cover with the plate<br />

bottom and incubate 30 min at room temperature.<br />

If dissolved as recommended by the manufacturer (Molecular Probes), 0.4 to 1 U/ml (10<br />

to 30 nM) phalloidin is 1:200 to 1:500.<br />

Supplement 30 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


Rhodamine-conjugated phalloidin is an alternative to fluorescein-conjugated phalloidin.<br />

If costaining with some other protein, phalloidin should be added together with the<br />

secondary antibody (see Basic Protocol 6).<br />

7. Wash in three changes of ∼3 ml PBS 5 min each time at ∼50 rpm on a rotating<br />

platform shaker.<br />

8. Mount on microscope slides in Vectashield mounting medium. Aspirate excess<br />

mounting medium under the coverslip using a Pasteur pipet attached to vacuum.<br />

To prevent sliding, fix the edge of the coverslip with nail polish. Wait 15 to 20 min<br />

for the nail polish to dry, then analyze samples under the microscope.<br />

Samples can be preserved at 4 ◦ C in the dark for varying lengths of time depending on<br />

the strength of the staining. For example, actin staining can be preserved for a month<br />

or longer. Weak staining will fade beyond recognition within several days. The authors<br />

recommend analysis within 2 to 3 days after staining.<br />

REAGENTS AND SOLUTIONS<br />

Use deionized, distilled water in all recipes and protocol steps. For common stock solutions, see<br />

APPENDIX 2A; for suppliers, see SUPPLIERS APPENDIX.<br />

BSA blocking buffer<br />

20 mM Tris·Cl, pH 7.4<br />

150 mM NaCl<br />

2% (w/v) BSA (Fraction V)<br />

0.05% (v/v) Tween 20<br />

0.05% (w/v) sodium azide<br />

Store up to 3 months at 4 ◦ C<br />

Cell growth medium<br />

DMEM high-glucose with L-glutamine (<strong>In</strong>vitrogen)<br />

10% (v/v) FBS<br />

1 mM sodium pyruvate (<strong>In</strong>vitrogen)<br />

0.1 mM MEM nonessential amino acids (<strong>In</strong>vitrogen)<br />

10 U/ml penicillin and 10 µg/ml streptomycin (<strong>In</strong>vitrogen; 100× stock)<br />

Sterilize by passing through a 0.22-µm filter<br />

Store up to 2 weeks at 4 ◦ C<br />

Coomassie blue stain<br />

25% (v/v) isopropanol (2-propanol)<br />

10% (v/v) glacial acetic acid<br />

0.03% (w/v) Coomassie G-250 (BioRad)<br />

Store up to 1 year at 21 ◦ C<br />

Destaining solution<br />

10% (v/v) isopropanol (2-propanol)<br />

10% (v/v) glacial acetic acid<br />

Store up to 1 year at 21 ◦ C<br />

FAK-Pyk2 kinase buffer<br />

20 mM HEPES, pH 7.4<br />

10% (v/v) glycerol<br />

10 mM MgCl2<br />

10 mM MnCl2<br />

150 mM NaCl<br />

Store up to 6 months at 4 ◦ C<br />

<strong>Signal</strong><br />

<strong>Transduction</strong>:<br />

<strong>Protein</strong><br />

Phosphorylation<br />

14.7.27<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 30


Analyzing FAK<br />

and Pyk2 in Early<br />

<strong>In</strong>tegrin <strong>Signal</strong>ing<br />

14.7.28<br />

HNTG buffer<br />

50 mM HEPES, pH 7.4<br />

0.1% (v/v) Triton X-100<br />

150 mM NaCl<br />

10% (v/v) glycerol<br />

Store up to 6 months at 4 ◦ C<br />

Lac Z staining solution<br />

70 ml H2O<br />

10 ml of 10× PBS (1× final)<br />

10 ml of 50 mM potassium ferricyanide (5 mM final)<br />

10 ml of 50 mM potassium ferrocyanide (5 mM final)<br />

0.2mlof1mlMgCl2 (2 mM final)<br />

Store up to 2 weeks at 4 ◦ C<br />

Just before use, add 1 ml of 20 mg/ml Xgal per 20 ml of staining solution (1 mg/ml<br />

final). Make a stock solution of 20 mg/ml X-gal in dimethylformamide (DMF).<br />

Store at −20 ◦ C in the dark.<br />

NOTE: Use a glass pipet to measure DMF solutions as it will dissolve plastics.<br />

Laemmli SDS sample buffer (2×)<br />

125 mM Tris·Cl, pH 6.8<br />

20% (v/v) glycerol<br />

4% (w/v) SDS<br />

0.006% (w/v) bromophenol blue (Fisher Biotech)<br />

3.5% (v/v) 2-mercaptoethanol<br />

Store up to 1 week at 4 ◦ C or 6 months at −20 ◦ C<br />

Magnesium/ATP cocktail<br />

75 mM MgCl2<br />

500 µM ATP<br />

20 mM MOPS, pH 7.2<br />

25 mM β-glycerol phosphate<br />

5mMEGTA<br />

1 mM sodium orthovanadate<br />

1 mM dithiothreitol<br />

Store up to 1 week at 4 ◦ C<br />

Paraformaldehyde fixative, 3.8% (w/v)<br />

Add 3.8 g paraformaldehyde (Sigma) to 100 ml PBS (APPENDIX 2A), heat, and stir to<br />

dissolve. When temperature reaches 50 ◦ C, add ∼100 µl 1 N NaOH, and continue<br />

stirring until temperature reaches 60 ◦ C. Remove from the heating plate, continue<br />

stirring until it reaches room temperature and filter to remove fine precipitate. Store<br />

up to 10 days at 21 ◦ C.<br />

Once made, paraformaldehyde fixative is ready to use for up to 10 days. The exact<br />

percentage of paraformaldehyde is not crucial; it is sufficient to be somewhere<br />

between 3.8% and 4.0%. Similarly, the exact pH does not matter, if it is somewhere in<br />

a physiological range (7.2 to 7.6). Paraformaldehyde from different manufacturers<br />

or of different purity might require different amount of NaOH to adjust the pH.<br />

Replating and migration medium<br />

500 ml DMEM<br />

0.5% (w/v) BSA (add 20 ml 12.5% BSA solution)<br />

1 mM sodium pyruvate (<strong>In</strong>vitrogen)<br />

continued<br />

Supplement 30 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


0.1 mM MEM nonessential amino acids (<strong>In</strong>vitrogen)<br />

Sterilize by passing through a 0.22-µm filter<br />

Store up to 1 month at 4 ◦ C<br />

RIPA cell lysis buffer<br />

1% (v/v) Triton X-100<br />

1% (v/v) sodium deoxycholate<br />

0.1% (w/v) SDS<br />

50 mM HEPES, pH 7.4<br />

150 mM NaCl<br />

10% (v/v) glycerol<br />

1.5 mM MgCl2<br />

1mMEGTA<br />

10 mM sodium pyrophosphate<br />

100 mM sodium fluoride<br />

1 mM sodium orthovanadate (add dropwise)<br />

10 µg/ml aprotinin<br />

10 µg/ml leupeptin<br />

Sterilize by passing through a 0.22-µm filter<br />

Store up to 1 week at 4 ◦ C<br />

Add ingredients slowly to water. Start over if buffer becomes brown after sodium<br />

orthovanadate addition.<br />

Alternatively, a protease inhibitor cocktail (e.g. Sigma P2714) may be used instead<br />

of aprotinin and leupeptin.<br />

Src kinase buffer<br />

20 mM PIPES, pH 7.0<br />

10 mM MnCl2<br />

1mMDTT<br />

Store up to 6 months at 4 ◦ C<br />

Tris-buffered saline with Tween (TBST)<br />

50 mM Tris·Cl, pH 7.5<br />

150 mM NaCl<br />

0.05% (v/v) Tween 20<br />

Store up to 6 months at 4 ◦ C<br />

Triton lysis buffer<br />

RIPA cell lysis buffer (see recipe) without sodium deoxycholate and SDS addition.<br />

Store up to 1 week at 4 ◦ C<br />

Trypsin inhibitor solution<br />

500 ml DMEM<br />

125 mg soybean trypsin inhibitor (Worthington)<br />

Dissolve by stirring<br />

0.25% (w/v) BSA (add 10 ml of 12.5% w/v BSA solution)<br />

Sterilize by passing through a 0.22 µm filter<br />

Prepare fresh<br />

Western blot stripping buffer<br />

100 mM Tris·Cl, pH 6.8<br />

2% (w/v) SDS<br />

100 mM 2-mercaptoethanol<br />

Store up to 3 months at 21 ◦ C<br />

<strong>Signal</strong><br />

<strong>Transduction</strong>:<br />

<strong>Protein</strong><br />

Phosphorylation<br />

14.7.29<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 30


Analyzing FAK<br />

and Pyk2 in Early<br />

<strong>In</strong>tegrin <strong>Signal</strong>ing<br />

14.7.30<br />

COMMENTARY<br />

Background <strong>In</strong>formation<br />

FAK was first identified in 1992 as a<br />

highly tyrosine-phosphorylated protein associated<br />

with cellular focal adhesions, i.e., the<br />

integrin-associated cell attachment points with<br />

the extracellular matrix (Parsons, 2003). At<br />

that time, it was shown that changes in cell<br />

adhesion or integrin clustering could result<br />

in the increased phosphorylation of tyrosine<br />

in FAK (Guan and Shalloway, 1992; Hanks<br />

et al., 1992; Kornberg et al., 1992; Schaller<br />

et al., 1992). Today we know that this activation<br />

event is much more complicated than the<br />

simple binding of FAK to integrins leading<br />

to intermolecular FAK phosphorylation after<br />

clustering (Schlaepfer and Mitra, 2004). For<br />

instance, evidence to date does not strongly<br />

support direct binding of FAK to integrins.<br />

<strong>In</strong>stead, FAK is associated with integrin cytoplasmic<br />

tails through binding to integrinassociated<br />

proteins such as paxillin and talin.<br />

Additionally, integrins can activate Src-family<br />

protein-tyrosine kinases in a manner that is<br />

independent of FAK. It is known that cell<br />

binding to fibronectin promotes FAK and<br />

c-Src activation and the formation of a<br />

FAK-Src signaling complex, and these facts<br />

support the conclusion that the events are related.<br />

<strong>Current</strong> research is focused on deciphering<br />

the molecular mechanisms through which<br />

FAK and c-Src are activated by integrins, and<br />

the methods outlined in this unit comprise the<br />

foundation for these studies.<br />

Additional complexity in this integrin signaling<br />

linkage comes from the studies of the<br />

FAK-related kinase, Pyk2, which is highly expressed<br />

in FAK−/− cells (Sieg et al., 1998).<br />

Stimulation of FAK−/− cells by replating on<br />

fibronectin promotes the activation of Srcfamily<br />

tyrosine kinases and the enhanced tyrosine<br />

phosphorylation of Pyk2. However, neither<br />

Pyk2 nor c-Src strongly colocalize with<br />

FAK−/− cell focal adhesions, and these cells<br />

do not correctly spread and migrate like wildtype<br />

FAK+/+ fibroblasts (Sieg et al., 1999;<br />

Klingbeil et al., 2001). The localization of<br />

FAK to particular integrin signaling sites is important<br />

for fibronectin-stimulated cell motility,<br />

the molecular mechanisms of which are still<br />

under investigation.<br />

What the authors have tried to accomplish<br />

in this unit is to consolidate related protocols<br />

on how to measure changes in FAK, c-Src, and<br />

Pyk2 activity after fibronectin-mediated integrin<br />

stimulation through the use of in vitro kinase<br />

assays, phospho-specific blotting, or im-<br />

munolocalization techniques. These assays involve<br />

using FAK−/− and FAK+/+ cells. The<br />

handling or preparation of these cells prior to<br />

performing biochemical activation assays is<br />

the same as the procedures used in evaluating<br />

the properties of these cells in cell migration<br />

assays. <strong>In</strong> this manner, cause and effect relationships<br />

can be established between integrinstimulated<br />

signaling events and the modulation<br />

of a complex biological process such<br />

as cell motility. Alternate protocols that have<br />

been successfully used by other investigators<br />

include the use of antibodies or recombinant<br />

ligands for particular integrin subunits to facilitate<br />

binding or clustering and intracellular<br />

signaling (Giancotti and Ruoslahti, 1999).<br />

As cells usually contain multiple integrin α/β<br />

pairs that can bind fibronectin, and current research<br />

has shown that sequence-specific differences<br />

between integrin cytoplasmic domains<br />

facilitates the binding or activation of distinct<br />

intracellular signaling proteins (Liu et al.,<br />

1999; de Virgilio et al., 2004), antibody/ligand<br />

activation of integrins is a powerful means to<br />

study integrin signaling. However, antibodymediated<br />

clustering of integrins is usually a<br />

weaker stimulus compared to cell binding and<br />

spreading on matrix proteins. Therefore, if a<br />

recombinant ligand can be purified and immobilized<br />

to facilitate specific integrin engagement<br />

and cell binding, this can be effectively<br />

used to study the signaling linkage between<br />

particular integrins, the actin cytoskeleton, and<br />

cell motility.<br />

Critical Parameters and<br />

Troubleshooting<br />

Maintenance of FAK+/+ AND FAK−/−<br />

fibroblasts and replating assays for<br />

signaling studies<br />

It is critical to use well maintained<br />

FAK+/+ and FAK−/− cells for all experiments<br />

in this unit. Because the fibroblasts<br />

may exhibit altered morphology and premature<br />

senescence when overly confluent or at<br />

high passage number, cells need to be subcultured<br />

consistently and used within the first<br />

15 passages from the cells available from<br />

American Type Culture Collection (ATCC).<br />

To prevent poor attachment to the extracellular<br />

matrices when cells are replated, avoid overtrypsinization<br />

and always make fresh trypsin<br />

inhibitor solution. Further, serum starvation<br />

is an important step in allowing maximal<br />

cell response and activation of focal adhesion<br />

molecules to stimuli (e.g., fibronectin). This<br />

Supplement 30 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


is also critical for successful motility assays<br />

(Basic Protocol 4) and scratch-wound healing<br />

assays (Basic Protocol 5).<br />

<strong>In</strong> vitro kinase assay<br />

It is important that a control antibody is included<br />

with immunoprecipitation experiments<br />

to accurately interpret in vitro kinase assay<br />

results. For example, preimmune serum can<br />

serve as the control for a rabbit antiserum.<br />

Further, the species (e.g., rabbit, mouse, goat,<br />

rat, or sheep) of antibody used in immunoprecipitation<br />

should be carefully considered if<br />

the immunoprecipitates will be analyzed by<br />

subsequent immunoblotting. HRP-conjugated<br />

secondary antibodies will recognize the immunoprecipitating<br />

antibody as well as the primary<br />

immunoblotting antibody of the same<br />

species, resulting in very high background<br />

around the 60-kDa protein region. As this is<br />

region where c-Src is present on gels, nonspecific<br />

antibody cross-reactivity can complicate<br />

co-immunoprecipitation experiments and<br />

c-Src immunodetection.<br />

Immunoblotting with FAK/Pyk2<br />

phospho-specific antibodies<br />

For the detection of FAK and Pyk2 phosphorylation<br />

with phospho-specific antibodies,<br />

the most critical issue is the specificity and<br />

quality of the antibody. Ideally, the phosphospecific<br />

antibody should recognize only the<br />

phosphorylated form of the target protein on<br />

a specific site. However, in the experience of<br />

the authors, some phospho-specific antibodies<br />

for FAK can cross-react with corresponding<br />

sites on Pyk2 and may even react with other<br />

phosphorylation sites on the target protein.<br />

It is for this reason that results should be<br />

double-checked using complementary means<br />

such as phospho-specific antibodies from various<br />

manufacturers and alternate procedures<br />

(e.g., in vitro kinase assays). When reprobing<br />

with different phospho-specific antibodies, it<br />

is critical to ensure that stripping or removal<br />

of previous antibodies is complete. This can<br />

be done by performing the ECL reaction and<br />

exposing film after every blot stripping to confirm<br />

that no residual signal remains.<br />

Haptotaxis motility assays<br />

As confluent cells do not respond to extracellular<br />

matrix stimuli, it is essential to maintain<br />

a low cell confluency when performing the<br />

haptotaxis assay. Additionally, chamber coating<br />

is key to a successful and interpretable<br />

motility assay. Uneven or improper chamber<br />

coating will result in experimental variability<br />

within single chambers as well as through-<br />

out the experiment. Potential causes of uneven<br />

coating include denatured or sticky extracellular<br />

proteins and the presence of bubbles underneath<br />

the chambers during coating.<br />

Scratch-wound healing assays<br />

After generating the wound, it is important<br />

to ensure that no residual cells settle in the<br />

scratch area. This would severely complicate<br />

interpretation of the assay and can be avoided<br />

by thorough washing after creating the scratch<br />

wound. Additionally, wound-closure measurements<br />

must be compared to the original wound<br />

distance for each individual coverslip due to<br />

experimental scratch variations.<br />

Immunostaining<br />

The most important issues for visualization<br />

of focal adhesion molecules with immunofluorescent<br />

staining are (1) fixation and permeabilization<br />

of cells and (2) specificity of the<br />

staining antibody. Optimized fixation allows<br />

the preservation and localization of the antigen<br />

as well as cell morphology, while proper<br />

permeabilization allows access to the antigen.<br />

To achieve specificity for the immunostaining,<br />

the primary antibody should recognize<br />

only its target antigen, and proper controls<br />

(e.g., preimmune serum or secondary antibody<br />

only) should be included to optimize the staining<br />

conditions and to reduce background. See<br />

Table 14.7.3 for troubleshooting the experiments<br />

described in this unit.<br />

The authors do not recommend use of<br />

preimmune serum as a control for staining<br />

specificity. The more appropriate control is a<br />

Western blot of whole cell lysate made from<br />

the same cells treated in the same matter. If<br />

multiple bands are visible, the antibody is not<br />

reliable for immunostaining. A control for secondary<br />

antibody is not necessary if whole IgG<br />

of the same species in which the secondary<br />

antibody was generated is used as a blocking<br />

agent together with the primary antibody.<br />

Anticipated Results<br />

<strong>In</strong> attached and serum-starved FAK+/+<br />

and FAK−/− cells, FAK and Pyk2, respectively,<br />

display high basal levels of tyrosine<br />

phosphorylation and moderate level of kinase<br />

activity. <strong>In</strong> suspended cells, phosphorylation<br />

of tyrosine in both FAK and Pyk2<br />

is greatly reduced. Replating cells on fibronectin,<br />

but not poly-L-lysine, increases tyrosine<br />

phosphorylation on both FAK and Pyk2<br />

in FAK+/+ and FAK−/− cells. Immunoblotting<br />

with phospho-specific antibodies reveals<br />

that FAK and Pyk2 can be phosphorylated on<br />

<strong>Signal</strong><br />

<strong>Transduction</strong>:<br />

<strong>Protein</strong><br />

Phosphorylation<br />

14.7.31<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 30


Analyzing FAK<br />

and Pyk2 in Early<br />

<strong>In</strong>tegrin <strong>Signal</strong>ing<br />

14.7.32<br />

Table 14.7.3 Troubleshooting Guide for Common Problems Encountered in These Assays<br />

Problem Possible cause Solution<br />

Cell replating<br />

Cells slow to adhere<br />

and spread on matrix<br />

<strong>In</strong> vitro kinase assay<br />

No or low levels of<br />

substrate labeling<br />

Too much trypsin used to<br />

prepare cell suspension<br />

Use limited trypsin/EDTA treatment at<br />

37◦C and tap plates to remove cells<br />

Make fresh trypsin inhibitor solution<br />

Old [γ- 32 P]ATP Order fresh [γ- 32 P]ATP<br />

Kinase denatured or<br />

degraded<br />

High background Carryover of cell debris<br />

following preclearance<br />

Phospho-specific<br />

immunoblotting<br />

Phospho-specific<br />

antibody recognizing<br />

nonphosphorylated<br />

form of protein in<br />

immunoblotting<br />

Haptotaxis motility<br />

assay<br />

Migratory cells too<br />

dense to quantify<br />

<strong>In</strong>consistent cell<br />

migration<br />

Scratch-wound<br />

healing<br />

Cells do not close the<br />

wound<br />

Cells close the wound<br />

too quickly<br />

Add fresh protease inhibitor to lysis<br />

buffer. Use freshly prepared lysates for<br />

immunoprecipitation<br />

Avoid repeated freeze-thaw of samples<br />

Use polyclonal antibodies to target<br />

protein for immunoprecipitation<br />

Avoid disturbing cell debris when<br />

transferring supernatant during lysate<br />

preparation<br />

<strong>In</strong>complete washing Completely resuspend beads at each<br />

wash<br />

Too much antigen or<br />

antibody present<br />

Optimize the amount of lysates and<br />

concentration of antibody used. Reduce<br />

antibody incubation time and increase<br />

washing<br />

Assay went too long Decrease assay time<br />

Too many cells were plated Plate fewer cells<br />

Improper chamber coating Avoid bubbles underneath chamber<br />

Matrix protein precipitated<br />

out of solution<br />

Matrix protein<br />

concentration is too high<br />

Cells are not plated as a<br />

confluent monolayer<br />

Cells require serum<br />

stimulation<br />

Confirm the pH of medium used to<br />

resuspend matrix protein<br />

Decrease matrix protein concentration<br />

<strong>In</strong>crease cell density<br />

Add 1% to 5% serum during assay<br />

Too many cells Decrease cell density<br />

Elevated cell proliferation Add mitomycin C to block cell division<br />

continued<br />

Supplement 30 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


Table 14.7.3 Troubleshooting Guide for Common Problems Encountered in These Assays,<br />

continued<br />

Problem Possible cause Solution<br />

Immunolocalization<br />

No staining Primary antibody is not<br />

binding to epitope<br />

Staining looks<br />

non-specific or high<br />

background<br />

Identical pattern<br />

observed for multiple<br />

proteins<br />

<strong>Signal</strong> “leaking”<br />

through microscope<br />

filters<br />

Complications due to<br />

fixation procedure<br />

Primary antibody does not<br />

cross-react across species<br />

Antigen target is expressed<br />

at low levels<br />

Primary antibodies are<br />

from same species<br />

Too high concentration of<br />

primary or secondary<br />

antibody<br />

multiple tyrosine residues following replating<br />

onto fibronectin matrix, and, following integrin<br />

activation, Src-associated in vitro kinase<br />

assays demonstrate that FAK and Pyk2 can<br />

transiently form signaling complexes with Src.<br />

<strong>In</strong> haptotaxis and scratch-wound healing<br />

assays, FAK−/− cells display impaired migration<br />

compared to FAK+/+ cells. The defective<br />

cell motility of FAK−/− cells cannot<br />

be compensated by the presence of high<br />

levels of Pyk2, but it can be rescued by transiently<br />

re-expressing FAK. Furthermore, FAK<br />

can be detected via immunofluorescence staining<br />

that prominently and specifically localize<br />

to focal adhesions. <strong>In</strong> fact, some of the best<br />

markers of activated focal adhesions are antibodies<br />

that recognize FAK phosphorylated<br />

on tyrosine 397. Finally, strong activation of<br />

FAK can be detected in focal adhesions about<br />

1 hr after replating fibroblasts onto extracellular<br />

matrix as well as at the leading edge of<br />

migration 5 to 6 hr following a scratch wound.<br />

Time Considerations<br />

Cells need to be serum starved (Support<br />

Protocol 2) for 16 to 24 hr before replating<br />

(Basic Protocol 1), haptotaxis motility (Basic<br />

Use different primary antibody<br />

Try another fixation procedure<br />

Try a different secondary antibody<br />

Try another fixation procedure<br />

Change primary antibody<br />

<strong>In</strong>crease primary antibody incubation<br />

from 1 hr to overnight.<br />

<strong>In</strong>crease concentration of primary<br />

antibody<br />

Use biotin-avidin enhancement<br />

Change one primary antibody to a<br />

different species<br />

Decrease antibody concentrations or<br />

increase number of washes<br />

Protocol 4), and scratch-wound healing<br />

(Basic Protocol 5) assays. Cells are kept in<br />

suspension for at least 45 min or replated<br />

for 1 to 3 hr before whole-cell lysates are<br />

collected, which takes 1 hr to complete<br />

(Support Protocol 3).<br />

FAK, Pyk2, and c-Src can be captured from<br />

whole cell lysates by immunoprecipitation in 4<br />

to 5 hr (Support Protocol 4), and can be further<br />

analyzed through in vitro kinase assay (Basic<br />

Protocol 2) or processed by immunoblotting<br />

for their phosphorylation and activation status<br />

(Basic Protocol 3). <strong>In</strong> these protocols SDS-<br />

PAGE gel electrophoresis takes 1 to 1.5 hr,<br />

gel transfer onto membrane takes 1.5 to 2 hr,<br />

and immunoblotting is best when membranes<br />

are incubated in primary antibodies overnight.<br />

Therefore, these biochemical assays will take<br />

a total of 3 days.<br />

Following serum starvation (16 to 24 hr),<br />

the haptotaxis assay (Basic Protocol 4) takes<br />

∼8 hr to complete. It takes 2.5 to 3 hr to prepare<br />

the chambers and 1 to 1.5 hr to prepare cells<br />

(depending on how many different experimental<br />

groups are being analyzed), but these two<br />

items can be done concurrently. Cells migrate<br />

for 3 hr followed by an additional 1 to 2 hr<br />

<strong>Signal</strong><br />

<strong>Transduction</strong>:<br />

<strong>Protein</strong><br />

Phosphorylation<br />

14.7.33<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 30


Analyzing FAK<br />

and Pyk2 in Early<br />

<strong>In</strong>tegrin <strong>Signal</strong>ing<br />

14.7.34<br />

to fix and stain chambers. Microscopic quantification<br />

of migratory cells can take several<br />

hours.<br />

To transfect FAK+/+ and FAK−/− cells<br />

(Alternate Protocol 3), cells need to be plated<br />

the previous day; preparation of transfection<br />

mix requires 45 min to 1 hr, and the transfection<br />

takes 5 hr. Cells are grown for an additional<br />

48 hr to allow maximal protein expression<br />

and need to be serum starved for 24 hr<br />

before haptotaxis assay.<br />

For the scratch-wound healing assay (Basic<br />

Protocol 5), cells are serum starved for<br />

16 to 24 hr, plated on a cover slip for 2<br />

hr, scratch wounded, and incubated for 1 hr<br />

after wounding. Live images are collected for<br />

12 to 15 hr. The scratch-wound healing assay<br />

spans 32 to 45 hrs, but requires only 2 to 3 hr<br />

of hands-on time. For immunolocalization of<br />

focal adhesion proteins (Basic Protocol 6), immunofluorescence<br />

staining can be performed<br />

in ∼7hr.<br />

<strong>In</strong>ternet Resources<br />

http://www.cellmigration.org/index.shtml<br />

This cell migration gateway represents a unique<br />

collaboration between the Cell Migration Consortium<br />

(CMC) and Nature Publishing Group (NPG)<br />

and is designed to facilitate navigation through the<br />

complex world of cell migration research.<br />

http://www.signaling-gateway.org<br />

This signaling gateway represents a unique collaboration<br />

between academia and scientific publishing<br />

and is designed to facilitate navigation of the complex<br />

world of research into cellular signaling. <strong>In</strong>formation<br />

and data presented here are freely available<br />

to all.<br />

Literature Cited<br />

de Virgilio, M., Kiosses, W.B., and Shattil, S.J.<br />

2004. Proximal, selective, and dynamic interactions<br />

between integrin αIIbβ3 and protein<br />

tyrosine kinases in living cells. J. Cell Biol.<br />

165:305-311.<br />

Engebrecht, J., Brent, R., and Kaderbhai, M.A.<br />

1991. Minipreps of plasmid DNA. <strong>In</strong> <strong>Current</strong><br />

<strong>Protocols</strong> in Molecular Biology (F.M. Ausubel,<br />

R. Brent, R.E. Kingston, D.D. Moore,<br />

J.G. Seidman, J.A. Smith, and K. Struhl, eds.)<br />

pp. 1.6.1-1.6.10. John Wiley & Sons, Hoboken,<br />

N.J.<br />

Giancotti, F.G. and Ruoslahti, E. 1999. <strong>In</strong>tegrin signaling.<br />

Science 285:1028-1032.<br />

Guan, J.L. and Shalloway, D. 1992. Regulation of<br />

focal adhesion-associated protein tyrosine kinase<br />

by both cellular adhesion and oncogenic<br />

transformation. Nature 358:690-692.<br />

Hanks, S.K., Calalb, M.B., Harper, M.C., and<br />

Patel, S.K. 1992. Focal adhesion protein-<br />

tyrosine kinase phosphorylated in response to<br />

cell attachment to fibronectin. Proc. Natl. Acad.<br />

Sci. U.S.A. 89:8487-8491.<br />

Hynes, R.O. 2002. <strong>In</strong>tegrins: Bidirectional,<br />

allosteric signaling machines. Cell 110:673-<br />

687.<br />

Ilic, D., Furuta, Y., Kanazawa, S., Takeda, N.,<br />

Sobue, K., Natkatsuji, N., Nomura, S., Fujimoto,<br />

J., Okada, M., Yamamoto, T., and Aizawa, S.<br />

1995. Reduced cell motility and enhanced focal<br />

adhesion contact formation in cells from fakdeficient<br />

mice. Nature 377:539-544.<br />

Klingbeil, C.K., Hauck, C.R., Hsia, D.A., Jones,<br />

K.C., Reider, S.R., and Schlaepfer, D.D. 2001.<br />

Targeting Pyk2 to β1-integrin-containing focal<br />

contacts rescues fibronectin-stimulated signaling<br />

and haptotactic motility defects of<br />

focal adhesion kinase-null cells. J. Cell Biol.<br />

152:97-110.<br />

Kornberg, L., Earp, H.S., Parsons, J.T., Schaller,<br />

M., and Juliano, R.I. 1992. Cell adhesion or<br />

integrin clustering increases phosphorylation of<br />

a focal adhesion-associated tyrosine kinase. J.<br />

Biol. Chem. 267:23439-23442.<br />

Liu, S., Thomas, S.M., Woodside, D.G., Rose,<br />

D.M., Kiosses, W.B., Pfaff, M., and Ginsberg,<br />

M.H. 1999. Binding of paxillin to α4<br />

integrins modifies integrin-dependent biological<br />

responses. Nature 402:676-681.<br />

Parsons, J.T. 2003. Focal adhesion kinase: The first<br />

ten years. J. Cell Sci. 116:1409-1416.<br />

Schaller, M.D., Borgman, C.A., Cobb, B.A.,<br />

Vines, R.R., Reynolds, A.B., and Parsons, J.T.<br />

1992. pp125fak a structurally distinctive proteintyrosine<br />

kinase associated with focal adhesions.<br />

Proc. Natl. Acad. Sci. U.S.A. 89:5192-5196.<br />

Schlaepfer, D.D. and Mitra, S.K., 2004. Multiple<br />

connections link FAK to cell motility and invasion.<br />

Curr. Opin. Genet. Dev. 14:92-101.<br />

Schlaepfer, D.D., Hauck, C.R., and Sieg, D.J. 1999.<br />

<strong>Signal</strong>ing through focal adhesion kinase. Prog.<br />

Biophys. Mol. Biol. 71:435-478.<br />

Schwartz, M.A. 2001. <strong>In</strong>tegrin signaling revisited.<br />

Trends Cell Biol. 11:466-70.<br />

Seidman, C.E., Struhl, K., Sheen, J., and Jessen, T.<br />

1997. <strong>In</strong>troduction of plasmid DNA into cells.<br />

<strong>In</strong> <strong>Current</strong> <strong>Protocols</strong> in Molecular Biology (F.M.<br />

Ausubel, R Brent, R.E. Kingston, D.D. Moore,<br />

J.G. Seidman, J.A. Smith, and K. Struhl, eds.)<br />

pp. 1.8.1-1.8.10. John Wiley & Sons, Hoboken,<br />

N.J.<br />

Sieg, D.J., Ilic, D., Jones, K.C., Damsky, C.H.,<br />

Hunter, T., and Schlaepfer, D.D. 1998. Pyk2 and<br />

Src-family protein-tyrosine kinases compensate<br />

for the loss of FAK in fibronectin-stimulated<br />

signaling events but Pyk2 does not fully function<br />

to enhance FAK- cell migration. EMBO J.<br />

17:5933-5947.<br />

Sieg, D.J., Hauck, C.R., and Schlaepfer, D.D. 1999.<br />

Required role of focal adhesion kinase (FAK) for<br />

integrin-stimulated cell migration. J. Cell Sci.<br />

112:2677-2691.<br />

Supplement 30 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


Contributed by Joie A. Bernard-Trifilo,<br />

Ssang-Taek Lim, Shihe Hou, and<br />

David D. Schlaepfer<br />

The Scripps Research <strong>In</strong>stitute<br />

La Jolla, California<br />

Dusko Ilic<br />

Stem Life Line, <strong>In</strong>c.<br />

San Carlos, California<br />

<strong>Signal</strong><br />

<strong>Transduction</strong>:<br />

<strong>Protein</strong><br />

Phosphorylation<br />

14.7.35<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 30


Rho GTPase Activation Assays<br />

Stéphanie Pellegrin 1 and Harry Mellor 1<br />

1 Mammalian Cell Biology Laboratory, Department of Biochemistry, School of Medical<br />

Sciences, University of Bristol, United Kingdom<br />

ABSTRACT<br />

The Rho GTPase family of signaling proteins controls a wide range of highly dynamic<br />

cellular processes. Activation of Rho GTPases can be investigated and quantified in cell<br />

extracts using so-called pull-down assays. <strong>Protein</strong>s that bind specifically to the activated<br />

form of the Rho GTPase are used to capture it onto a bead support. Western blotting of<br />

the captured samples with specific antibodies then allows for quantification of the level<br />

of Rho GTPase activation in the sample. This unit describes the techniques for preparing<br />

the reagents required for assays of RhoA, Rac, and Cdc42 and gives practical tips for<br />

the successful application of the assay in a range of situations. Curr. Protoc. Cell Biol.<br />

38:14.8.1-14.8.19. C○ 2008 by John Wiley & Sons, <strong>In</strong>c.<br />

Keywords: Rho GTPase � cytoskeleton � cell signaling<br />

INTRODUCTION<br />

Most Rho GTPases cycle between an active GTP-bound and an inactive GDP-bound<br />

state. When bound to GTP, Rho GTPases can interact with their effector proteins, and<br />

this nucleotide-dependent interaction forms the basis of the activation assays described<br />

below. The Rho GTPase-binding domain (RBD) of Rho GTPase effectors can be made<br />

Figure 14.8.1 Diagram of Rho-binding domains used for GST pull-down assays: (A) Rhotekin-<br />

RBD and (B) PAK-CRIB. The GST-RBD constructs we have used span residues 7 to 89 of Rhotekin<br />

variant 2 (accession number NM 033046) and residues 1 to 253 of PAK1 (accession number<br />

NM 002576). When made as GST-fusion proteins, these are 35.7-kDa and 55.7-kDa respectively.<br />

Abbreviations: HR1, protein kinase C-related kinase homology region 1; PH, pleckstrin homology<br />

domain; RBD, Rho binding domain.<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology 14.8.1-14.8.19, March 2008<br />

Published online March 2008 in Wiley <strong>In</strong>terscience (www.interscience.wiley.com).<br />

DOI: 10.1002/0471143030.cb1408s38<br />

Copyright C○ 2008 John Wiley & Sons, <strong>In</strong>c.<br />

UNIT 14.8<br />

<strong>Signal</strong><br />

<strong>Transduction</strong><br />

14.8.1<br />

Supplement 38


BASIC<br />

PROTOCOL<br />

Rho GTPase<br />

Activation Assays<br />

14.8.2<br />

as a glutathione-S-transferase (GST) fusion protein, coupled to beads, and added to cell<br />

lysates to pull down the active, GTP-bound form of the Rho GTPase (see UNIT 17.5). The<br />

RhoA binding domain from Rhotekin has been widely used to pull down active RhoA<br />

(Ren et al., 1999; Ren and Schwartz, 2000), whereas the PAK-CRIB domain of PAK1 is<br />

favored for Rac1 and Cdc42 activation assays (Sander et al., 1998; Benard et al., 1999;<br />

Benard and Bokoch, 2002). These constructs are shown in Figure 14.8.1. The CRIB<br />

motif of WASP has also been used for Cdc42 activation assays (Haddad et al., 2001).<br />

This unit describes how to make recombinant GST-PAK-CRIB beads for Rac1 or Cdc42<br />

activation assays and recombinant GST-Rhotekin-RBD beads for RhoA activation<br />

assays (Support Protocol). We use the same protocol to prepare both types of GST-RBD<br />

beads; the only difference is the construct used. The activation assay itself is detailed in<br />

the Basic Protocol and Alternate Protocol 1. Additional protocols describe how to load<br />

Rho GTPases with GDP, GTP, or GTPγS (Alternate Protocol 2) and how to perform<br />

activation assays on nonadherent cells (Alternate Protocol 3). Finally, suggestions on<br />

how to design activation assays for Rho GTPases other than RhoA, Rac1, and Cdc42<br />

are given in the Commentary.<br />

STRATEGIC PLANNING<br />

The first step consists of making the recombinant GST-RBD fusion proteins. These are<br />

loaded onto glutathione-coupled beads and stored with the beads at −80◦Cinabuffer containing 10% glycerol. Following this, a small aliquot of the GST-RBD beads is run<br />

on an SDS-PAGE gel to estimate the amount of fusion protein made and purified. All of<br />

these steps are described in the Support Protocol.<br />

The GST-RBD beads then need to be tested to verify that they only interact with the<br />

active, GTP-bound form of the Rho GTPase of interest. Good controls for Rac1 and<br />

RhoA activation assays are described in the Basic Protocol. These include treatment<br />

of serum-starved HeLa cells (70% confluent) with 100 ng/ml epidermal growth factor<br />

(EGF) for 3 min, which induces robust Rac1 (e.g., see Figure 14.8.2) and RhoA activation.<br />

A clear increase in active Rac1 or RhoA should be seen when comparing the amount<br />

of active GTPase in starved and agonist-treated cells. <strong>In</strong> order to test GST-RBD beads<br />

before use in Cdc42 activation assays, it is easier to load Cdc42 with GTP than to use<br />

agonist stimulation because few agonists give marked activation of this small GTPase.<br />

This method is described in Alternate Protocol 2, and expected results are shown in<br />

Figure 14.8.4. Since the GST-RBD beads can be stored at −80 ◦ C for long periods of<br />

time, it is important to test them regularly to ensure they have not lost their specificity<br />

for active Rho GTPase over time.<br />

Rac1 ACTIVATION ASSAYS ON HeLa CELLS<br />

This protocol describes how to prepare the cell lysates to carry out Rac1 and RhoA<br />

(also see Alternate Protocol 1) activation assays on agonist-treated cells. The conditions<br />

described in this protocol (see step 2) are used as a quality control or positive control<br />

for Rac1 or RhoA activation (see Fig. 14.8.2 for an example of a Rac1 activation assay).<br />

This protocol forms the basis for activation assays that can be carried out on cells<br />

treated with other agonists or over-expressing Rho GTPase mutants (active, GTP-bound<br />

or inactive, GDP-bound mutants), inhibitory GTPase activating proteins (GAPs), or<br />

activating guanine nucleotide exchange factors (GEFs) of interest. This protocol is also<br />

valid for Cdc42 activation assays although it is unclear which agonist can be used to<br />

obtain good Cdc42 activation. <strong>In</strong> this case, the alternative control is to load endogenous<br />

Cdc42 with GDP, GTP, or GTPγS (see Alternate Protocol 2 and Figure 14.8.4).<br />

Preparation of cell lysates for Rac1 and RhoA activation assays are identical except<br />

for the lysis buffers used—lysis buffer B and lysis buffer C (see Alternate Protocol 1),<br />

Supplement 38 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


espectively. <strong>In</strong> all cases, it is important to avoid phosphate-based buffers for washing<br />

or lysing the cells because phosphate forms a precipitate with magnesium (Ren and<br />

Schwartz, 2000). MgCl2 is present in the lysis buffer to stabilize GTP-bound GTPases<br />

and to prevent nucleotide exchange.<br />

<strong>In</strong> an experimental setting, the level of activation obtained should be quantified by<br />

normalizing the amount of GST-RBD bound GTPase (i.e., active GTPase) to the amount<br />

of total GTPase. Care must be taken when quantifying scanned images of X-ray films<br />

because they have a narrow linear range of exposure (Ren and Schwartz, 2000); it is very<br />

important to make sure that the films are not overexposed. Activation assays are usually<br />

performed at least three times so that the mean (± standard deviation) of the ratio of<br />

active over total GTPase signal can be shown.<br />

Materials<br />

HeLa cells: 70% confluent 10-cm plates (two plates per experiment)<br />

Phosphate-buffered saline (PBS; APPENDIX 2A)<br />

100 µg/ml epidermal growth factor (EGF; Calbiochem); store aliquots at −80◦C DMEM/0.1% (w/v) fatty-acid-free bovine serum albumin (BSA)<br />

Tris-buffered saline (TBS): 50 mM Tris·Cl (pH 7.6; see APPENDIX 2A)/140 mM<br />

NaCl, ice cold<br />

Lysis buffer B, ice cold (see recipe)<br />

4× SDS-PAGE sample buffer (see recipe)<br />

GST-PAK-CRIB beads in Tris wash buffer A/10% (v/v) glycerol (Support Protocol)<br />

Tris wash buffer B (see recipe), ice cold<br />

2× SDS-PAGE sample buffer (see recipe)<br />

SDS-PAGE gel (see UNIT 6.1)<br />

Refrigerated centrifuge, 4◦C Heating block, 95◦C 0.5- to 20-µl GELoader tips (Eppendorf)<br />

Additional reagents and equipment for performing SDS-PAGE (UNIT 6.1) and<br />

immunoblotting (UNIT 6.2)<br />

1. Wash two 10-cm plates of 70% confluent HeLa cells twice with 10 ml PBS and<br />

serum starve overnight in DMEM/0.1% (w/v) fatty-acid-free BSA.<br />

2. <strong>In</strong>cubate one of the plates of HeLa cells 3 min with 10 ml of 100 ng EGF/ml of<br />

DMEM/0.1% fatty-acid-free BSA (prepared by diluting the 100 µg/ml EGF in the<br />

medium).<br />

The second plate in each experiment is a control. It is serum-starved but not treated with<br />

agonist. It is incubated overnight in DMEM/0.1% (w/v) fatty-acid-free BSA and remains<br />

in the cell incubator while treating the other plate with agonist.<br />

3. On ice, quickly wash the cells twice in 10 ml ice-cold TBS and drain.<br />

4. Still on ice, extract each plate in 800 µl ice-cold lysis buffer B.<br />

It is important to keep the samples cold and to work quickly throughout the protocol.<br />

Over time, the GAP activity in the cell lysates can drastically reduce the amount of active<br />

GTPase (Ren and Schwartz, 2000).<br />

5. Centrifuge the cell lysates 10 min at 25,000 × g, 4 ◦ C. Carefully collect the supernatant<br />

and transfer to a new tube on ice.<br />

6. Meanwhile, thaw 400 µl GST-PAK-CRIB beads on ice.<br />

7. Remove 30 µl from each cleared cell lysate for total Rac1 protein control and add<br />

to 10 µl of4× SDS-PAGE sample buffer. Heat 10 min at 95 ◦ C.<br />

<strong>Signal</strong><br />

<strong>Transduction</strong><br />

14.8.3<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 38


Rho GTPase<br />

Activation Assays<br />

14.8.4<br />

Taking samples from each lysate for each time point is important because these will be<br />

used to determine the amount of total GTPase, which is used to normalize the amount of<br />

active, GTP-bound GTPase.<br />

8. Transfer 650 µl of each cell lysate into a microcentrifuge tube with 200 µl (or the<br />

equivalent of 30 µg) of GST-PAK-CRIB beads in Tris wash buffer A/10% glycerol.<br />

9. Rotate 45 min at 4 ◦ C.<br />

10. Wash the beads four times with 600 µl ice-cold Tris wash buffer B: resuspend<br />

the beads gently by inversion, centrifuge 20 sec at 500 × g, 4 ◦ C, and remove the<br />

supernatant.<br />

11. After the last wash, use the thin GELoader pipet tip to remove all of the remaining<br />

buffer from the beads.<br />

This can be done by attaching the GELoader tips to a vacuum aspirator. These tips have<br />

a smaller diameter than the beads and the beads will not be aspirated. As the buffer is<br />

removed, the beads should become whiter.<br />

12. Elute the proteins from the beads by adding 50 µl hot 2× SDS-PAGE sample<br />

buffer/40 mM DTT and heating 10 min at 95 ◦ C.<br />

13. Load both the samples for total (obtained in step 7) and active Rac1 (obtained in step<br />

12) onto an SDS-PAGE gel to resolve the ∼21 kDa GTPase (UNIT 6.1) and process<br />

for western blotting (UNIT 6.2).<br />

The amount of total and active Rac1 will vary with the conditions and cell type used,<br />

so the volume of cell lysate to load in each well should be determined accordingly. As a<br />

starting point, 20 µl of total and 10 µl of active Rac1 can be loaded for each time point<br />

(Fig. 14.8.2).<br />

We have used 15% Tris·Cl gels but have found that 12% Bis-Tris gels run with MES buffer<br />

give much better resolution and allow for better detection.<br />

Figure 14.8.2 Rac1 activation assays carried out on HeLa cells. Total Rac1 is shown in the left<br />

panel and the activation assay in the right panel. After 3 min of EGF treatment (100 ng/ml), Rac1<br />

is activated as seen by the appearance of Rac1 in the right-hand panel. The upper bands are<br />

nonspecific signal from the GST-RBD protein.<br />

Supplement 38 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


MAKING GST-RBD BEADS FOR ACTIVATION ASSAYS<br />

The CRIB motif of PAK1 interacts with active (i.e., GTP-bound) Rac1 and Cdc42<br />

(Burbelo et al., 1995) and has thus been used extensively to pull down active Rac1 and<br />

Cdc42 from cell lysates (Sander et al., 1998; Benard et al., 1999; Benard and Bokoch,<br />

2002). The WASP CRIB motif has also been used to pull down active Cdc42, but this<br />

construct does not interact with Rac1 (Haddad et al., 2001). It is still unclear which of the<br />

CRIB motifs gives a more robust assay for Cdc42 activation. For RhoA, the Rho-binding<br />

domain of Rhotekin is used (Reid et al., 1996; Ren et al., 1999; Ren and Schwartz, 2000).<br />

This protocol assumes that the construct of interest is available and already transformed<br />

into Escherichia coli to make recombinant protein. For activation assays on RhoA, the<br />

construct used consists of the cDNA sequence for amino acids 7 to 89 of Rhotekin cloned<br />

into a pGEX2T vector (Amersham; Fig. 14.8.1A). For Rac1 and Cdc42 activation assays,<br />

we use a construct which consists of the cDNA sequence for amino acids 1 to 253 of<br />

PAK1 cloned into the same expression vector (Ren and Schwartz, 2000; Fig. 14.8.1B). <strong>In</strong><br />

pGEX vectors the GST-fusion protein is expressed from the tac promoter after induction<br />

with IPTG. Because these vectors also carry the lacI q gene, they can be used in any E.<br />

coli host. We have used BL21(DE3)pLysS E. coli, but other hosts such as simple BL21<br />

E. coli should work as well.<br />

This protocol describes how to make beads from 4 liters of E. coli culture, which will yield<br />

enough GST-RBD beads for at least 40 activation assays. The method can theoretically<br />

be scaled down, but this is not recommended because using smaller volumes may cause<br />

the solutions to undergo greater temperature fluctuations during the procedure.<br />

Materials<br />

LB broth (UNIT 20.2)<br />

100 mg/ml ampicillin stock solution in water; store small aliquots at −20◦C 34 mg/ml chloramphenicol stock solution in ethanol; store small aliquots at<br />

−20◦C, protected from light<br />

E. coli: e. g., BL21(DE3)pLysS (Stratagene)<br />

GST-RBD construct (obtained from the authors or self-constructed; see Figure<br />

14.8.1)<br />

1 M isopropyl-β-D-thiogalactopyranoside (IPTG); store small aliquots at −20◦C Glutathione-Sepharose 4B beads (Amersham)<br />

Lysis buffer A (see recipe), ice cold<br />

Tris wash buffer A (see recipe), ice cold<br />

Tris wash buffer A (see recipe)/10% (v/v) glycerol, ice cold<br />

4× SDS-PAGE sample buffer (see recipe)<br />

12% SDS-PAGE gel (see UNIT 6.1)<br />

Bovine serum albumin (BSA)<br />

Coomassie blue staining solution (UNIT 6.1)<br />

Shaking incubator, 37◦C 2-liter flasks<br />

Refrigerated centrifuge, 4◦C 30-ml centrifuge tubes, capable of withstanding 17000 × g for 30 min (e. g., Oak<br />

Ridge), prechilled<br />

Sonicator<br />

15- and 50-ml polypropylene tubes (e. g., Falcon), prechilled<br />

End-over-end rotator, 4◦C Heating block, 95◦C Microcentrifuge tubes, prechilled<br />

Additional reagents and equipment for performing SDS-PAGE (UNIT 6.1)<br />

SUPPORT<br />

PROTOCOL<br />

<strong>Signal</strong><br />

<strong>Transduction</strong><br />

14.8.5<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 38


Rho GTPase<br />

Activation Assays<br />

14.8.6<br />

Grow plasmid-bearing bacteria<br />

1. <strong>In</strong>oculate 5 ml LB broth containing 100 µg/ml ampicillin and 34 µg/ml chloramphenicol<br />

with a single colony of E. coli containing the GST-RBD construct.<br />

<strong>In</strong>stead of keeping glycerol stocks, it is preferred to keep the DNA at −20◦C and to<br />

transform E. coli when needed. The plates can be kept for a month in the refrigerator.<br />

Chloramphenicol is required for maintenance of the pLysS plasmid of the<br />

BL21(DE3)pLysS E. Coli. It is not needed if other hosts are used.<br />

2. <strong>In</strong>cubate overnight at 37 ◦ C, with shaking.<br />

3. <strong>In</strong>oculate 400 ml LB broth containing 100 µg/ml ampicillin and 34 µg/ml chloramphenicol<br />

with the 5-ml overnight culture.<br />

4. <strong>In</strong>cubate overnight at 37 ◦ C, with shaking.<br />

5. Prewarm 4 liters LB broth overnight at 37◦C. LB broth is kept in a 37◦C incubator overnight to save time the next day.<br />

6. Dilute the overnight culture 1:10 into prewarmed 3.6 liters LB broth containing 100<br />

µg/ml ampicillin and 34 µg/ml chloramphenicol (typically, 100 ml culture in 900 ml<br />

broth in a 2-liter flask).<br />

7. Grow to OD 600 = 0.8.<br />

This usually takes ∼1 hr, but the OD should be checked after 45 min.<br />

<strong>In</strong>duce protein synthesis<br />

8. Add IPTG to a final concentration of 0.5 mM IPTG using the 1M IPTG stock.<br />

<strong>In</strong>cubate 2 hr at 37 ◦ C.<br />

9. Harvest by centrifuging 25 min at 2500 × g, 4 ◦ C.<br />

The culture does not have to be precooled.<br />

10. Carefully remove the supernatant<br />

11. Keep the bacterial pellets on ice and resuspend them completely in a total of 40 ml<br />

ice-cold lysis buffer A (i.e., 10 ml lysis buffer A per liter of bacteria culture)<br />

It is important to keep the solutions cold at all times. Everything should be kept on ice,<br />

and, if possible, working in a cold room is recommended.<br />

The bacteria should be completely resuspended before sonication (step 13). This is best<br />

achieved by first resuspending the pellet into only a small volume of lysis buffer, before<br />

adding the entire 40 ml. The suspension should be homogenous and devoid of clumps.<br />

Sonicate bacteria<br />

12. Transfer the suspension into two prechilled 30-ml centrifuge tubes.<br />

A volume of ∼20 ml is dispensed equally into each tube. These centrifuge tubes should<br />

be able to withstand centrifugation at 17,000 × g for 30 min (see step 14).<br />

13. Sonicate on ice six to eight times for 15 sec each. Cool 2 min on ice between<br />

sonication bursts to prevent the lysates from overheating.<br />

It is important that the samples do not overheat and do not foam. The settings for sonication<br />

will vary from sonicator to sonicator. The samples should be checked regularly.<br />

Expect the lysate to first become a little viscous as the cells release their DNA—you may<br />

see a trail from the sonicator probe when you remove it from the lysate. This viscosity<br />

should disappear with further sonication as the DNA is sheared. It is important that all<br />

traces of viscous material are removed by sonication, or the lysate will not form a proper<br />

pellet of debris in the next step.<br />

Supplement 38 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


14. Centrifuge 30 min at 17,000 × g, 4 ◦ C.<br />

Prepare beads<br />

15. <strong>In</strong> the meantime, equilibrate 0.6 ml (packed bead volume) of glutathione-Sepharose<br />

4B beads in lysis buffer A by washing them three times in lysis buffer A: add 0.8<br />

ml lysis buffer A, resuspend the beads by inverting the tube gently, collect the beads<br />

by brief centrifugation (1 min at 500 × g,4 ◦ C), and remove the supernatant without<br />

disturbing the bead pellet.<br />

The beads are sold as a suspension in ethanol. To obtain a reasonably accurate volume<br />

of packed beads, it is useful to first pipet 0.6 ml of lysis buffer A into a tube (e.g., a 1.5-ml<br />

microcentrifuge tube) and to draw a line at the level of the meniscus. Remove the buffer<br />

and add bead suspension until the level of packed beads meets the line on tube.<br />

Bind GST-RBD to beads<br />

16. Remove the clarified bacteria lysate supernatant and transfer the ∼40 ml of lysate to<br />

a prechilled 50-ml polypropylene tube.<br />

17. Add the equilibrated glutathione-Sepharose 4B beads (prepared in step 15) to the<br />

lysate.<br />

To make sure all the beads are transferred, resuspending the beads in a small volume of<br />

lysate is recommended. The tube that contained the beads can also be washed several<br />

times with lysate.<br />

18. Rotate 60 min at 4 ◦ C.<br />

19. Centrifuge 1 min at 500 × g,4 ◦ C.<br />

Recover bound beads<br />

20. Carefully discard the supernatant without disturbing the bead pellet and add 12 ml<br />

ice-cold Tris wash buffer A.<br />

21. Resuspend the beads by gentle inversions and transfer everything into a prechilled<br />

15-ml polypropylene tube. Centrifuge 1 min at 500 × g, 4 ◦ C.<br />

22. Wash the bead pellet another five times by discarding the supernatant, resuspending<br />

the beads in 12 ml ice-cold Tris wash buffer A by gentle inversions, and centrifuging<br />

1 min at 500 × g, 4 ◦ C.<br />

23. Wash once with 12 ml Tris wash buffer A/10% glycerol as in step 22.<br />

24. Resuspend the beads in 8 ml Tris wash buffer A/10% glycerol.<br />

25. Remove a 30-µl aliquot of beads in Tris wash buffer A/10% glycerol and add to<br />

10 µlof4× SDS-PAGE sample buffer. Heat at 95 ◦ C for 10 min and store at −70 ◦ C.<br />

This sample will be used to check the protein preparation on an SDS-PAGE by Coomassie<br />

blue staining (see steps 27 to 29).<br />

26. Divide the beads into small aliquots in prechilled microcentrifuge tubes and store at<br />

−70 ◦ C.<br />

200 µl of beads in Tris wash buffer A/10% glycerol are generally used for each activation<br />

assay; make aliquots of 400 µl and 800 µl for two or four activation assays, respectively.<br />

Quantify GST-RBD bound to beads<br />

27. On a 12% SDS-PAGE gel, load 21 µl, 14 µl, and 7 µl of beads in 4× SDS-PAGE<br />

sample buffer prepared in step 25.<br />

This is equivalent to loading 15 µl, 10 µl, and 5 µl of beads in Tris wash buffer A/10%<br />

glycerol.<br />

<strong>Signal</strong><br />

<strong>Transduction</strong><br />

14.8.7<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 38


ALTERNATE<br />

PROTOCOL 1<br />

Rho GTPase<br />

Activation Assays<br />

14.8.8<br />

Figure 14.8.3 GST-PAK-CRIB preparation visualized on an SDS-PAGE gel stained with<br />

Coomassie blue. 45 µl of bead suspension in glycerol buffer was added to 15 µlof4× SDS-PAGE<br />

sample buffer to give a final volume of 60 µl. Aliquots of 7 µl, 14 µl, and 21 µl (corresponding<br />

to 5, 10, and 15 µl of bead suspension respectively) were added to each well and compared<br />

to a dilution range of BSA (10, 5, 2.5, 1, and 0.5 µg per well). <strong>In</strong> this preparation 5 µl of bead<br />

suspension is equivalent to ∼2.5 µg ofprotein,sothe200µl of bead suspension used per assay<br />

is equivalent to ∼100 µg ofprotein(30µg wouldbefine).<br />

28. Also load different amounts of BSA (e.g., 0.5 µg, 1 µg, 2.5 µg, 5 µg, and 10 µg of<br />

BSA per well).<br />

29. Perform electrophoresis, staining with Coomassie blue (see UNIT 6.1).<br />

30. Estimate the amount of GST-RBD protein bound to the beads by comparing band<br />

intensities to that of the known amounts of BSA.<br />

Usually, there is at least ∼2.5 µg of GST-PAK-CRIB for 5 µl of beads in Tris wash buffer<br />

A/10% glycerol (Fig. 14.8.3). We use 30 to 100 µg of fusion protein per assay. This is<br />

considerably more than supplied by commercial assay kits, and the assay is consequently<br />

more sensitive.<br />

The presence of breakdown products is typical in these preparations, and they do not<br />

affect the assay (Benard and Bokoch, 2002).<br />

RhoA ACTIVATION ASSAYS<br />

The only difference between preparing cell lysates for Rac1/Cdc42 activation assays and<br />

RhoA activation assays lies in the constituents of the lysis buffer. The lysis buffer used for<br />

RhoA activation assays (lysis buffer C) contains 0.1% SDS (Ren and Schwartz, 2000).<br />

This prevents nonspecific interactions in this assay but would affect Rac1 or Cdc42<br />

binding to GST-PAK-CRIB if used in the Basic Protocol (Benard and Bokoch, 2002).<br />

As in the Basic Protocol, it is important to avoid phosphate-based buffers for washing<br />

or lysing the cells because phosphate forms a precipitate with magnesium (Ren and<br />

Schwartz, 2000). MgCl2 is present in the lysis buffer to stabilize GTP-bound GTPases<br />

and to prevent nucleotide exchange. The high salt concentration has been shown to help<br />

minimize GAP activity that might otherwise lead to inactivation of Rho GTPases in the<br />

lysate (Ren and Schwartz, 2000).<br />

Supplement 38 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


Additional Materials (also see the Basic Protocol)<br />

Swiss 3T3 cells: e.g., 70% confluent 10-cm plates (two plates per experiment)<br />

Lysis buffer C, ice cold<br />

GST-Rhotekin-RBD beads in wash buffer A/10% (v/v) glycerol (Support Protocol)<br />

Proceed as in the Basic Protocol with changes in the following steps:<br />

2. Treat HeLa cells as described in the Basic Protocol, or, alternatively, treat serumstarved<br />

Swiss 3T3 cells with 10 ml of 1 µg/ml lysophosphatidic acid (LPA) for 1 min<br />

(Ren et al., 1999) or with 10% (v/v) serum for 2 to 3 min (Ren and Schwartz, 2000).<br />

4. Still on ice, extract each plate in 800 µl ice-cold lysis buffer C.<br />

Lysis buffer C contains 0.1% SDS (Ren and Schwartz, 2000). This prevents nonspecific<br />

interactions, but if used for Rac1 activation assays (see Basic Protocol) would affect Rac1<br />

or Cdc42 binding to GST-PAK-CRIB (Benard and Bokoch, 2002).<br />

8. Transfer 650 µl of each cell lysate into a microcentrifuge tube with 200 µl (or the<br />

equivalent of 30 µg) of GST-Rhotekin-RBD beads in wash buffer A/10% glycerol.<br />

LOADING Rac1 OR Cdc42 WITH NUCLEOTIDE<br />

This protocol provides an alternative control to the ones described above and is useful<br />

when no strong agonist is known (e.g., for Cdc42). The cells are lysed in a buffer devoid<br />

of magnesium. To load the endogenous GTPases with nucleotide, the cleared lysates are<br />

spiked with a magnesium-chelating agent (EDTA) and a high concentration of GDP, GTP,<br />

or GTPγS. Under these conditions, the GTPases will bind the most abundant nucleotide.<br />

Loading of endogenous GTPases with GTP rather than GTPγS gives a more realistic view<br />

of the level of activation one can expect in the cell. The exchange is stopped by adding<br />

magnesium chloride, and GST-RBD beads are added to carry out a pull-down assay.<br />

An example of a Rac1 and Cdc42 activation assay carried out after nucleotide exchange<br />

is shown in Figure 14.8.4. An aliquot of the lysate is taken to show basal levels of the<br />

GTPase of interest before nucleotide exchange. Also recommended is taking an aliquot<br />

after nucleotide loading (but before adding the beads) to check that the GTPase has not<br />

been degraded during the incubation at 30 ◦ C. The only difference between the protocols<br />

for RhoA or Rac1/Cdc42 is the time of incubation at 30 ◦ C, during which nucleotide<br />

loading takes place. This protocol is theoretically applicable to other Rho GTPases<br />

but the conditions for nucleotide loading might have to be optimized (e.g., time and<br />

temperature of incubation).<br />

Materials<br />

10-cm plates of cells (two plates for each experiment)<br />

Tris-buffered saline (TBS): 50 mM Tris·Cl (pH 7.6; see APPENDIX 2A)/140 mM<br />

NaCl, ice cold<br />

Lysis buffer D (see recipe), ice cold<br />

4× SDS-PAGE sample buffer (see recipe)<br />

10 mM GTPγS (Calbiochem)/20 mM HEPES, pH 7.4; store aliquots at −20◦C 100 mM GDP (Sigma)/20 mM HEPES, pH 7.4; store aliquots at −20◦C 0.5 M EDTA, pH 8.0 (see APPENDIX 2A)<br />

1MMgCl2<br />

GST-RBD beads in Tris wash buffer A/10% glycerol (Support Protocol)<br />

Tris wash buffer C (see recipe), ice cold<br />

2× SDS-PAGE sample buffer (see recipe), 95◦C SDS-PAGE gel (see UNIT 6.1)<br />

ALTERNATE<br />

PROTOCOL 2<br />

<strong>Signal</strong><br />

<strong>Transduction</strong><br />

14.8.9<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 38


Rho GTPase<br />

Activation Assays<br />

14.8.10<br />

Figure 14.8.4 GDP and GTPγS loading of Rac1 and Cdc42. HeLa cells were lysed and loaded<br />

with GDP or GTPγS as described in Alternate Protocol 2, and Rac1 or Cdc42 activation assays<br />

were carried out. The amount of GTPase in lysates to which no nucleotide was added is referred<br />

to as basal.<br />

Refrigerated centrifuge, 4◦C Shaking incubator, 30◦C Heating block, 95◦C End-over-end rotator, 4◦C 0.5- to 20-µl GELoader tips (Eppendorf)<br />

Additional reagents and equipment for determining protein concentration (APPENDIX<br />

3B or 3H) and performing SDS-PAGE (UNIT 6.1) and immunoblotting (UNIT 6.2)<br />

1. Wash two 10-cm plates of cells twice with 10 ml cold TBS.<br />

2. Extract each plate in 600 µl lysis buffer D.<br />

3. Clear the lysate by centrifuging 10 min at 25,000 × g, 4 ◦ C.<br />

4. Remove 60 µl of supernatant (to determine total protein; e.g., see APPENDIX 3B or 3H)<br />

and add 20 µl of4× SDS-PAGE sample buffer.<br />

5. Transfer 500 µl of each lysate to a new tube.<br />

6a. To load GTPγS: Add<br />

6 µlof10mMGTPγS(≥100 µM final concentration)<br />

12 µlof0.5MEDTApH8.0(≥10 mM final concentration).<br />

Pipet gently to mix, using a pipet volume of ≥200 µl.<br />

6b. To load GDP: Add<br />

6 µl of100mMGDP(≥1 mM final concentration)<br />

12 µlof0.5MEDTApH8.0(≥10 mM final concentration).<br />

Pipet gently to mix, using a pipet volume of ≥200 µl.<br />

7. <strong>In</strong>cubate 15 min at 30 ◦ C, with gentle shaking (for Cdc42 and Rac1), or 30 min for<br />

RhoA.<br />

Supplement 38 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


8. Terminate the exchange by adding 38 µl of 1 M MgCl2 to each tube (≥60 mM final<br />

concentration).<br />

9. Add 200 µl (or 30 µg) GST-RBD beads in Tris wash buffer A/10% glycerol to each<br />

of the tubes.<br />

10. Rotate 45 min at 4 ◦ C.<br />

11. Centrifuge 20 sec at 500 × g,4 ◦ C, and discard the supernatant.<br />

12. Wash the beads four times in 600 µl cold Tris wash buffer C: add 600 µl cold Tris<br />

wash buffer C, invert the tube to gently resuspend the beads, and centrifuge 20 sec<br />

at 500 × g,4 ◦ C, for each wash.<br />

13. After the last wash, use the GELoader tips to remove all of the remaining buffer from<br />

the beads.<br />

14. Elute with 50 µl of hot (95 ◦ C) 2× SDS-PAGE sample buffer.<br />

15. Heat 10 min at 95 ◦ C.<br />

16. Dilute again two-fold in 2× SDS-PAGE sample buffer and load 10 µl per well of an<br />

SDS-PAGE gel (UNIT 6.1) for immunoblotting (UNIT 6.2).<br />

The exact amount to load may vary and should be determined accordingly.<br />

Rac1 ACTIVATION ASSAY ON NONADHERENT CELLS<br />

Preparing lysates from nonadherent cells to carry out an activation assay consists of<br />

spiking the cell culture medium with a concentrated solution of agonist and stopping the<br />

activation by adding an equal volume of 2× lysis buffer. This allows for rapid lysis just<br />

after agonist treatment. The protocol below is based on that described by Takesono et al.<br />

(2004). The activation assay for Rac1 is carried out on a lymphocyte cell line treated<br />

with 100 ng/ml of SDF1α for 0 sec, 30 sec, 2, 5, and 10 min. The results are shown in<br />

Figure 14.8.5.<br />

Materials<br />

Cultures of cells in suspension<br />

RPMI/0.1% (w/v) fatty-acid-free BSA<br />

RPMI/0.1% (w/v) fatty-acid-free BSA/20 mM HEPES, pH 7.4<br />

SDF1α (R&D #350-NS)<br />

2× lysis buffer (see recipe), ice cold<br />

GST-PAK-CRIB beads in Tris wash buffer A/10% (v/v) glycerol (Support Protocol)<br />

4× SDS-PAGE sample buffer (see recipe)<br />

2× SDS-PAGE sample buffer (see recipe)<br />

SDS-PAGE gel (see UNIT 6.1)<br />

Refrigerated centrifuge, 8◦C 0.5- to 20-µl GELoader tips (Eppendorf)<br />

Heating block, 95◦C Additional reagents and equipment for performing SDS-PAGE (UNIT 6.1) and<br />

immunoblotting (UNIT 6.2)<br />

Prepare cells for assay<br />

1. Starve the suspension cells for 4 hr in RPMI/0.1% (w/v) fatty-acid-free BSA.<br />

It might be possible to starve certain cell lines overnight and this could help reduce the<br />

basal level of active GTPase. The protocol can be adapted accordingly.<br />

2. Prewarm the RPMI/ 0.1% (w/v) fatty-acid-free BSA/20 mM HEPES.<br />

ALTERNATE<br />

PROTOCOL 3<br />

<strong>Signal</strong><br />

<strong>Transduction</strong><br />

14.8.11<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 38


Rho GTPase<br />

Activation Assays<br />

14.8.12<br />

Figure 14.8.5 Rac1 activation assay carried out on nonadherent cells. Nonadherent 300.19<br />

cells, a mouse pre-B lymphocyte cell line, were treated with SDF1α for different time points and<br />

Rac1 activation assays were carried out. The levels of total Rac1 are shown in the top panel<br />

(exposure of time 30 sec), and the bottom panel shows the levels of active Rac1 (exposure time<br />

of 1 min 30 sec). Rac1 is activated after 30 sec but the activation is lost by 5 min.<br />

3. Resuspend the cells at 4.4 × 10 7 cells/ml in RPMI/0.1% (w/v) fatty-acid-free<br />

BSA/20 mM HEPES. For five time points, prepare 6.6 × 10 7 cells in 1.5 ml.<br />

4. Transfer 225 µl of cells (10 7 cells) for each of the five time points into microcentrifuge<br />

tubes.<br />

5. Prepare at least 120 µl of1µg/ml SDF1α in RPMI/0.1% (w/v) fatty-acid-free<br />

BSA/20 mM HEPES.<br />

SDF1α at 1 µg/ml is ten times more concentrated than the final SDF1α concentration<br />

to which the cells will be exposed. When added to the cells, the concentrated solution of<br />

SDF1α will be diluted 1:10 by the cell culture medium, and the final concentration of<br />

SDF1α will be 100 ng/ml.<br />

6. To the cells corresponding to the 0 sec time point, add 25 µl of RPMI/0.1% (w/v)<br />

fatty-acid-free BSA/20 mM HEPES.<br />

Perform assay<br />

7. To each of the tubes for the other four time points, add 25 µl of the 1 µg/ml SDF1α<br />

to the 225-µl cell suspension prepared in step 4.<br />

Each tube will contain 10 7 cells in 250 µl and a final concentration of 100 ng/ml of<br />

SDF1α.<br />

8. Stop the reaction by adding 250 µl ice-cold 2× lysis buffer. Keep the lysates on ice.<br />

Supplement 38 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


Analyze lysates<br />

9. Clear the lysates by centrifuging 10 min at 25,000 × g, 4 ◦ C.<br />

10. Meanwhile, thaw 1 ml (or the equivalent of 150 µg) of GST-PAK-CRIB beads in<br />

Tris wash buffer A/10% glycerol on ice.<br />

11. Transfer the cleared lysates to new tubes.<br />

12. For each time point, transfer 30 µl of cleared cell lysate to a new tube and add 10 µl<br />

of 4× SDS-PAGE sample buffer. Heat 10 min at 95 ◦ C.<br />

These will be the “total” Rac1 samples.<br />

13. Add 200 µl of beads in Tris wash buffer A/10% glycerol (or the equivalent of 30 µg)<br />

to 450 µl of cleared lysate (the rest of the cleared lysate).<br />

14. Rotate end-over-end 45 min at 4 ◦ C.<br />

15. Wash the beads four times with 0.5 ml ice-cold 1× lysis buffer (dilute 2× lysis<br />

buffer): add 0.5 ml cold 1× lysis buffer, invert the tube to gently resuspend the<br />

beads, and centrifuge 20 sec at 500 × g, 4 ◦ C, for each wash.<br />

16. After the last wash, use the thin GELoader pipet tip to remove all of the remaining<br />

buffer from the beads.<br />

17. Elute the proteins from the beads by adding 50 µl of2× SDS-PAGE sample buffer<br />

and heat for 10 min at 95 ◦ C.<br />

18. Load both the samples for total (obtained on step 12) and active Rac1 (obtained<br />

in step 17) onto an SDS-PAGE gel to resolve the ∼21-kDa GTPase (UNIT 6.1), and<br />

process for immunoblotting (UNIT 6.2).<br />

REAGENTS AND SOLUTIONS<br />

Use deionized, distilled water in all recipes and protocol steps. For common stock solutions, see<br />

APPENDIX 2A; for suppliers, see SUPPLIERS APPENDIX.<br />

Lysis buffer, 2× (for nonadherent cells)<br />

100 mM HEPES, pH 7.4<br />

300 mM NaCl<br />

2% (w/v) Triton X-100<br />

20 mM MgCl2<br />

20 µg/ml aprotinin<br />

20 µg/ml leupeptin<br />

Prepare fresh and keep on ice<br />

Add 0.4 mM PMSF (use 200 mM stock; see recipe) just before use<br />

For nonadherent cells, the lysis buffer has to be twice as concentrated (2× lysis buffer)<br />

because it will be diluted in half by the cell culture medium.<br />

Lysis buffer A<br />

50 mM Tris·Cl, pH 7.5 (see APPENDIX 2 A)<br />

1% (w/v) Triton X-100<br />

150 mM NaCl<br />

5mMMgCl2<br />

1mMDTT<br />

Prepare fresh and keep on ice<br />

Add 0.2 mM PMSF (use 200 mM stock; see recipe) just before use<br />

<strong>Signal</strong><br />

<strong>Transduction</strong><br />

14.8.13<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 38


Rho GTPase<br />

Activation Assays<br />

14.8.14<br />

Lysis buffer B (for Rac1 & Cdc42 activation)<br />

50 mM Tris·Cl, pH 7.2 (see APPENDIX 2A)<br />

1% (w/v) Triton X-100<br />

500 mM NaCl<br />

10 mM MgCl2<br />

10 µg/ml aprotinin<br />

10 µg/ml leupeptin<br />

Prepare fresh and keep on ice<br />

Add 0.2 mM PMSF (use 200 mM stock; see recipe) just before use<br />

Lysis buffer C (for RhoA activation)<br />

50 mM Tris·Cl, pH 7.2 (see APPENDIX 2A)<br />

1% (w/v) Triton X-100<br />

0.1% (w/v) SDS<br />

500 mM NaCl<br />

10 mM MgCl2<br />

10 µg/ml aprotinin<br />

10 µg/ml leupeptin<br />

Prepare fresh and keep on ice<br />

Add 0.2 mM PMSF (use 200 mM stock; see recipe) just before use<br />

LysisbufferD<br />

50 mM Tris·Cl, pH 7.2 (see APPENDIX 2A)<br />

1% (w/v) Triton X-100<br />

500 mM NaCl<br />

10 µg/ml aprotinin<br />

10 µg/ml leupeptin<br />

Prepare fresh and keep on ice<br />

Add 0.2 mM PMSF (use 200 mM stock; see recipe) just before use<br />

PMSF, 200 mM<br />

200 mM phenylmethylsulfonyl fluoride in ethanol<br />

Store protected from light<br />

SDS-PAGE sample buffer, 4×<br />

0.5 M Tris·Cl, pH 6.8 (see APPENDIX 2A)<br />

4% (w/v) SDS<br />

20% (w/v) glycerol<br />

40 mM DTT<br />

0.02% (w/v) bromphenol blue<br />

SDS-PAGE sample buffer, 2×<br />

250 mM Tris·Cl, pH 6.8 (see APPENDIX 2A)<br />

2% (w/v) SDS<br />

10% (w/v) glycerol<br />

40 mM DTT<br />

0.01% (w/v) bromphenol blue<br />

Note that this sample buffer also contains 40 mM DTT.<br />

Tris wash buffer A<br />

50 mM Tris·Cl, pH 7.5 (see APPENDIX 2A)<br />

0.5% (w/v) Triton X-100<br />

150 mM NaCl<br />

continued<br />

Supplement 38 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


5mMMgCl2<br />

1mMDTT<br />

Prepare fresh and keep on ice<br />

Add 20 µM mM PMSF (use 200 mM stock; see recipe) just before use<br />

Tris wash buffer B<br />

50 mM Tris·Cl, pH 7.2 (see APPENDIX 2A)<br />

1% (w/v) Triton X-100<br />

150 mM NaCl<br />

10 mM MgCl2<br />

10 µg/ml aprotinin<br />

10 µg/ml leupeptin<br />

Prepare fresh and keep on ice<br />

Add 0.2 mM PMSF (use 200 mM stock; see recipe) just before use<br />

Tris wash buffer C<br />

50 mM Tris·Cl, pH 7.2 (see APPENDIX 2A)<br />

1% (w/v) Triton X-100<br />

150 mM NaCl<br />

30 mM MgCl2<br />

10 µg/ml aprotinin<br />

10 µg/ml leupeptin<br />

Prepare fresh and keep on ice<br />

Add 0.2 mM PMSF (use 200 mM stock; see recipe) just before use<br />

COMMENTARY<br />

Background <strong>In</strong>formation<br />

The Rho proteins belong to the Ras superfamily<br />

of low-molecular-weight GTPases<br />

(Wennerberg et al., 2005). They were first<br />

identified in 1985 (Madaule and Axel, 1985)<br />

and have now been shown to regulate a wide<br />

range of cellular processes (Jaffe and Hall,<br />

2005). Most Rho GTPases cycle between an<br />

active GTP-bound form and an inactive GDPbound<br />

form. When bound to GTP, the active<br />

Rho proteins exert their biological functions<br />

by interacting with target or effector proteins<br />

(Bishop and Hall, 2000). <strong>In</strong> the cell, the GTPases<br />

are themselves regulated by three different<br />

classes of proteins. The guanine nucleotide<br />

exchange factors (GEFs) catalyze the<br />

exchange of GDP for GTP, thereby activating<br />

the GTPase (Rossman et al., 2005). The GTPase<br />

activating proteins (GAPs) stimulate the<br />

intrinsic GTPase activity of Rho proteins, leading<br />

to inactivation (Moon and Zheng, 2003).<br />

Finally, the guanine nucleotide dissociation inhibitors<br />

(GDIs) affect membrane targeting and<br />

nucleotide exchange (DerMardirossian and<br />

Bokoch, 2005; Dovas and Couchman, 2005).<br />

Activation assays have become fundamental<br />

to the study of small GTPase function.<br />

Originally, GTPase activity was measured by<br />

immunoprecipitating the GTPase of interest<br />

from lysates of cells that had been metaboli-<br />

cally labeled with [ 32 P]phosphate and by identifying<br />

the associated radioactive nucleotide<br />

using thin layer chromatography (Downward<br />

et al., 1990). The first nonradioactive activation<br />

assay was developed for the small GTPase<br />

Ras. <strong>In</strong> 1996, Taylor and Shalloway used<br />

the amino acids 1 to 149 of Raf1 to pull down<br />

active Ras (Taylor and Shalloway, 1996;<br />

Taylor et al., 2001). Very soon after, De Rooij<br />

and Bos (1997) described the same approach<br />

using a smaller domain of Raf1 (amino acids<br />

51 to 131). After RhoA was shown to interact<br />

with Rhotekin in a nucleotide dependent<br />

fashion (Reid et al., 1996), Martin Schwartz<br />

and colleagues used the Rho-binding domain<br />

of Rhotekin to pull down active RhoA<br />

from cell lysates (Ren et al., 1999; Ren and<br />

Schwartz, 2000). The CRIB motif of PAK1<br />

interacts with active (i.e., GTP-bound) Rac1<br />

and Cdc42 (Burbelo et al., 1995) and has thus<br />

been used extensively to pull down active<br />

Rac1 and Cdc42 from cell lysates (Sander<br />

et al., 1998; Benard et al., 1999; Benard and<br />

Bokoch, 2002). The WASP CRIB motif has<br />

also been used to pull down active Cdc42,<br />

but this construct does not interact with Rac1<br />

(Haddad et al., 2001). It is still unclear which<br />

of the CRIB motifs gives a more robust assay<br />

for Cdc42 activation.<br />

<strong>Signal</strong><br />

<strong>Transduction</strong><br />

14.8.15<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 38


Rho GTPase<br />

Activation Assays<br />

14.8.16<br />

As shown in Figure 14.8.1A, the Rhotekin<br />

construct used to pull down RhoA usually<br />

consists of amino acids 7 to 89 (Ren and<br />

Schwartz, 2000). On the other hand, a range of<br />

PAK-CRIB constructs have been used successfully<br />

for Rac1 and Cdc42 activation assays.<br />

Collard and colleagues used amino acids 56 to<br />

272 of PAK1B (Sander et al., 1998), whereas<br />

Bokoch’s group prefers using amino acids 67<br />

to 150 of PAK1 (Benard and Bokoch, 2002).<br />

We have used a larger portion of PAK1, namely<br />

amino acids 1 to 253 (Fig. 14.8.1B). Although<br />

the CRIB motif is only 16 amino acids long,<br />

the minimal domain for Rac1/Cdc42 binding<br />

to PAK consists of residues 75 to 105<br />

(Thompson et al., 1998).<br />

Activation assays for small GTPases have<br />

led to the identification of a wide range of<br />

extracellular stimuli that result in GTPase<br />

activation and initiate downstream signaling.<br />

They are also a good tool for assessing<br />

basal activation states, especially in tumor<br />

biology where they can be used to compare<br />

normal and tumor samples or cell lines.<br />

GST-RBD pull-down assays are also useful<br />

for measuring GEF-mediated activation and<br />

GAP inhibition, but it has been suggested that<br />

they will not reflect GDI-mediated inhibition<br />

(Ellerbroek et al., 2003).<br />

Designing and testing activation assays for<br />

Rho GTPases other than RhoA, Rac1, and<br />

Cdc42<br />

The best characterized Rho GTPases are<br />

RhoA, Rac1, and Cdc42, but over 20 human<br />

Rho GTPases have now been identified (Wherlock<br />

and Mellor, 2002; Wennerberg and Der,<br />

2004; Boureux et al., 2007). Developing activation<br />

assays for the other Rho GTPases could<br />

prove an important tool for studying their function,<br />

assuming that a specific antibody is available<br />

for the GTPase of interest.<br />

Certain Rho GTPases, however, do not<br />

cycle between an inactive, GDP-bound and<br />

an active, GTP-bound form. These include<br />

Rnd1/RhoE, Rnd2, and Rnd3 which are<br />

thought to be GTPase deficient and constitutively<br />

GTP-bound (Foster et al., 1996; Nobes<br />

et al., 1998; Chardin, 2006). Like the Rnd proteins,<br />

RhoH/TTF, RhoBTB1, and RhoBTB2<br />

lack the conserved residues corresponding to<br />

G12 and Q61 (Rac1 numbering) found in<br />

other Rho GTPases; they are therefore likely<br />

to be GTPase deficient and not regulated<br />

by GDP/GTP cycling (Wennerberg and Der,<br />

2004; Li et al., 2002). Such noncycling Rho<br />

GTPases are not amenable to activation assays.<br />

So far, their activity is thought to be regulated<br />

by their level of expression and/or by phosphorylation<br />

and could, therefore, be monitored by<br />

assessing the amount of protein present and/or<br />

the level of phosphorylation.<br />

Among the cycling RhoGTPases, RhoB<br />

and RhoC both bind Rhotekin, and the GST-<br />

Rhotekin-RBD construct used for RhoA activation<br />

assays has also been used successfully<br />

for RhoB and RhoC (Arthur et al., 2002;<br />

Gampel and Mellor, 2002; Bellovin et al.,<br />

2006; Pan et al., 2006). <strong>In</strong> this case, it is important<br />

to ensure that the antibodies used are<br />

specific and can distinguish between the different<br />

Rho proteins (Table 14.8.1). The GST-<br />

PAK-CRIB construct has been used successfully<br />

to pull down Rac1 and Cdc42-like Rho<br />

GTPases such as active Rac2 (Benard et al.,<br />

1999) and TC10 (Tong et al., 2007). TCL has<br />

been shown to bind GST-PAK-CRIB, suggesting<br />

that this construct could be used to pull<br />

down active TCL from cell lysates (Vignal<br />

et al., 2000). Thus, the first step in designing<br />

an activation assay would be to test whether<br />

the GST-Rhotekin-RBD, GST-PAK-CRIB, or<br />

GST-WASP-CRIB constructs can be used (see<br />

Figure 14.8.1). If this is not the case, one<br />

needs to identify a protein domain which can<br />

be made as a GST fusion protein and which<br />

only interacts with the GTP-bound form of the<br />

GTPase of interest.<br />

<strong>In</strong> order to test whether the GST-fusion protein<br />

only interacts with the active GTPase,<br />

pull-downs can be carried out on cells overexpressing<br />

the inactive, GDP-bound T17N<br />

mutant or the active, GTP-bound G12V and<br />

Q61L mutants (Rac1 numbering; Benard et al.,<br />

1999). Alternatively, endogenous GTPases<br />

can be loaded with nucleotides (Alternate<br />

Protocol 2). <strong>In</strong> our experience, not all Rho<br />

GTPases can be loaded following Alternate<br />

Protocol 2 because incubation at 30 ◦ C for 15<br />

or 30 min can lead to degradation of the protein<br />

of interest. It might be possible to overcome<br />

this by optimizing the protocol.<br />

Rho GTPases generally have multiple binding<br />

partners, with a range of different binding<br />

parameters. The general sense is that successful<br />

pull-down assay probes will have high<br />

affinities for the active Rho GTPase, high<br />

specificity for the active form, and a low rate<br />

of dissociation. The last parameter is important<br />

in preventing loss of the complex during<br />

the assay procedure.<br />

Supplement 38 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


Critical Parameters and<br />

Troubleshooting<br />

When studying agonist-induced activation,<br />

it is sometimes difficult to obtain low levels of<br />

active GTPase in the control, untreated cells.<br />

Not all cell types can be starved and the length<br />

of serum starvation needed can vary from cell<br />

type to cell type; this has to be determined empirically.<br />

The level of active GTPase should be<br />

as low as possible, and this is usually achieved<br />

by long periods of serum starvation (e.g., 16<br />

hr). However, the cells should still look healthy<br />

after serum starvation. Also, the cells should<br />

not be too confluent; 60% to 70% confluency<br />

is usually ideal. Finally, carrying out regular<br />

quality control activation assays on the GST-<br />

RBD beads is important. Beads do lose their<br />

specificity over time and can then interact with<br />

the inactive form of the GTPase. The only way<br />

to resolve this is by making new GST-RBD<br />

beads.<br />

The major obstacle to activation assays is<br />

the residual GAP activity found in cell lysates<br />

(Ren and Schwartz, 2000). The high salt content<br />

of lysis buffers should help minimize GAP<br />

activity, but it is also important to work quickly<br />

and to keep all solutions and samples at low<br />

temperature (Ren and Schwartz, 2000). If possible,<br />

it is advisable to carry out the procedure<br />

in a cold room. Buffers should be made fresh<br />

and kept on ice. The PMSF is added just before<br />

use.<br />

Rho GTPases are not very abundant and<br />

they can be difficult to detect by immunoblotting.<br />

Good antibodies are available commercially,<br />

and these are described in Table 14.8.1.<br />

The GTPases are only 21 kDa and the SDS-<br />

PAGE gels used should be chosen accordingly.<br />

We have used 15% Tris·Cl gels but have found<br />

that 12% Bis-Tris gels run with MES buffer<br />

give much better resolution and allow for better<br />

detection.<br />

The kinetics of GTPase activation are not<br />

always predictable. These depend on the cell<br />

type, the agonist used, and the GTPase studied.<br />

A typical assay involves a time course of<br />

0, 30 sec, 1, 3, 5, and 10 min. If no activation<br />

is seen over this period, it is advisable to use<br />

a wider range of time points. Activation can<br />

occur very quickly and be very short lived; alternatively,<br />

it can occur a very long time after<br />

treatment with agonist. <strong>In</strong>deed, treatment of<br />

Schwann cells with sphingosine-1-phosphate<br />

(S1P) leads to maximal RhoA and Rac1 activation<br />

after only 15 sec (Barber et al., 2004).<br />

This activation is very rapidly downregulated;<br />

it is barely noticeable after 1 min and disappears<br />

completely after 3 min of S1P treatment<br />

(Barber et al., 2004). On the other hand, treatment<br />

of HeLa cells with EGF leads to a biphasic<br />

activation of RhoB, with an early peak in<br />

activity at 3 min, followed by a second peak<br />

that appears as late as 60 min after stimulation<br />

(Gampel and Mellor, 2002).<br />

<strong>In</strong> an experimental setting, the level of activation<br />

obtained should be quantified by normalizing<br />

the amount of GST-RBD bound GT-<br />

Pase (i.e., active GTPase) to the amount of<br />

total GTPase. Care has to be taken when quantifying<br />

scanned images of X-ray films because<br />

they have a narrow linear range of exposure<br />

(Ren and Schwartz, 2000); it is very important<br />

to make sure that the films are not overexposed.<br />

Activation assays are usually performed<br />

at least three times so that the mean<br />

(± standard deviation) of the ratio of active<br />

over total GTPase signal can be shown.<br />

Anticipated Results<br />

Examples of anticipated results are shown<br />

in Figures 14.8.2 to 14.8.5. The level of sensitivity<br />

of the activation assay has not been<br />

determined. It would vary hugely among cell<br />

types. Concentrations of agonists used would<br />

Table 14.8.1 Commercially Available Antibodies for RhoA, RhoB, Rac1, Rac2, and Cdc42<br />

GTPase Company Catalogue number Species<br />

RhoAa Santa Cruz RhoA (26C4) sc418 Mouse monoclonal<br />

RhoBa Santa Cruz RhoB (C5) sc8048 Mouse monoclonal<br />

Rac1 BD Trans Lab R56220 Mouse monoclonal<br />

Rac2 Santa Cruz Rac2(C-11) sc96 Rabbit polyclonal<br />

Cdc42 BD Trans Lab 610928 Mouse monoclonal<br />

aThe RhoA antibody is specific for RhoA, and similarly, the RhoB antibody only recognizes RhoB and not RhoA or<br />

RhoC (Gampel and Mellor, 2002). We have not checked the specificity of the other antibodies.<br />

<strong>Signal</strong><br />

<strong>Transduction</strong><br />

14.8.17<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 38


Rho GTPase<br />

Activation Assays<br />

14.8.18<br />

saturate the receptors, based on their known<br />

affinities.<br />

Time Considerations<br />

The most time consuming task is making<br />

the GST-RBD beads (Support Protocol). The<br />

whole procedure is carried out on the same<br />

day, starting with the inoculation of 4 liters of<br />

medium with 400 ml overnight culture and finishing<br />

with the aliquoting and freezing of the<br />

GST-RBD beads. The beads then need to be<br />

checked on an SDS-PAGE gel and tested in a<br />

quality control activation assay using known<br />

agonists or Rho GTPases loaded with nucleotide.<br />

Once a batch of beads has been made<br />

and tested, individual aliquots can be thawed<br />

on ice just before being added to cell lysates.<br />

A specific timeline for this process follows:<br />

After the GST-RBD construct has been made<br />

or obtained, it needs to be transfected into bacteria<br />

which are left to grow overnight (day 1).<br />

A single colony can be picked the next day<br />

and grown overnight in a 5-ml culture (day 2).<br />

The 5-ml culture is used to inoculate a 400-ml<br />

culture, which is grown overnight (day 3). The<br />

GST-RBD beads (see Support Protocol) can<br />

then be made in 1 day (day 5) and frozen in<br />

small aliquots. Checking that the GST-RBD is<br />

bound to the beads can be done the next day<br />

(day 6). The beads can be tested as described<br />

in the Basic Protocol on control cell lysates<br />

to check that the beads bind the active but not<br />

the inactive form of the GTPase either on that<br />

same day (day 6) or the next (day 7).<br />

Literature Cited<br />

Arthur, W.T., Ellerbroek, S.M., Der, C.J., Burridge,<br />

K., and Wennerberg, K. 2002. XPLN, a guanine<br />

nucleotide exchange factor for RhoA and RhoB,<br />

but not RhoC. J. Biol. Chem. 277:42964-42972.<br />

Barber, S.C., Mellor, H., Gampel, A., and Scolding,<br />

N.J. 2004. S1P and LPA trigger Schwann cell<br />

actin changes and migration. Eur. J. Neurosci.<br />

19:3142-150.<br />

Bellovin, D.I., Simpson, K.J., Danilov, T.,<br />

Maynard, E., Rimm, D.L., Oettgen, P., and<br />

Mercurio, A.M. 2006. Reciprocal regulation of<br />

RhoA and RhoC characterizes the EMT and<br />

identifies RhoC as a prognostic marker of colon<br />

carcinoma. Oncogene. 25:6959-6967.<br />

Benard, V., Bohl, B.P., and Bokoch, G.M. 1999.<br />

Characterization of rac and cdc42 activation in<br />

chemoattractant-stimulated human neutrophils<br />

using a novel assay for active GTPases. J. Biol.<br />

Chem. 274:13198-13204.<br />

Benard, V. and Bokoch, G.M. 2002. Assay of<br />

Cdc42, Rac, and Rho GTPase activation by<br />

affinity methods. Methods Enzymol. 345:349-<br />

359.<br />

Bishop, A.L. and Hall, A. 2000. Rho GTPases and<br />

their effector proteins. Biochem. J. 348 Pt 2:241-<br />

255.<br />

Boureux, A., Vignal, E., Faure, S., and Fort, P. 2007.<br />

Evolution of the Rho family of Ras-like GTPases<br />

in eukaryotes. Mol. Biol. Evol. 24:203-216.<br />

Burbelo, P.D., Drechsel, D., and Hall, A. 1995. A<br />

conserved binding motif defines numerous candidate<br />

target proteins for both Cdc42 and Rac<br />

GTPases. J. Biol. Chem. 270:29071-29074.<br />

Chardin, P. 2006. Function and regulation of Rnd<br />

proteins. Nat. Rev. Mol. Cell Biol. 7:54-62.<br />

de Rooij, J., and Bos, J.L. 1997. Minimal Rasbinding<br />

domain of Raf1 can be used as an<br />

activation-specific probe for Ras. Oncogene.<br />

14:623-625.<br />

DerMardirossian, C., and Bokoch, G.M. 2005.<br />

GDIs: Central regulatory molecules in Rho<br />

GTPase activation. Trends Cell Biol. 15:356-<br />

363.<br />

Dovas, A., and Couchman, J.R. 2005. RhoGDI:<br />

Multiple functions in the regulation of Rho family<br />

GTPase activities. Biochem. J. 390:1-9.<br />

Downward, J., Graves, J.D., Warne, P.H., Rayter, S.,<br />

and Cantrell, D.A. 1990. Stimulation of p21ras<br />

upon T-cell activation. Nature 346:719-723.<br />

Ellerbroek, S.M., Wennerberg, K., and Burridge,<br />

K. 2003. Serine phosphorylation negatively regulates<br />

RhoA in vivo. J. Biol. Chem. 278:19023-<br />

19031.<br />

Foster, R., Hu, K.Q., Lu, Y., Nolan, K.M., Thissen,<br />

J., and Settleman, J. 1996. Identification of a<br />

novel human Rho protein with unusual properties:<br />

GTPase deficiency and in vivo farnesylation.<br />

Mol. Cell Biol. 16:2689-2699.<br />

Gampel, A. and Mellor, H. 2002. Small interfering<br />

RNAs as a tool to assign Rho GTPase exchangefactor<br />

function in vivo. Biochem. J. 366:393-<br />

398.<br />

Haddad, E., Zugaza, J.L., Louache, F., Debili,<br />

N., Crouin, C., Schwarz, K., Fischer, A.,<br />

Vainchenker, W., and Bertoglio, J. 2001. The interaction<br />

between Cdc42 and WASP is required<br />

for SDF-1-induced T-lymphocyte chemotaxis.<br />

Blood 97:33-38.<br />

Jaffe, A.B. and Hall, A. 2005. Rho GTPases:<br />

Biochemistry and biology. Annu. Rev. Cell Dev.<br />

Biol. 21:247-269.<br />

Li, X., Bu, X., Lu, B., Avraham, H., Flavell, R.A.,<br />

and Lim, B. 2002. The hematopoiesis-specific<br />

GTP-binding protein RhoH is GTPase deficient<br />

and modulates activities of other Rho GT-<br />

Pases by an inhibitory function. Mol. Cell Biol.<br />

22:1158-1171.<br />

Madaule, P. and Axel, R. 1985. A novel ras-related<br />

gene family. Cell 41:31-40.<br />

Moon, S.Y. and Zheng, Y. 2003. Rho GTPaseactivating<br />

proteins in cell regulation. Trends Cell<br />

Biol. 13:13-22.<br />

Nobes, C.D., Lauritzen, I., Mattei, M.G., Paris, S.,<br />

Hall, A., and Chardin, P. 1998. A new member<br />

of the Rho family, Rnd1, promotes disassembly<br />

Supplement 38 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


of actin filament structures and loss of cell adhesion.<br />

J. Cell Biol. 141:187-197.<br />

Pan, Q., Bao, L.W., Teknos, T.N., and Merajver,<br />

S.D. 2006. Targeted disruption of protein kinase<br />

C (varepsilon) reduces cell invasion and<br />

motility through inactivation of RhoA and RhoC<br />

GTPases in head and neck squamous cell carcinoma.<br />

Cancer Res. 66:9379-9384.<br />

Reid, T., Furuyashiki, T., Ishizaki, T., Watanabe, G.,<br />

Watanabe, N., Fujisawa, K., Morii, N., Madaule,<br />

P., and Narumiya, S. 1996. Rhotekin, a new putative<br />

target for Rho bearing homology to a serine/<br />

threonine kinase, PKN, and rhophilin in the<br />

rho-binding domain. J. Biol. Chem. 271:13556-<br />

13560.<br />

Ren, X.D. and Schwartz, M.A. 2000. Determination<br />

of GTP loading on Rho. Methods Enzymol.<br />

325:264-272.<br />

Ren, X.D., Kiosses, W.B., and Schwartz, M.A.<br />

1999. Regulation of the small GTP-binding protein<br />

Rho by cell adhesion and the cytoskeleton.<br />

EMBO J. 18:578-585.<br />

Rossman, K.L., Der, C.J., and Sondek, J. 2005. GEF<br />

means go: Turning on Rho GTPases with guanine<br />

nucleotide-exchange factors. Nat. Rev. Mol.<br />

Cell Biol. 6:167-180.<br />

Sander, E.E., van Delft, S., ten Klooster, J.P.,<br />

Reid, T., van der Kammen, R.A., Michiels,<br />

F., and Collard, J.G. 1998. Matrix-dependent<br />

Tiam1/Rac signaling in epithelial cells promotes<br />

either cell-cell adhesion or cell migration and<br />

is regulated by phosphatidylinositol 3-kinase. J.<br />

Cell Biol. 143:1385-1398.<br />

Takesono, A., Horai, R., Mandai, M., Dombroski,<br />

D., and Schwartzberg, P.L. 2004. Requirement<br />

for Tec kinases in chemokine-induced migration<br />

and activation of Cdc42 and Rac. Curr. Biol.<br />

14:917-922.<br />

Taylor, S.J. and Shalloway, D. 1996. Cell cycledependent<br />

activation of Ras. Curr. Biol. 6:1621-<br />

1627.<br />

Taylor, S.J., Resnick, R.J., and Shalloway, D. 2001.<br />

Nonradioactive determination of Ras-GTP levels<br />

using activated Ras interaction assay. Methods<br />

Enzymol. 333:333-342.<br />

Thompson, G., Owen, D., Chalk, P.A., and Lowe,<br />

P.N. 1998. Delineation of the Cdc42/Racbinding<br />

domain of p21-activated kinase. Biochemistry<br />

37:7885-7891.<br />

Tong, S., Liss, A.S., You, M., and Bose, Jr., H.R.<br />

2007. The activation of TC10, a Rho small GT-<br />

Pase, contributes to v-Rel-mediated transformation.<br />

Oncogene 26:2318-2329.<br />

Vignal, E., De Toledo, M., Comunale, F.,<br />

Ladopoulou, A., Gauthier-Rouviere, C., Blangy,<br />

A., and Fort, P. 2000. Characterization of TCL,<br />

a new GTPase of the rho family related to TC10<br />

and Cdc42. J. Biol. Chem. 275:36457-36464.<br />

Wennerberg, K. and Der, C.J. 2004. Rho-family<br />

GTPases: It’s not only Rac and Rho (and I like<br />

it). J. Cell Sci. 117:1301-1312.<br />

Wennerberg, K., Rossman, K.L., and Der, C.J.<br />

2005. The Ras superfamily at a glance. J. Cell<br />

Sci. 118:843-846.<br />

Wherlock, M. and Mellor, H. 2002. The Rho GT-<br />

Pase family: A Racs to Wrchs story. J. Cell Sci.<br />

115:239-240.<br />

<strong>Signal</strong><br />

<strong>Transduction</strong><br />

14.8.19<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 38


<strong>In</strong> Vitro GEF and GAP Assays<br />

Alexander Eberth 1 and Mohammad Reza Ahmadian 1<br />

1<strong>In</strong>stitut für Biochemie und Molekularbiologie II, Klinikum der Heinrich-Heine-Universität,<br />

Düsseldorf, Germany<br />

ABSTRACT<br />

Small GTPases act as tightly regulated molecular switches governing a large variety<br />

of critical cellular functions. Their activity is controlled by two different biochemical<br />

reactions, GDP/GTP exchange and GTP hydrolysis. These very slow reactions require<br />

catalysis in cells by two kinds of regulatory proteins. While the guanine nucleotide exchange<br />

factors (GEFs) activate small GTPases by stimulating the slow exchange of bound<br />

GDP for the cellularly abundant GTP, GTPase-activating proteins (GAPs) accelerate the<br />

slow intrinsic rate of GTP hydrolysis by several orders of magnitude, leading to inactivation.<br />

There are a number of methods that can be used to characterize the specificity and<br />

activity of such regulators, to understand the effect of binding on the protein structure,<br />

and, ultimately, to obtain insights into their biological functions. This unit describes<br />

(1) detailed protocols for the expression and the purification of small GTPases and the<br />

catalytic domains of GEFs and GAPs; (2) preparation of nucleotide-free and fluorescent<br />

nucleotide-bound small GTPases; and (3) methods for monitoring of the intrinsic<br />

and GEF-catalyzed nucleotide exchange as well as intrinsic and GAP-stimulated GTP<br />

hydrolysis. Curr. Protoc. Cell Biol. 43:14.9.1-14.9.25. C○ 2009 by John Wiley & Sons,<br />

<strong>In</strong>c.<br />

Keywords: fluorescence spectroscopy � guanine nucleotide � mant � tamra<br />

INTRODUCTION<br />

A great variety of small GTPases are known, and each of these in turn interacts with a<br />

variety of regulatory proteins, including guanine nucleotide exchange factors (GEFs) and<br />

GTPase-activating proteins (GAPs). Analysis of the human genome sequence predicts<br />

69 GEFs and up to 80 GAPs for Rho family GTPases, which may possibly regulate the<br />

activity of 19 Rho GTPases. To understand the biological relevance of this molecular<br />

diversity, it is important to measure the activity and to determine the specificity of<br />

these regulators in vitro. Only a sparse number of such intermolecular interactions<br />

have been investigated, primarily using radioactive ligand overlay, filter binding, or<br />

pull-down assays. These methods are often not sufficient to determine the specificity<br />

of regulation and quantify the activity of recombinant proteins. However, many of the<br />

potential interactions defined by these methods require a more detailed analysis of their<br />

kinetics by appropriate real-time methods. Fluorescent guanine nucleotides are often<br />

ideally suited to fulfill these criteria, as it is known that they do not grossly disturb the<br />

biochemical properties of the GTPase and that the fluorescence reporter group is sensitive<br />

enough to changes in the local environment to produce a sufficiently large fluorescence<br />

change (Ahmadian et al., 2002; Hemsath and Ahmadian, 2005). Furthermore, it is often<br />

sensitive to the interaction with partner proteins that happen to bind in its neighborhood.<br />

This unit describes the role of two different fluorescently labeled guanine nucleotides in<br />

the biochemical analysis of Rho GTPases (Fig.14.9.1), which can be used to evaluate the<br />

GEF-catalyzed nucleotide exchange and the GAP-stimulated GTP-hydrolysis activities,<br />

respectively. Table 14.9.1 describes the protocols presented in this unit.<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology 14.9.1-14.9.25, June 2009<br />

Published online June 2009 in Wiley <strong>In</strong>terscience (www.interscience.wiley.com).<br />

DOI: 10.1002/0471143030.cb1409s43<br />

Copyright C○ 2009 John Wiley & Sons, <strong>In</strong>c.<br />

UNIT 14.9<br />

<strong>Signal</strong><br />

<strong>Transduction</strong>:<br />

<strong>Protein</strong><br />

Phosphorylation<br />

14.9.1<br />

Supplement 43


BASIC<br />

PROTOCOL 1<br />

<strong>In</strong> Vitro GEF and<br />

GAP Assays<br />

14.9.2<br />

Figure 14.9.1 The chemical structures of the guanosine nucleotide derivatives used in this unit.<br />

Unlabeled ßuorescent nucleotides contain an OH-group at the position R.<br />

MEASUREMENT OF INTRINSIC AND SLOW GUANINE NUCLEOTIDE<br />

EXCHANGE FACTOR (GEF)–CATALYZED NUCLEOTIDE EXCHANGE<br />

REACTIONS<br />

To obtain a detailed picture of the molecular switch function of small GTPases and their<br />

interaction with regulators and effectors, we have established fluorescence-based methods<br />

for the time-resolved monitoring and quantification of small GTPase functions and<br />

interactions with their binding partners (Ahmadian et al., 2002; Hemsath and Ahmadian,<br />

2005).<br />

Different procedures are available for investigating the guanine nucleotide exchange<br />

on small GTPases. The dissociation of a protein-bound nucleotide can easily be determined<br />

in real time by fluorescence spectroscopy using a fluorescent GDP. Usually,<br />

N-methylanthraniloyl (mant) derivatives of guanosine nucleotides, coupled at the 2 ′ (3 ′ )<br />

hydroxyl group of the ribose, are used.<br />

<strong>In</strong> principle, each nucleotide-binding protein has a defined intrinsic rate of GDP release,<br />

which is often too low to be physiologically relevant. Thus, GEFs operate on these small<br />

GTPases and catalyze the generation of the active GTP-bound state from the inactive<br />

GDP-bound form. This process is often a result of the GEFs themselves being activated<br />

or recruited to the vicinity of the corresponding GTPase in response to extracellular<br />

signaling events.<br />

Specificity and activity of GEFs can be analyzed qualitatively by comparison of intrinsic<br />

and GEF-stimulated fluorescence measurements. Usually, this is performed in a fluorescence<br />

spectrometer, since these reactions are slow (>1000 sec). Here, the bacterially<br />

expressed recombinant proteins, purified to >90% homogeneity, as well as the chemically<br />

Supplement 43 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


Table 14.9.1 <strong>Protocols</strong> for <strong>In</strong> Vitro GEF and GAP Assays<br />

Protocol Title<br />

Basic Protocol 1 Measurement of <strong>In</strong>trinsic and Slow Guanine Nucleotide Exchange Factor<br />

(GEF)–Catalyzed Nucleotide Exchange Reactions<br />

Support Protocol 1 Preparation of mantGDP-Bound GTPases<br />

Support Protocol 2 Preparation of Nucleotide-Free Forms of Small GTPases<br />

Support Protocol 3 Determining Nucleotide Concentration Using HPLC<br />

Alternate Protocol 1 Measurement of Fast GEF-Catalyzed Nucleotide Exchange Reactions<br />

Basic Protocol 2 Measurement of GTPase-Activating <strong>Protein</strong> (GAP)–Stimulated GTP Hydrolysis by HPLC<br />

Alternate Protocol 2 Measurement of Slow GAP-Stimulated GTP Hydrolysis Using mantGTP<br />

Alternate Protocol 3 Measurement of Slow GAP-Stimulated GTP Hydrolysis Using tamraGTP<br />

Alternate Protocol 4 Measurement of Fast GAP-Catalyzed GTP-Hydrolysis Using tamraGTP<br />

Support Protocol 4 Gene Expression and Bacterial Culture Conditions<br />

Support Protocol 5 Bacterial Lysis by Sonication<br />

Support Protocol 6 Bacterial Lysis by a Microfluidizer<br />

Support Protocol 7 <strong>Protein</strong> Purification for GST Fusion <strong>Protein</strong>s<br />

Support Protocol 8 Determining <strong>Protein</strong> Concentration Using the Bradford Assay<br />

Support Protocol 9 Determining <strong>Protein</strong> Concentration Using the Ehresmann Assay<br />

Support Protocol 10 Concentrating a Dilute <strong>Protein</strong> Solution<br />

Support Protocol 11 Thrombin Proteolytic Cleavage of GST Fusion <strong>Protein</strong>s<br />

Support Protocol 12 Gel-Filtration Chromatography<br />

Support Protocol 13 Freezing and Thawing of <strong>Protein</strong>s<br />

synthesized pure nucleotide solution, are prepared in a cuvette. The mant-fluorescence<br />

signal in a fluorescence spectrometer is recorded using an excitation wavelength of<br />

366 nm and an emission wavelength of 450 nm, an integration time of at least 2 sec, and<br />

a recording time for each data point of 20 sec.<br />

GEF and also GAP assays do not need post-translationally modified GTPases. Thus,<br />

all proteins and protein domains produced in Escherichia coli can be used. Cleared cell<br />

lysate is not suitable in this assay for several reasons: (1) protein concentration may not<br />

be sufficient; (2) the protein of interest may exist in a complex with other proteins and<br />

may thus not be freely available; (3) the activity of other regulators may falsify the assay.<br />

Materials<br />

>5 μM mantGDP-bound GTPase (Support Protocol 1)<br />

GEF buffer (see recipe), store at 25◦C >50 μM GEF protein including the catalytic domains (recombinant protein,<br />

expressed and purified as described in Support <strong>Protocols</strong> 4 to 13)<br />

10 mM GDP (Pharma Waldhof, http://www.pharmawaldhof.de/), pH 7.5<br />

0.5 M EDTA, pH 8.0 (APPENDIX 2A)<br />

Fluorescence cuvettes (Suprasil quartz glass; Hellma, cat. no. 108.002F-QS)<br />

Fluorescence spectrometer (Perkin-Elmer, Spex <strong>In</strong>struments)<br />

Grafit program (Erithacus Software) or alternative program packages for evaluation<br />

of the data<br />

1. Preincubate a solution of 0.1 μM mantGDP-bound GTPase (see Support Protocol<br />

1) in a fluorescence cuvette in GEF buffer with the GEF protein at a final volume<br />

<strong>Signal</strong><br />

<strong>Transduction</strong>:<br />

<strong>Protein</strong><br />

Phosphorylation<br />

14.9.3<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 43


SUPPORT<br />

PROTOCOL 1<br />

<strong>In</strong> Vitro GEF and<br />

GAP Assays<br />

14.9.4<br />

of 600 μl and at 25 ◦ C for at least 5 min, while measuring the fluorescence signal at<br />

366 nm excitation and 450 nm emission.<br />

Always use 366 nm for excitation and 450 nm for emission with mant-labeled nucleotides.<br />

2. If the fluorescence signal is stable, add 1.2 μl of 10 mM nonfluorescent GDP solution<br />

(20 μM final GDP concentration) and mix rapidly with a pipet to start the reaction.<br />

With this setup, the intrinsic dissociation reaction in the absence of GEF is monitored,<br />

which, depending on the GTPase, lasts between 2 and 72 hr. This slow reaction is<br />

accelerated in the presence of GEF proteins. To determine the activity and specificity of the<br />

exchange factors in a fluorimeter, usually concentrations of 0.1 to 2 μM (depending on the<br />

specific activity of the GEF) should be used (for faster kinetics, see Alternate Protocol 1).<br />

For slow nucleotide dissociation reactions (>5 hr), the cuvettes should be closed with a<br />

lid and can additionally be sealed by a thin layer of silicone grease between cuvette and<br />

lid to prevent evaporation of the sample, which usually results in an artifactual increase<br />

in fluorescence.<br />

Alternatively, four parallel measurements can be performed simultaneously using an<br />

instrument equipped with an automated four-position turret.<br />

Using cleared cell lysates may disturb the proper fluorescence signal in this assay because<br />

they are often very opaque solutions and, due to the very low GEF concentrations, useless<br />

if greatly diluted.<br />

3. Monitor the exponential decrease in fluorescence over the time course of the reaction<br />

(2 to 72 hr).<br />

The decrease in fluorescence is due to the mantGDP release into the aqueous solution.<br />

4. When no further change in fluorescence can be observed, add 24 μl of 0.5 M EDTA<br />

solution (for final concentration of 20 mM) and monitor the reaction for an additional<br />

10 min.<br />

This will reveal whether the nucleotide dissociation reaction is entirely complete.<br />

EDTA will deplete the magnesium ion, which is an essential cofactor for nucleotide<br />

binding, from the nucleotide binding site of the GTPase. This reduces the nucleotide<br />

affinity by several orders of magnitude and thus leads to a complete dissociation of the<br />

bound mant-nucleotide. However, the fluorescence baseline will not change if mantGDP<br />

dissociation is already complete.<br />

5. Fit the data single exponentially with, e.g., the Grafit program to provide the dissociation<br />

(off) rates.<br />

<strong>In</strong> the case of small GTPases, the dissociation rate is usually ∼10 −3 to 10 −5 sec −1 .<br />

PREPARATION OF mantGDP-BOUND GTPases<br />

Loading of nucleotide-free forms of GTPases with fluorescently labeled nucleotides can<br />

be achieved by simply mixing both components and subsequently performing small-scale<br />

size-exclusion chromatography with a desalting column. The protocol described below<br />

is usually necessary for the preparation of GTPases bound to fluorescent GDP analogs.<br />

For nonhydrolyzable GTP analogs like Gpp(NH)p, the method described in Support<br />

Protocol 2 is sufficient and, additionally, steps 4 to 5 of Support Protocol 2 could be<br />

omitted (addition of phosphodiesterase is dispensable).<br />

Materials<br />

Standard buffer (see recipe)<br />

Nucleotide-free GTPase (see Support Protocol 2)<br />

mantGDP (synthesized as described in Hemsath and Ahmadian, 2005, or<br />

purchased from Jena Bioscience, http://www.jenabioscience.com/)<br />

Supplement 43 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


Ponceau S (UNIT 6.2)<br />

HPLC buffer (see recipe) containing 20% to 25% (v/v) acetonitrile<br />

NAP-5 column (GE Healthcare)<br />

Nitrocellulose membrane (UNIT 6.2)<br />

Additional reagents and equipment for Ponceau S staining of proteins on<br />

nitrocellulose membrane (UNIT 6.2) and HPLC (Support Protocol 3)<br />

1. Equilibrate the NAP-5 column with 2 to 3 column volumes of standard buffer.<br />

2. Mix 0.5 mg of a nucleotide-free GTPase (e.g., 50 μl from a 0.5 mM solution) with<br />

a 1.5-fold molar excess of mantGDP (e.g., 3.75 μl from a 10 mM stock solution).<br />

3. Apply complete sample volume to the NAP-5 column and let it sink into the medium.<br />

4. Add sufficient standard buffer for a 500-μl total buffer/sample volume and let it sink<br />

into the medium again (e.g., for the example here, add 446.25 μl).<br />

5. Add 1 ml of standard buffer and collect fractions at 2 drops per fraction.<br />

Usually the protein elutes in fractions 3 to 5, which corresponds to an elution volume<br />

between 0.2 and 0.5 ml.<br />

6. Analyze the fractions for their protein content by dotting 2 μl from each fraction on<br />

a nitrocellulose membrane and subsequently staining with Ponceau S (UNIT 6.2).<br />

This is just to determine which fractions contain the protein of interest.<br />

We do not use any protein standard here since this is not a quantitative analysis. It is<br />

just qualitative and should answer in which fractions the protein is localized and identify<br />

which fractions to pool.<br />

7. Pool protein-containing fractions and determine the mantGDP-bound protein concentration<br />

by HPLC (Support Protocol 3) using an HPLC buffer containing 20% to<br />

25% acetonitrile.<br />

8. Store the protein aliquots at −80 ◦ C.<br />

It is important to note that the resulting concentration needs to be multiplied by the factor<br />

0.6 to filter out absorption portions, which trace back to the mant-group absorption at<br />

254 nm.<br />

PREPARATION OF NUCLEOTIDE-FREE FORMS OF SMALL GTPases<br />

Preparation of nucleotide-free GTPase is carried out in two steps according to John et al.<br />

(1990). <strong>In</strong> the first step, the bound GDP is degraded by alkaline phosphatase and replaced<br />

by Gpp(CH2)p (a nonhydrolysable GTP analog, which is resistant to alkaline phosphatase<br />

but sensitive to phosphodiesterase). <strong>In</strong> the second step, after GDP is completely degraded,<br />

snake venom phosphodiesterase is added to the solution of the Gpp(CH2)p-bound GTPase<br />

to cleave this nucleotide to GMP, G, and Pi.<br />

Materials<br />

Alkaline phosphatase, agarose bead-coupled (Sigma-Aldrich)<br />

Nonhydrolyzable GTP analog Gpp(CH2)p (Sigma-Aldrich)<br />

GDP-bound GTPase (expressed and purified from E. coli; as described in Support<br />

<strong>Protocols</strong> 4 to 13)<br />

10× exchange buffer (see recipe)<br />

HPLC buffer (see recipe) containing 7.5% (v/v) acetonitrile<br />

Snake venom phosphodiesterase (Sigma-Aldrich, cat. no. P3134)<br />

Liquid nitrogen<br />

SUPPORT<br />

PROTOCOL 2<br />

<strong>Signal</strong><br />

<strong>Transduction</strong>:<br />

<strong>Protein</strong><br />

Phosphorylation<br />

14.9.5<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 43


<strong>In</strong> Vitro GEF and<br />

GAP Assays<br />

14.9.6<br />

Additional reagents and equipment for HPLC (Support Protocol 3 and Basic<br />

Protocol 2)<br />

1. Add 0.1 to 1 U of agarose bead–coupled alkaline phosphatase and a 1.5 molar excess<br />

of Gpp(CH2)p to 1 mg GDP-bound GTPase.<br />

Use a highly concentrated protein solution of 0.5 to 1 mM in order to obtain highly<br />

concentrated nucleotide-free GTPases.<br />

2. Start the reaction by diluting the 10× exchange buffer to 1× in the prepared reaction<br />

mixture from step 1. Mix exchange buffer and protein/nucleotide-solution rapidly.<br />

Fast mixing of the exchange buffer should be carried out to prevent local protein precipitation<br />

due to a high ammonium sulfate concentration. Ammonium sulfate destabilizes the<br />

nucleotide binding of the GTPase and zinc chloride, and is an essential cofactor of the<br />

alkaline phosphatase.<br />

3. <strong>In</strong>cubate the protein solution at 4 ◦ C for 2 to 16 hr (depending on the GTPase used)<br />

and analyze the GDP content by HPLC (Support Protocol 3) using an HPLC buffer<br />

containing 7.5% acetonitrile.<br />

The GDP peak declines in the course of the degradation progress. It disappears and<br />

GMP or G peaks appear instead. The amount of Gpp(CH2)p remains unchanged, as it is<br />

resistant to alkaline phosphatase.<br />

This protocol can also be used to prepare Gpp(NH)p-bound or mantGp(NH)p-bound<br />

GTPases as described by Hemsath and Ahmadian (2005).<br />

4. After GDP is degraded completely, add 0.002 U snake venom phosphodiesterase per<br />

mg GTPase to cleave Gpp(CH2)p to GMP, G, and Pi. <strong>In</strong>cubate 2 to 24 hr at 4 ◦ C<br />

(depending on the GTPase and activity of the phosphodiesterase).<br />

This is the critical step in the procedure, since here the nucleotide is degraded and<br />

generation of a low-affinity product can lead to partial denaturation of the protein. <strong>In</strong> some<br />

cases, it might be helpful to reduce the amount of exchange buffer used or to do repeated<br />

cycles of room temperature incubation (e.g., for 20 min) followed by recooling on ice (e.g.,<br />

for 10 to 15 min), which might accelerate the process. The latter method might be employed<br />

in cases where denaturation of the protein occurs due to a long incubation time (>2 days).<br />

5. Analyze the degradation process by HPLC (Basic Protocol 2).<br />

Progress of the reaction can be followed by observing reduction and finally elimination<br />

of the Gpp(CH2)p peak and an increase in the guanosine peak.<br />

6. After the degradation of Gpp(CH2)p is complete, centrifuge the solution 2 min at<br />

1500 × g, 4 ◦ C, to remove bead-coupled alkaline phosphatase and insoluble guanosine.<br />

Repeat this process two to three times to quantitatively remove all traces of<br />

alkaline phosphatase-coupled beads, since this enzyme might interfere with subsequent<br />

biochemical assays performed with the nucleotide-free GTPase.<br />

Depending on the GTPase, Gpp(CH2)p degradation continues 6 to 18 hr at 4 ◦ C.<br />

7. <strong>In</strong>activate the phosphodiesterase by snap freezing in liquid nitrogen and quickly<br />

defrosting at 37 ◦ C, and then repeating the process. Store the protein solution at<br />

−80 ◦ C.<br />

Nucleotide-free GTPases are actually in a GMP- and G-bound form that can be stored<br />

at −80 ◦ C for several months. GMP and G, which are the products of the enzymatic<br />

degradation of GDP and Gpp(CH2)p, usually exhibit a 6– to 7–orders of magnitude lower<br />

affinity for the GTPases as shown previously for H-Ras (John et al., 1990). Nonetheless, the<br />

presence of G and GMP, which can be rapidly exchanged by GDP- and GTP-derivatives,<br />

provides for stability of the so-called nucleotide-free GTPases.<br />

Supplement 43 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


DETERMINING NUCLEOTIDE CONCENTRATION USING HPLC<br />

HPLC allows determination of the concentration of nucleotides (nonlabeled- or mantor<br />

tamra-labeled nucleotide) using a reversed-phase C18 column (ODS-Hypersil, 5 μM,<br />

Bischoff Chromatography) and a precolumn (Nucleosil 100 C18, Bischoff Chromatography),<br />

which separates protein–nucleotide complexes by adsorbing the denatured protein.<br />

Due to the 1:1 ratio of GTPase and nucleotide complex, this method can be used to<br />

accurately determine the concentration of a nucleotide-bound protein population.<br />

Materials<br />

HPLC buffer (see recipe)<br />

50 to 100 μM GTPase (recombinant protein, expressed and purified as described in<br />

Support <strong>Protocols</strong> 4 to 13)<br />

Nucleotide standard solutions: e.g., 20 to 400 μM GDP<br />

Beckman Gold HPLC instrument (Beckman Coulter)<br />

Reversed-phase C18 HPLC column: Ultrasphere ODS, 5-μM; 250 × 4, 6-mm<br />

(Beckman Coulter)<br />

Guard column: Nucleosil 100-5-C18, 5 μM (Bischoff Chromatography;<br />

http://www.bischoff-chrom.de/)<br />

20- or 50-μl sample loop (Bischoff Chromatography; http://www.<br />

bischoff-chrom.de/)<br />

1. Equilibrate the pump and column of the HPLC system with HPLC buffer until a<br />

stable baseline at 254 nm is reached.<br />

For the separation of nonlabeled nucleotides, HPLC buffer (see Reagents and Solutions)<br />

containing 7.5% acetonitrile is used; 20% to 25% acetonitrile is used for mant- or<br />

tamra-labeled nucleotides.<br />

2. Wash the sample loop (20- or 50-μl) with ≥1 ml deionized water.<br />

3. Prepare ∼30 or 60 μl (depending on the loop size used) of a 50 to 100 μM GTPase<br />

solution (1 to 2 mg/ml in the case of 21-kDa proteins such as Ras or Rho GTPases)<br />

in water or standard buffer, and load the entire 20- or 50-μl sample loop with it.<br />

4. <strong>In</strong>ject the protein sample prepared in step 3 and monitor eluting nucleotides for 5 to<br />

10 min (depending on the performance of the reversed-phase column and the flow<br />

rate; here 1.8 ml/min is used) by absorption at the appropriate wavelength.<br />

The absorption is detected at 254 nm for nonlabeled as well as mant-labeled nucleotides<br />

(for the latter, a factor of 0.6 is multiplied by the result, which is based upon the ratio of<br />

the extinction coefficient of nonlabeled and mant-labeled nucleotides). Molar extinction<br />

coefficients (at 254 nm) of 13,700 M −1 cm −1 for nonlabeled, 22,000 for mant-labeled, and<br />

78,000 for tamra-labeled guanine nucleotides (measured at 546 nm) are employed. Due<br />

to ion–pair formation between the bulky hydrophobic tetrabutylammonium bromide and<br />

phosphate groups, the elution of the nucleotides is retarded with increasing phosphates.<br />

Concentrations of tamra-labeled GTPases are not determined by HPLC but spectrophotometrically<br />

at 546 nm.<br />

5. Evaluate the nucleotide concentration using a linear absorbance profile of a nucleotide<br />

standard, e.g., 20 to 400 μM GDP. Calculate the area below a peak in<br />

the chromatogram using the HPLC integrator and correlate with the absorption of<br />

the respective probe. Use this value to determine the nucleotide concentration of the<br />

applied sample by comparison with a linear absorption profile that is generated with<br />

a nucleotide standard.<br />

Analogous to the calibration of the Bradford dye solution, the reversed-phase column can<br />

be calibrated using different GDP nucleotide samples of known concentration. <strong>In</strong> order to<br />

calibrate a column, GDP solutions in the range of 20 μM to 400 μM should be prepared,<br />

SUPPORT<br />

PROTOCOL 3<br />

<strong>Signal</strong><br />

<strong>Transduction</strong>:<br />

<strong>Protein</strong><br />

Phosphorylation<br />

14.9.7<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 43


ALTERNATE<br />

PROTOCOL 1<br />

<strong>In</strong> Vitro GEF and<br />

GAP Assays<br />

14.9.8<br />

and their concentrations should be verified spectrophotometrically. These samples can be<br />

then be applied to the column and their respective peak areas can be plotted versus the<br />

nucleotide concentration. Linear fitting of the data gives a regression line, and the slope<br />

represents a correlation factor between concentration and peak area.<br />

MEASUREMENT OF FAST GEF-CATALYZED NUCLEOTIDE EXCHANGE<br />

REACTIONS<br />

For fast GEF-catalyzed nucleotide dissociation reactions, the time resolution of a fluorescence<br />

spectrometer is insufficient for a reliable data analysis. <strong>In</strong>stead, a stopped-flow<br />

instrument is routinely used for analysis of rapid kinetics as obtained by quantitative<br />

GEF-stimulated nucleotide exchange reactions. Here, equal volumes of two different 2×<br />

samples are automatically injected into a mixing chamber (in a single mixing mode),<br />

where the fluorescence can be detected directly after the rapid mixing (dead time ∼2<br />

to 5 msec). Five to eight identical measurements are recorded and averaged in order to<br />

obtain a higher degree of accuracy. The excitation wavelength for the mant-nucleotides<br />

is 366 nm and the fluorescence is detected with a cut-off filter mounted in front of a<br />

photomultiplier (408 nm for mant-nucleotides).<br />

This is a fast and easy assay to obtain nucleotide exchange activities of GEFs toward<br />

the respective GTPases. Also, GEFs can be compared in respect to their specificity with<br />

different GTPases either by simply comparing nucleotide dissociation rates at given<br />

GEF and GTPase concentrations or by quantitative determination of Michaelis–Menten<br />

constant (Km) and maximal dissociation rate (kmax). Such kinetic parameters can be<br />

obtained by using the above condition and increasing concentrations of the GEF proteins<br />

as described (Guo et al., 2005; Hemsath and Ahmadian, 2005).<br />

Additional Materials (also see Basic Protocol 1)<br />

Stopped-flow instrument (Applied Photophysics SX18MV or Hi-Tech SF-61 DX2;<br />

http://www.photophysics.com)<br />

NOTE: Because the samples are mixed 1:1, all stock solutions for components of the<br />

samples should be 2×.<br />

1. Wash the drive syringes of the stopped-flow instrument several times with 5 to 10 ml<br />

GEF buffer and adjust the temperature to 25 ◦ C.<br />

2. Prepare 2× samples in 1× GEF buffer at room temperature (∼25 ◦ C) and a final<br />

volume of 1000 μl:<br />

a. One sample contains 0.2 μM of mantGDP-bound GTPase.<br />

Example: Dilute 2 μl from a 100 μM mantGDP-bound GTPase solution in 998 μl of<br />

GEF buffer to obtain a 0.2 μM solution of the respective mantGDP-bound protein.<br />

b. The other sample contains the GEF protein (at a concentrations ranging from 2<br />

to 1000 μM, depending on the activity and affinity of the GEF for the respective<br />

GTPase), and 40 μM GDP (200-fold excess above mantGDP).<br />

A 10-fold excess of the GEF protein usually is a first choice to determine the activity<br />

of the GEF protein. Therefore, mix 20 μl from a 100 μM GEF solution (20 μM final<br />

concentration) and 4 μl from a 10 mM GDP solution (40 μM final concentration) in 976<br />

μl with GEF buffer.<br />

3. Load each sample into one of the two drive syringes of the stopped-flow instrument.<br />

Set the excitation wavelength for the mant-nucleotides to 366 nm and detect the<br />

fluorescence with a cut-off-filter mounted in front of a photomultiplier (408 nm for<br />

mant-nucleotides).<br />

Supplement 43 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


<strong>Signal</strong>-to-noise ratio can be considerably improved if all samples are centrifuged<br />

(>20 min, 20,000 × g, 4◦C) and if the buffer is filtered and degassed.<br />

The photomultiplier current should be adjusted manually to a value with a well balanced<br />

signal-to-noise ratio. More modern instruments are also able to set an optimal value<br />

automatically.<br />

4. Start the measurement with the supplied stopped-flow software, which initiates<br />

pushing the contents of the two syringes containing the samples into the sample cell<br />

so that both samples join together and rapidly mix at a final volume of about 50<br />

to 75 μl. Record the fluorescence using excitation at 366 nm and detection with a<br />

cut-off filter mounted in front of a photomultiplier at 408 nm for mant-nucleotides,<br />

for a defined time period (depending on the kinetics).<br />

5. Repeat the mixing and fluorescence recording event up to 10 times until all volume<br />

in the drive syringe reservoir is consumed.<br />

Using 1000-μl samples, up to 11 identical measurements can be performed, from which<br />

the first three are required to equilibrate the sample cell. The fourth measurement can<br />

be used to reset the photomultiplier current and to determine the timescale for recording<br />

the complete reaction. Between 400 and 1000 data points should be recorded per measurement.<br />

Thus, about seven identical measurements can be repeatedly performed and<br />

averaged to obtain a mean value of all comparable curves. The single exponential data<br />

obtained corresponds to one averaged experiment at a defined GEF concentration.<br />

6. Fit all data according to Hemsath and Ahmadian (2005) to obtain the observed rate<br />

constant (kobs) for the respective concentration of the GEF protein.<br />

MEASUREMENT OF GTPase-ACTIVATING PROTEIN (GAP)-STIMULATED<br />

GTP HYDROLYSIS BY HPLC<br />

All small GTP-binding proteins, with a few exceptions, e.g., Rnd proteins, have a defined<br />

rate of GTP hydrolysis, which is often too low to be physiologically relevant. Thus, GAPs<br />

stimulate the very slow intrinsic reaction rate of GTP hydrolysis by several orders of<br />

magnitude, which is a critical step in signal transduction.<br />

For the measurement of intrinsic and GAP-stimulated GTP-hydrolysis reaction of small<br />

GTPases, several assays have been developed so far. There are filter-binding and HPLCbased<br />

assays as well as spectrophotometric and spectrofluorometric methods available.<br />

A generally useful and accurate method is HPLC, by which concentrations of GDP and<br />

GTP can be determined to describe the reaction progress as described for Ras (Ahmadian<br />

et al., 1999) and Rho-proteins (Hemsath and Ahmadian, 2005).<br />

HPLC needs large amounts of proteins and is not suitable for quantitative analysis of<br />

the GAP activity. <strong>In</strong> another approach, which is less material- and time-consuming,<br />

the GTPase reaction rates can be conveniently measured in real time using tryptophan<br />

fluorescence with an excitation wavelength of 295 nm and an emission wavelength of<br />

350 nm. For example, the Ras(Y32W) mutant provides a large increase in fluorescence<br />

signal upon hydrolysis of GTP to GDP and inorganic phosphate, which has been used to<br />

study the mechanism of the intrinsic GTPase reaction (Ahmadian et al., 1999).<br />

Stopped-flow experiments using mantGTP and mantGpp(NH)p (see Alternate Protocol<br />

2) have provided key insights into the mechanism of the GAP-stimulated GTPase reaction<br />

of Ras in several studies (Ahmadian et al., 1997a,b, 2003). However, it should be noted<br />

that mantGTP does not work for most GTPase/GAP systems. A case in point is the<br />

interaction between Rho and RhoGAP, which, although similar in the type of enzymatic<br />

catalysis to the Ras–RasGAP interaction (Scheffzek and Ahmadian, 2005), does not<br />

show any fluorescence change upon interaction or hydrolysis.<br />

BASIC<br />

PROTOCOL 2<br />

<strong>Signal</strong><br />

<strong>Transduction</strong>:<br />

<strong>Protein</strong><br />

Phosphorylation<br />

14.9.9<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 43


<strong>In</strong> Vitro GEF and<br />

GAP Assays<br />

14.9.10<br />

Most recently, we have demonstrated that tetramethylrhodamine (tamra; see Alternate<br />

Protocol 4) is a powerful fluorescence reporter group to study the GTP-hydrolysis in the<br />

presence and in the absence of GAPs (Eberth et al., 2005). The intrinsic GTP-hydrolysis<br />

reaction of Ras and Rho GTPases can be detected in a fluorescence spectrometer or a<br />

stopped-flow instrument, showing a significant decrease in the fluorescence signal.<br />

The HPLC method is an accurate way of determining the intrinsic hydrolysis rate of<br />

a GTPase and is also useful for determining a GAP protein’s specific activity. The<br />

advantage is the lack of any artificial reporter group or necessity to use a GTPase mutant<br />

in this assay. Here wild-type proteins and unlabeled nucleotides can be used.<br />

Materials<br />

500 μM nucleotide-free GTPase (Support Protocol 2)<br />

GAP buffer (see recipe)<br />

10 mM GTP (Pharma Waldhof; http://www.pharmawaldhof.de/), pH 7.5<br />

>50 μM GAP protein including the catalytic domains (recombinant protein,<br />

expressed and purified as described in Support <strong>Protocols</strong> 4 to 13)<br />

Liquid nitrogen<br />

HPLC buffer (see recipe) containing 7.5% (v/v) acetonitrile<br />

Thermomixer/thermoblock<br />

Beckman Gold HPLC instrument (Beckman Coulter)<br />

Reversed-phase C18 HPLC column: Ultrasphere ODS, 5-μM; 250 × 4.6–mm<br />

(Beckman Coulter)<br />

Guard column: Nucleosil 100-5-C18, 5-μM (Bischoff Chromatography)<br />

1. Dilute 40 μl of 500 μM nucleotide-free GTPase with 60 μl GAP buffer and the<br />

GAP protein and preincubate it at 25 ◦ C in a thermomixer/thermoblock (the final<br />

concentration of the nucleotide-free GTPase should be 80 μM in a volume of 250 μl<br />

after addition of the GTP).<br />

The GAP protein can be used in a ratio of 1:100 to 1:1000 with respect to the GTPase<br />

concentration (0.8 to 0.008 μM in this example) and should be added in step 1 to the<br />

nucleotide-free GTPase before starting the reaction by addition of GTP.<br />

2. Dilute 10 μl of 10 mM GTP stock solution with 990 μl GAP buffer (1:100 dilution)<br />

to obtain a 100 μM GTP solution, and preincubate this solution at 25 ◦ Cina<br />

thermomixer/thermoblock.<br />

3. Add 150 μl of the 100 μM GTP solution (60 μM final concentration) and mix it with<br />

the 80 μM nucleotide-free GTPase solution by pipetting up and down.<br />

The total volume (in this case calculated for 8 time points) should be 250 μl, but depending<br />

on the number of data points to be taken, can be increased or even decreased.<br />

The timescale for the intrinsic GTP hydrolysis reaction varies from 0.5 to 6 hr, which<br />

depends on the GTPase variant used. Alternatively, a protein comprising a catalytic active<br />

GAP domain can be added before starting the reaction, which allows the determination<br />

of the activity and specificity of the GAP protein.<br />

Note that in the presence of the GAP, the reactions are much faster and the time scale (e.g.,<br />

1 to 5 min instead of 30 to 60 min for RhoGTPases) is much shorter. Using the conditions<br />

described here, the reaction is usually accelerated by a factor of 5 to 20 (depending on<br />

the dilution ratio of GAP with respect to GTPase and the activity of the GAP protein).<br />

<strong>In</strong> order to obtain reliable results, parameters including GAP concentration and the time<br />

points need to be optimized for the respective GTPase/GAP system.<br />

<strong>In</strong> the case of slow GTP-hydrolyzing GTPases (e.g., Ras or Rap) or GTP-hydrolysis,<br />

deficient Rho or Ras proteins GTP-bound proteins can be prepared and stored at −80 ◦ C<br />

for several weeks.<br />

Supplement 43 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


Depending on the sensitivity of the HPLC, the concentrations of GTPase and GTP can be<br />

reduced to 25 μM and 20 μM, respectively.<br />

4. At defined time points, collect and immediately snap-freeze 30-μl samples in liquid<br />

nitrogen.<br />

Proper time points and intervals are important for an appropriate evaluation of the data<br />

to determine the rate constant of the hydrolysis reaction. These need to be adjusted to the<br />

activity of the respective GTPases. <strong>In</strong> principle, 7 to 8 time points are enough to cover a<br />

complete reaction. The intervals increase in the course of the reaction. For example 0, 1,<br />

2, 5, 10, 15, 20, and 30 min have been used to determine the GTP hydrolysis reaction of<br />

the Rac proteins (Haeusler et al., 2003) and 0, 5, 10, 15, 20, 30, 40, 80, 150, and 200 min<br />

to determine that of H-Ras wild-type (Ahmadian et al., 1999).<br />

5. Defrost each sample of the defined incubation interval at 95 ◦ C (using a thermoblock<br />

for about 10 sec) such that they are freshly thawed just before injecting on a reversedphase<br />

analytical HPLC system.<br />

The HPLC system should be equipped with a guard column in between the injector<br />

valve and the analytical C18 reversed phase column. The buffer condition used for the<br />

separation of non-fluorescently-labeled nucleotides is HPLC buffer (see Reagents and<br />

Solutions) containing 7.5% acetonitrile. The retention time of guanine nucleotides on<br />

such an HPLC system and under the described isocratic conditions correlates with the<br />

number of phosphate groups of the nucleotide (retention order: GMP, GDP, and then<br />

GTP).<br />

6. Determine the amount of each nucleotide immediately, using the HPLC integrator,<br />

from the area integration of the GTP- and GDP-peaks, respectively.<br />

These values are used to calculate the relative content of the GTP-bound GTPase species<br />

from the ratio (GTP)/(GTP) + (GDP).<br />

GTP content (y-axis) can be plotted versus the incubation time of the respective sample<br />

(x-axis) and fitted with a single exponential. <strong>In</strong>trinsic GTP-hydrolysis rates of small<br />

GTPases usually are in the region of 0.0005 to 0.5 min−1 .<br />

MEASUREMENT OF SLOW GAP-STIMULATED GTP HYDROLYSIS USING<br />

mantGTP<br />

Since there is almost no difference in the fluorescence signal between mantGTP and<br />

mantGDP, mantGTP-hydrolysis by the GTPase cannot be monitored directly. However,<br />

association of GAPs with the mantGTP-bound GTPase provides a tool to measure<br />

GAP-stimulated GTP-hydrolysis reaction, as shown for the Ras and RasGAP proteins<br />

(Ahmadian et al., 1997a). The GAP-stimulated GTP hydrolysis can be recorded with<br />

a stopped-flow instrument as a consequence of rapid association and dissociation of<br />

the GAP protein. Since this assay accounts only for the Ras/RasGAP system, here, the<br />

specific proteins Ras and the catalytic domain of p120RasGAP are mentioned as an<br />

example.<br />

Additional Materials (also see Basic Protocol 2 and Alternate Protocol 1)<br />

10 mM mantGTP (synthesized as described in Hemsath and Ahmadian, 2005 or<br />

purchased from Jena Biosciences) bound to Ras, pH 7.5<br />

20 μM catalytic domains of RasGAP protein (e.g., p120RasGAP )oranyotherGAP<br />

protein specific for Ras (expressed and purified as in Support <strong>Protocols</strong> 4 to 13)<br />

Stopped-flow instrument (Applied Photophysics SX18MV or Hi-Tech SF-61 DX2)<br />

NOTE: Because the samples are mixed 1:1, all stock solutions for components of the<br />

samples should be 2×.<br />

1. Wash the drive syringes of the stopped-flow instrument several times with 5 to 10 ml<br />

GAP buffer and adjust the temperature to 25 ◦ C.<br />

ALTERNATE<br />

PROTOCOL 2<br />

<strong>Signal</strong><br />

<strong>Transduction</strong>:<br />

<strong>Protein</strong><br />

Phosphorylation<br />

14.9.11<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 43


ALTERNATE<br />

PROTOCOL 3<br />

<strong>In</strong> Vitro GEF and<br />

GAP Assays<br />

14.9.12<br />

2. Charge one drive syringe with 2 μM mantGTP-bound Ras and fill the other syringe<br />

with 20 μM catalytic domains of the RasGAP protein (e. g., p120 RasGAP ) in GAP<br />

buffer at 25 ◦ C.<br />

3. Set the excitation wavelength to 366 nm (as for all mant-nucleotides) and restrict the<br />

emission light to >408 nm by a corresponding cut-off-filter.<br />

The same rules concerning volumes to prepare and photmultiplier settings described in<br />

Alternate Protocol 1 also apply to this assay.<br />

4. After the initial injections to prepare the system for reliable data recording, carry out<br />

individual measurements, which usually show a rapid decrease of fluorescence.<br />

Change in fluorescence is, in this case, due to the GAP dissociation from the GDPbound<br />

Ras after GTP hydrolysis. This implies a preceding fluorescence increase upon<br />

GAP association with the GTP-bound Ras, which cannot be resolved temporally by the<br />

stopped-flow machine due to the large rate constant of the association process. Depending<br />

on the rate constant of the association it is possible to observe (by a stopped-flow system<br />

with a short dead time) both association and GTP hydrolysis in one experiment, following<br />

subsequent dissociation of the Ras-RasGAP complex, which allows mechanistic studies<br />

(Ahmadian et al., 1997a,b).<br />

These measurements are in principle performed using the same procedure and conditions<br />

described in Alternate Protocol 1.<br />

MEASUREMENT OF SLOW GAP-STIMULATED GTP HYDROLYSIS USING<br />

tamraGTP<br />

<strong>In</strong> contrast to other fluorescent nucleotide derivatives, including the mant-nucleotides,<br />

tamraGTP (a ribose hydroxyl-substituted tetramethylrhodamine derivative of GTP) enables<br />

us to measure the intrinsic and GAP-stimulated GTPase reactions of Rho and<br />

Ras proteins using fluorescence spectroscopy (Eberth et al., 2005). Besides much lower<br />

consumption of proteins and nucleotides as compared to the HPLC-based assay, the<br />

tamraGTP hydrolysis assay allows monitoring the real-time kinetics of the hydrolysis<br />

reaction of the Ras and Rho families. <strong>In</strong>trinsic and GAP-stimulated hydrolysis reactions<br />

are recorded by a fluorescence spectrometer at an excitation wavelength of 546 nm and an<br />

emission wavelength of 583 nm, with an integration time of at least 2 sec and a recording<br />

time for each data point of 20 sec.<br />

Additional Materials (also see Basic Protocol 2)<br />

2 mM tamraGTP (synthesized as described in Eberth et al., 2005), pH 7.5<br />

50 μM nucleotide-free GTPase (Support Protocol 2) in GAP buffer (see recipe for<br />

buffer)<br />

Fluorescence cuvettes, Suprasil quartz glass; Hellma, cat. no. 108.002F-QS<br />

Fluorescence spectrometer (Perkin Elmer, Spex <strong>In</strong>struments)<br />

Grafit program (Erithacus Software) or alternative program packages for evaluation<br />

of the data<br />

1. Preincubate a solution of 0.1 μM tamraGTP (prepared from 2 mM stock solution)<br />

in a fluorescence cuvette in GAP buffer (stored at 25 ◦ C) with the GAP protein, at a<br />

final volume of 600 μlat25 ◦ C for at least 5 min.<br />

The GAP protein would be added in step 1 to the tamraGTP before the reaction is started<br />

by addition of nucleotide-free GTPase in step 2.<br />

2. Add 1.8 μl of50μM stock solution of nucleotide-free GTPase (0.15 μM final<br />

concentration), to observe complex formation with the nucleotide through a strong<br />

increase in fluorescence.<br />

Alternatively, four parallel measurements can be performed simultaneously using an<br />

instrument equipped with an automated four-position turret.<br />

Supplement 43 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


3. After this initial phase of nucleotide association, monitor the significant fluorescence<br />

decay as a result of GTP hydrolysis, which lasts between 0.5 and 6 hr, depending on<br />

the GTPase variant used (Eberth et al., 2005).<br />

Such an intrinsic reaction is significantly faster in the presence of a catalytic amount of a<br />

GAP protein (0.001 μMto1μM, depending on the specific activity of the GAP protein).<br />

TamraGTP fluorescence cannot be used for Rab, Ran, alpha-subunits of the heterotrimeric<br />

G-proteins, and elongation factors (Eberth et al., 2005).<br />

4. Continue the measurement until no further decrease in fluorescence can be observed.<br />

5. Evaluate data obtained by single-exponential fitting with a scientific software, e.g.,<br />

the Grafit program.<br />

MEASUREMENT OF FAST GAP-CATALYZED GTP HYDROLYSIS WITH<br />

tamraGTP<br />

The following protocol measures GAP-stimulated tamraGTP hydrolysis by a stoppedflow<br />

instrument as described in Alternate Protocol 1, except that an excitation wavelength<br />

of 546 nm is employed and a cut-off-filter of 570 nm in front of a photomultiplier is used<br />

to detect the fluorescence.<br />

Additional Materials (also see Basic Protocol 2 and Alternate Protocol 1)<br />

tamraGTP (synthesized as described in Eberth et al., 2005; 2 mM in deionized<br />

H2O, pH 7.5)<br />

Stopped-flow instrument (Applied Photophysics SX18MV or Hi-Tech SF-61<br />

DX2)<br />

NOTE: Because the samples are mixed 1:1, all stock solutions for components of the<br />

samples should be 2×.<br />

1. Wash the drive syringes of the stopped-flow instrument several times with<br />

5 to 10 ml GAP buffer and adjust the temperature to 25 ◦ C.<br />

2. Prepare 2× samples in GAP buffer at room temperature (∼25 ◦ C) and a final volume<br />

of 1000 μl:<br />

a. One sample contains 0.3 μM nucleotide-free GTPase and 0.2 μM tamraGTP.<br />

b. The other sample contains the GAP protein (at a concentration ranging from 0.2 to<br />

200 μM, depending on the activity and affinity of the GAP for the respective<br />

GTPase).<br />

Example: (1) prepare the GAP solution by diluting the concentrated GAP protein to a<br />

defined concentration between 0.2 to 200 μM in GAP buffer. (2) Dilute 6 μl froma<br />

50 μM solution of nucleotide-free GTPase (0.3 μM final concentration) in 984 μl GAP<br />

buffer and add 10 μl froma20μM tamraGTP solution (0.2 μM final concentration)<br />

just prior to loading the drive syringes of the stopped-flow instrument with your sample.<br />

The latter sample is prepared immediately before starting the measurement in order to<br />

avoid intrinsic tamraGTP-hydrolysis, particularly in the case of rapidly GTP-hydrolyzing<br />

proteins such as Rho GTPases.<br />

<strong>In</strong> the case of slow GTP-hydrolyzing GTPases (e.g., Ras or Rap) or GTP-hydrolysisdeficient<br />

Rho or Ras proteins, tamraGTP-bound proteins can be prepared and stored at<br />

−80◦C for several weeks.<br />

Using 1000-μl samples, up to 11 identical measurements can be sequentially performed,<br />

from which the first three are required equilibrate the sample cell. The fourth measurement<br />

can be used to reset of the photomultiplier current and to determine the timescale for<br />

recording the complete reaction.<br />

ALTERNATE<br />

PROTOCOL 4<br />

<strong>Signal</strong><br />

<strong>Transduction</strong>:<br />

<strong>Protein</strong><br />

Phosphorylation<br />

14.9.13<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 43


SUPPORT<br />

PROTOCOL 4<br />

<strong>In</strong> Vitro GEF and<br />

GAP Assays<br />

14.9.14<br />

The photomultiplier current should be adjusted manually to a value with a well-balanced<br />

signal-to-noise ratio. Alternatively, modern instruments are also able to set an optimal<br />

value automatically.<br />

The single-exponential data obtained corresponds to one experiment at a defined GAP<br />

concentration.<br />

To obtain kcat and Kd values, increase GAP concentrations as described (Eberth et al.,<br />

2005).<br />

3. Continue as described in steps 3 to 6 of Alternate Protocol 1, except use 546 nm as<br />

excitation wavelength and a 570 nm cutoff filter mounted in front of the photomultiplier.<br />

GENE EXPRESSION AND BACTERIAL CULTURE CONDITIONS<br />

For the optimization of synthesis of a protein of interest in E. coli, various culture conditions<br />

should be examined including concentration of isopropyl-D-thiogalactopyranoside<br />

(IPTG; the inducer of lac-promoter-controlled gene expression), optical density of culture<br />

at IPTG induction, and, particularly, the temperature and culturing time. These<br />

culture-condition tests should be performed in small-scale (20 to 50 ml) pilot studies<br />

prior to scaling up to large-scale cultures for preparative protein expression. To improve<br />

the maximal recovery, we alternatively used, besides E. coli strain BL21 (DE3), strains<br />

containing additional plasmids such as BL21 pLys S (to improve bacterial lysis and<br />

for the expression of toxic proteins), and BL21 Codon Plus RIL or Rosetta (DE3) (to<br />

improve the codon usage).<br />

All recombinant proteins described in this unit, including GTPases, GEFs, GAPs, and<br />

their catalytically active fragments are expressed in E. coli and purified using the methods<br />

described in this and the following support protocols.<br />

Materials<br />

Escherichia coli strain: BL21(DE3), BL21(DE3) Codon plus RIL, BL21(DE3)<br />

pLysS, or Rosetta (DE3) (Novagen) containing prokaryotic expression plasmid<br />

carrying gene for protein of interest<br />

Terrific broth medium (TB medium; see recipe)<br />

Appropriate selection antibiotics<br />

Isopropyl-β-D-thiogalactopyranoside (IPTG; Gerbu Biochemicals,<br />

http://www.gerbu.de)<br />

Wash buffer (see recipe)<br />

150- to 1000-ml and 5-liter sterilized Erlenmeyer flasks<br />

Horizontal environmental shaker incubator (<strong>In</strong>fors HT, http://www.infors-ht.com/)<br />

1000-ml and 30- to 250-ml centrifuge bottles<br />

Centrifuge: Avanti J-20 XP (Beckman Coulter) or equivalent<br />

6-liter rotor: JLA-8.1000 (Beckman Coulter) or equivalent<br />

50-ml plastic tubes<br />

1. Grow 30 to 250-ml precultures of the desired E. coli strain in TB medium in a 150to<br />

1000-ml flask overnight at 37 ◦ C.<br />

Remember to add the required antibiotics to the TB medium to maintain transformed<br />

plasmids. If using BL21 (DE3) Codon plus RIL, BL21 (DE3) pLysS, or Rosetta (DE3)<br />

strains, chloramphenicol (25 mg/liter) needs to be added.<br />

2. Fill each 5-liter Erlenmeyer flask to be used with 2.5 liter TB medium. <strong>In</strong>oculate<br />

each flask with 25 ml of an overnight preculture.<br />

Cultivations usually are carried out in 2.5- to 20-liter scale, depending on the expression<br />

level and yield of the particular protein.<br />

Supplement 43 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


3. Place the inoculated culture flasks in a horizontal environmental shaker and let them<br />

grow at 37 ◦ C and 160 rpm.<br />

4. When the logarithmic growth phase is reached (OD600 = 0.4 to 0.8), lower the<br />

temperature to the previously determined optimal expression condition (usually 18 ◦<br />

to 30 ◦ C), and add IPTG (usually 0.05 mM to 0.5 mM; depending on pilot tests of<br />

expression conditions) to induce gene expression.<br />

The small GTPases as well as GEF and GAP proteins including their catalytic domains<br />

are usually expressed at an optical density of OD600 = 0.6 to 0.8, with 0.1 mM IPTG, and<br />

at 18 ◦ to 25 ◦ C overnight.<br />

5. Perform the incubation either overnight, or for only 2 to 4 hr in difficult cases,<br />

depending on the results from the optimization of expression tests.<br />

6. Transfer the cells to 1000-ml centrifuge bottles and harvest the cells by centrifugation<br />

for 15 min at 6000 × g,4 ◦ C, using a 6-liter rotor if available. Repeat this step several<br />

times if the culture volume exceeds the capacity of the available rotor.<br />

7. Wash the bacterial pellet in each rotor bottle with 20 ml wash buffer. Combine<br />

the resuspended cell pellets into a smaller (30- to 250-ml) rotor bottle (tared) and<br />

centrifuge again for 20 min at 6000 × g, 4 ◦ C.<br />

This step is carried out in order to remove residual medium.<br />

8. Discard the supernatant and weigh the bacterial pellet–containing bottle. Determine<br />

the weight of the bacterial pellet and resuspend it in wash buffer (3 ml/g bacterial<br />

pellet) or any other proper buffer that is suitable for solubilizing and stabilizing the<br />

desired protein. Prepare aliquots in 50-ml plastic tubes.<br />

9. Store aliquots at −20 ◦ C.<br />

<strong>In</strong> addition to cryopreserving the sample, freezing will also help to improve the efficiency<br />

of bacterial lysis.<br />

BACTERIAL LYSIS BY SONICATION<br />

An efficient bacterial lysis is an important prerequisite for the complete recovery of<br />

expressed recombinant protein. Cell walls of bacteria which have produced proteins of<br />

interest must be disrupted in order to allow access to intracellular components. Different<br />

methods have been developed to achieve this goal; they vary considerably in the severity of<br />

the disruption process, reagents needed, and the equipment available. Besides enzymatic<br />

methods using lysozyme treatment, which is suitable for analytical scale and not always<br />

reproducible, there are several mechanical methods—including glass bead, cell bomb,<br />

French press, sonication, and microfluidizer—to gently disrupt bacterial cell walls. We<br />

commonly use the latter two methods, both of which are efficient and fairly quick. This<br />

protocol describes sonication, which permits cell disruption in smaller samples (≥200 μl<br />

and ≤200 ml).<br />

Materials<br />

70% ethanol<br />

Bacterial sample (Support Protocol 4)<br />

Pefabloc (ICN Biochemicals)<br />

Lysozyme (Sigma-Aldrich)<br />

DNase I (Sigma-Aldrich)<br />

Sonicator: Branson Sonifier S-450A and 3- to 19-mm titanium probe<br />

NOTE: The protease inhibitor Pefabloc (0.02% w/v) and lysozyme (2 μg/ml suspension),<br />

as well as DNase I (10 μg/ml suspension) are added to the bacterial suspension before<br />

lysis.<br />

SUPPORT<br />

PROTOCOL 5<br />

<strong>Signal</strong><br />

<strong>Transduction</strong>:<br />

<strong>Protein</strong><br />

Phosphorylation<br />

14.9.15<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 43


SUPPORT<br />

PROTOCOL 6<br />

<strong>In</strong> Vitro GEF and<br />

GAP Assays<br />

14.9.16<br />

1. Equip the cell sonicator with a titanium probe of 3- to 19-mm diameter (depending<br />

on the culture volume to be disrupted) and clean it before use with 70% ethanol.<br />

Use a 3-mm sonifier probe for volumes of 2 to 50 ml and a 19-mm probe for volumes of<br />

50 to 500 ml.<br />

2. Transfer the thawed bacterial suspension from all aliquots to a beaker of suitable<br />

size and place it on ice.<br />

3. Place the sonicator probe about 0.5 to 1 cm beneath the surface into the suspension.<br />

4. Start the sonication procedure by increasing the output control (add 5 to 10 W<br />

each time) at 10-sec intervals starting with 30 W and ending with ∼95 W. Repeat<br />

this procedure eight to twelve times, and always wait 30 sec in between to prevent<br />

overheating of the sample. Keep the beaker with the bacterial solution on ice during<br />

the entire procedure.<br />

Optionally, the wave duty cycle function of the ultrasonic instrument can be used to reduce<br />

heat production and free radical formation.<br />

A color change from very milky to slightly more translucent should be observed and can<br />

act as an indicator for cell disruption.<br />

BACTERIAL LYSIS USING A MICROFLUIDIZER<br />

The microfluidizer is an instrument that uses high pressure to squeeze the bacterial<br />

solution through a flux cell containing a narrow channel, thereby generating high shear<br />

forces that pull the cells apart. The system permits controlled cell breakage and does<br />

not require addition of detergent or higher ionic strength. Since heat is generated during<br />

this process, the flux cell needs to be cooled. The microfluidizer system provides a<br />

convenient and efficient method for cell lysis of larger cell suspensions (≥20 ml to several<br />

liters).<br />

Materials<br />

Bacterial sample (Support Protocol 4)<br />

Buffer to be used for protein purification<br />

Pefabloc (ICN Biochemicals)<br />

Lysozyme (Sigma-Aldrich)<br />

DNase I (Sigma-Aldrich)<br />

100% 2-propanol<br />

Microfluidizer (Microfluidics Corp., http://www.microfluidicscorp.com)<br />

NOTE: The protease inhibitor Pefabloc (0.02% w/v) and lysozyme (2 μg/ml suspension)<br />

as well as DNase I (10 μg/ml suspension) are added to the bacterial suspension before<br />

lysis.<br />

1. Wash the instrument extensively with water. For a final wash step, use the standard<br />

buffer for the protein purification.<br />

This will remove all traces of alcohol in which the instrument is usually stored to prevent<br />

microbial growth.<br />

2. Pour the thawed bacterial suspension into the instrument’s reservoir and turn on the<br />

instrument<br />

Direct the flow of the instrument’s outlet toward the wall of a beaker to prevent foam<br />

formation.<br />

3. Prevent intake of air on the inlet, as this will also produce foam and lead to protein<br />

denaturation. For this, turn off the instrument before air enters the instrument’s inlet.<br />

Supplement 43 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


Wash with a small volume of standard buffer and switch the instrument on again.<br />

Stop again before air enters the inlet of the instrument.<br />

By repeating this step two to three times, nearly all of the bacterial suspension will be<br />

processed.<br />

4. If necessary, flush the bacterial solution two to three times through the instrument,<br />

until a color change from milky to slightly more translucent is observed.<br />

5. Wash the instrument extensively with water and finally with 2-propanol, and store it<br />

in this solution.<br />

PROTEIN PURIFICATION FOR GST FUSION PROTEINS<br />

The use of proteins with high purity (>95%) is a mandatory prerequisite for investigation<br />

of protein structure-functional relationships. The use of recombinant protein expression<br />

systems and the development of a variety of fusion tags has facilitated the preparation of<br />

high-purity proteins dramatically. Nevertheless, choosing the right purification strategy<br />

is still a matter of trial and error and has to be discovered for each individual protein.<br />

The GST-fusion affinity purification system is a well established technique and works<br />

successfully for purification of GTPases and their regulatory proteins.<br />

Materials<br />

Bacterial lysate with an overexpressed GST-fusion protein<br />

Glutathione-Sepharose 4B FF (GE Healthcare)<br />

Standard buffer (see recipe)<br />

Standard buffer (see recipe) containing 500 mM KCl and 1 mM ATP<br />

Standard buffer containing 20 mM glutathione (adjusted to pH 7.5 with NaOH<br />

again after addition of glutathione)<br />

0.01% (w/v) sodium azide or 20% (v/v) ethanol<br />

Centrifuge: Avanti J-30I (Beckman Coulter) or equivalent<br />

Rotor: JA-30.50 or JA-17 (Beckman Coulter) or equivalent<br />

Äkta Sytem, e.g. Äkta Prime (GE Healthcare)<br />

XK 26/20 chromatography column chassis (GE Healthcare)<br />

Additional reagents and equipment for SDS-PAGE (UNIT 6.1) and Coomassie<br />

staining (UNIT 6.6)<br />

Centrifuge lysate<br />

1. Separate insoluble constituents from the bacterial lysate by centrifuging 40 min at<br />

35,000 to 100,000 × g,4 ◦ C.<br />

If possible, centrifuge at 100,000 × g to remove as much insoluble cell debris as possible.<br />

If such a high-speed rotor/centrifuge is not available, a minimal force of 35,000 × g might<br />

also be sufficient.<br />

Prepare glutathione-Sepharose column<br />

2. Equilibrate an XK 26/20 column packed with Glutathione-Sepharose (≥25-ml bed<br />

volume) with ∼3 to 4 column volumes of standard buffer until a stable baseline is<br />

reached. Monitor absorption at 280 nm using the Äkta System.<br />

3. After centrifugation apply the cleared bacterial lysate onto the Glutathione-Sepharose<br />

column (at 4 ml/min, if using fast-flow material).<br />

4. After all lysate is applied, wash with standard buffer until the baseline at 280 nm is<br />

reached again.<br />

5. Wash with 2 to 4 column volumes standard buffer containing 500 mM KCl and<br />

1 mM ATP in order to elute nonspecific proteins, especially chaperones that might<br />

SUPPORT<br />

PROTOCOL 7<br />

<strong>Signal</strong><br />

<strong>Transduction</strong>:<br />

<strong>Protein</strong><br />

Phosphorylation<br />

14.9.17<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 43


SUPPORT<br />

PROTOCOL 8<br />

<strong>In</strong> Vitro GEF and<br />

GAP Assays<br />

14.9.18<br />

be associated with the desired protein. Afterwards, wash again with standard buffer<br />

until the baseline at 280 nm is reached.<br />

High amounts of chaperones indicate folding difficulties with the protein of interest.<br />

Note that the baseline increases due to 1 mM ATP and drops down after changing to the<br />

standard buffer with no ATP.<br />

6. Elute GST-fusion proteins from the column with 100 to 150 ml standard buffer<br />

containing 20 mM glutathione. Collect fractions of 2- to 5-ml volume using the<br />

fraction collector provided with the Äkta system.<br />

The pH value of the standard buffer needs to be readjusted to 7.5 with NaOH after addition<br />

of glutathione.<br />

7. Analyze peak fractions by SDS-polyacrylamide gel electrophoresis<br />

(SDS-PAGE; UNIT 6.1) and Coomassie staining (UNIT 6.6).<br />

8. Regenerate the column with 50 ml 5 M guanidine hydrochloride and wash with<br />

100 to 150 ml standard buffer afterwards.<br />

If the column will not be used for a long period, it should be stored in a buffer containing<br />

0.01% sodium azide, or, alternatively, in 20% ethanol solution.<br />

DETERMINING PROTEIN CONCENTRATION USING THE BRADFORD<br />

ASSAY<br />

There are different colorimetric and spectrophotometric methods to determine the concentration<br />

of proteins in a solution including the Lowry, the Smith copper/bicinchoninic<br />

assay, or the Bradford dye assay. We use both the Bradford dye assay and the Ehresmann<br />

UV method (Support Protocol 9) for determination of the concentration of a protein in<br />

solution as well as HPLC in the case of nucleotide binding proteins (also see APPENDIX 3B<br />

and APPENDIX 3H).<br />

Materials<br />

<strong>Protein</strong> solutions: standards (e.g., BSA or γ-globulin) and test sample<br />

Bradford reagent (Coomassie dye reagent; Sigma, Pierce, Bio-Rad, or see<br />

APPENDIX 3H)<br />

Spectrophotometer<br />

1. Mix 0.5 ml of Bradford reagent with 1 to 20 μl of a protein solution. For the standard<br />

curve, mix 0.5 ml of Bradford reagent with 1 to 2 μl of different concentrations of a<br />

standard protein (e.g., BSA or γ-globulin) covering the range of 0.25 to 2 mg/ml.<br />

The reagent/protein solution should shift color to blue.<br />

2. <strong>In</strong>cubate for 5 min at room temperature.<br />

3. Measure the absorption of the sample at 595 nm.<br />

The absorption should be between 0.2 and 0.8 to guarantee correlation between absorption<br />

and concentration according to the Lambert-Beer law. If the absorption is too low<br />

or too high, concentrate or dilute the protein solution and reassay.<br />

4. Determine the protein concentration using the linear absorbance profile of the protein<br />

standard.<br />

The Bradford dye solution can be calibrated using different concentrations of a standard<br />

protein like BSA or γ -globulin. The absorption values of the standards at 595 nm can<br />

be plotted versus the standard protein concentrations and fit by a linear equation. The<br />

slope of this regression line will represent a correlation factor between absorbance and<br />

protein concentration and can in principle be used for the determination of protein<br />

concentrations.<br />

Supplement 43 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


DETERMINING PROTEIN CONCENTRATION USING THE EHRESMANN<br />

ASSAY<br />

This method is rather useful for small proteins or peptides, since their staining by the<br />

Bradford dye solution does not lead to a shift of the absorption maxima from 465 nm to<br />

595 nm comparable to that of BSA or γ-globulin used as standard protein for calibration.<br />

This method cannot be used for nucleotide binding proteins, since the bound nucleotides<br />

also absorb at the wavelengths used.<br />

Materials<br />

<strong>Protein</strong> solution<br />

Quartz cuvettes<br />

UV/VIS spectrophotometer<br />

1. Dilute the protein sample to ∼50 μg/ml in deionized water.<br />

2. Measure the absorption (using a quartz cuvette) of the dilution at 228.5 nm and<br />

234.5 nm, and use deionized water as a reference.<br />

3. Calculate the concentration by the following equation: A228.5 − A234.5/3.154 =<br />

mg/ml.<br />

No protein standard is used here since the correlation between concentration and absorption<br />

is due to light absorption of the peptide backbone and not to reactive side chains of<br />

the proteins.<br />

CONCENTRATING A DILUTE PROTEIN SOLUTION<br />

There are a large variety of methods that can be used for concentrating a protein solution,<br />

including dialysis, ammonium sulfate precipitation (salting out), ion exchange<br />

followed by desalting chromatography, ultrafiltration or spin-filters, and trichloroacetic<br />

acid/deoxycholate precipitation.<br />

We often use the ultrafiltration method by employing spin filters, which accumulate the<br />

protein at a membrane with a defined molecular weight cutoff (MWCO 5 to 100 kDa)<br />

while the solvent passes through.<br />

Materials<br />

<strong>Protein</strong> solution<br />

Refrigerated centrifuge<br />

Amicon filter, MWCO 5 to 100 kDa<br />

1. Fill the Amicon device with the diluted protein solution and centrifuge at 2900 × g,<br />

4 ◦ C.<br />

2. Continue centrifuging either until a desired concentration is reached (10 to 20 mg/ml<br />

is a proper concentration for storage) or the volume is sufficient for further purification<br />

via gel filtration (≤1% of the column volume).<br />

It is important not to centrifuge to the point where all liquid in the reservoir passes through<br />

the membrane; this would lead to drying of the protein and consequently to denaturation.<br />

THROMBIN PROTEOLYTIC CLEAVAGE OF GST FUSION PROTEINS<br />

The fusion tag that helps to purify a recombinant protein from crude cell extracts should<br />

be removed when the protein is intended for use in structural or biochemical analysis.<br />

There are a variety of expression vectors available which have protease-specific cleavage<br />

sites inserted between the coding sequence for the fusion tag and the multiple cloning site.<br />

SUPPORT<br />

PROTOCOL 9<br />

SUPPORT<br />

PROTOCOL 10<br />

SUPPORT<br />

PROTOCOL 11<br />

<strong>Signal</strong><br />

<strong>Transduction</strong>:<br />

<strong>Protein</strong><br />

Phosphorylation<br />

14.9.19<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 43


SUPPORT<br />

PROTOCOL 12<br />

<strong>In</strong> Vitro GEF and<br />

GAP Assays<br />

14.9.20<br />

The corresponding fusion protein can thus be processed with the appropriate protease<br />

and, finally, the fusion tag can be removed by further chromatographic purification steps.<br />

While this protocol is for thrombin cleavage of GST fusion proteins, it can be adapted<br />

for other enzyme/linker combinations.<br />

Materials<br />

GST-fusion protein<br />

Thrombin (Serva)<br />

End-over-end rotator<br />

Additional reagents and equipment for SDS-PAGE (UNIT 6.1) and Coomassie<br />

staining (UNIT 6.6)<br />

1. Cleave fusion proteins (at a concentration of ≥1 mg/ml) in batch by incubation with<br />

1 U thrombin per mg GST-fusion protein for 4 to 16 hr at 4 ◦ C with end-over-end<br />

rotation.<br />

Other vectors containing PreScission, factor Xa, TEV, enterokinase, or IgA protease<br />

cleavage sites can alternatively be used if thrombin does not cleave (masked cleavage<br />

site) or additional thrombin cleavage sites are within the fusion protein.<br />

2. Take 10 μl from the reaction mix after 4 hr and after the overnight incubation and<br />

analyze the cleavage progress by SDS-PAGE (UNIT 6.1) and Coomassie blue staining<br />

(UNIT 6.6).<br />

Usually, an overnight incubation at 4 ◦ C is sufficient for a quantitative cleavage of the<br />

fusion protein. <strong>In</strong> the SDS-PAGE gel, a band of 26 kDa for GST and a band of the size of<br />

the fusion partner will appear, whereas the band of the fusion protein at higher molecular<br />

size will disappear.<br />

GEL-FILTRATION CHROMATOGRAPHY<br />

Further purification and removal of protein impurities or small components including<br />

glutathione are achieved by size-exclusion chromatography (also called gel filtration) on<br />

the scale of 16/600 or 26/600 columns (meaning columns of 16- or 26-mm diameter and<br />

600-mm length, respectively) using Superdex 75 or Superdex 200 medium.<br />

Materials<br />

Concentrated protein sample (after digestion of the fusion protein with the<br />

respective protease; see Support Protocol 10 for concentration and Support<br />

Protocol 11 for digestion)<br />

Standard buffer (see recipe)<br />

16/600 or 26/600 columns prepacked with Superdex 75 or Superdex 200<br />

(GE Healthcare)<br />

Äkta System, e.g. Äkta Prime (GE Healthcare)<br />

Prepacked 16/600 or 26/600 columns with Superdex 75 or Superdex 200 resin (GE<br />

Healthcare)<br />

1- to 5-ml sample loop (GE Healthcare)<br />

Additional reagents and equipment for SDS-PAGE (UNIT 6.1), Coomassie staining<br />

(UNIT 6.6), and concentration of protein samples (Support Protocol 10)<br />

1. Equilibrate the column with one column volume (120 ml for 16/600 Superdex or<br />

320 ml for 26/600 Superdex) of standard buffer using the Äkta System.<br />

Use a 16/600 column for protein amounts of ≤40 mg or 26/600 column for ≥40 mg but<br />

≤100 mg; when the protein amount to be purified exceeds 100 mg, divide the sample into<br />

several portions ≤100 mg and do several consecutive column runs. Use 120 ml of buffer<br />

for the 16/600 column and 320 ml buffer for the 26/600 column.<br />

Supplement 43 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


2. Mount a 1- to 5-ml loop (GE Healthcare) on to the Äkta System, flush it with standard<br />

buffer, and load with the concentrated protein (≥10 mg/ml).<br />

The volume of the concentrated protein sample to be injected should not exceed 1% of the<br />

column volume to guarantee efficient separation. <strong>In</strong> case of a 16/600 column this means<br />

that no more than 1.2 ml, and in case of a 26/600 no more than 3.6 ml of protein solution<br />

should be injected.<br />

3. Collect 1- to 3-ml fractions with the Äkta fraction collector and analyze 10-μl<br />

samples by SDS-PAGE (UNIT 6.1) and Coomassie staining (UNIT 6.6).<br />

4. Pool and concentrate the fractions containing the desired protein to 10 to 20 mg/ml<br />

(Support Protocol 10).<br />

If the gel filtration does not separate the GST fractions from the desired protein, a<br />

second affinity chromatography with glutathione-Sepharose is necessary to remove the<br />

GST completely.<br />

FREEZING AND THAWING PROTEINS<br />

Freezing and thawing of protein solutions is a very critical step and has a large impact on<br />

protein stability. It is absolutely mandatory to freeze a protein solution in liquid nitrogen<br />

and to store it afterwards at −20◦Coreven−80◦C for storage. For longer storage periods,<br />

the latter is recommended. Before freezing a protein, try a small-scale test to verify that<br />

the protein can be frozen in a standard buffer and to test if addition of supplements like<br />

glycerol or sucrose might help to prevent protein denaturation during freezing. Thawing<br />

of protein solutions can either be performed rapidly at 37◦C or slowly on ice. For each<br />

protein, the recommended strategy has to be elucidated in trials.<br />

Materials<br />

50- to 500-μl aliquots of purified protein (10 to 20 mg/ml)<br />

Liquid nitrogen<br />

1. Snap freeze 50- to 500-μl aliquots of purified proteins in liquid nitrogen, then store<br />

in −80 ◦ C freezer.<br />

2. Thaw all proteins except nucleotide-free GTPases on ice. Thaw nucleotide-free<br />

GTPases at 37 ◦ C and immediately store on ice when defrosted.<br />

It is recommended to freeze and thaw an aliquot only once; otherwise, activity of the<br />

protein might be reduced due to repeated freezing/thawing cycles. Adjust the volume of<br />

the aliquots to the volume needed for the respective application. However, we have<br />

observed that most proteins described in this unit (GTPases and GTPase-regulators like<br />

GEF- and GAP-proteins) can in fact be frozen and thawed at least five times without any<br />

detectable loss of activity.<br />

REAGENTS AND SOLUTIONS<br />

Use deionized, distilled water in all recipes and protocol steps. For common stock solutions, see<br />

APPENDIX 2A; for suppliers, see SUPPLIERS APPENDIX.<br />

Exchange buffer, 10×<br />

2M(NH4)2SO4<br />

10 mM ZnCl2<br />

Filter and degas<br />

Store up to several weeks at room temperature<br />

SUPPORT<br />

PROTOCOL 13<br />

<strong>Signal</strong><br />

<strong>Transduction</strong>:<br />

<strong>Protein</strong><br />

Phosphorylation<br />

14.9.21<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 43


<strong>In</strong> Vitro GEF and<br />

GAP Assays<br />

14.9.22<br />

GAP buffer<br />

30 mM Tris·Cl, pH 7.5 (APPENDIX 2A)<br />

10 mM MgCl2<br />

3 mM dithiothreitol (DTT)<br />

10 mM potassium phosphate buffer,, pH 7.4 (APPENDIX 2A)<br />

Filter and degas<br />

Store up to several weeks at room temperature<br />

GEF buffer<br />

30 mM Tris·Cl, pH 7.5 (APPENDIX 2A)<br />

5mMMgCl2<br />

3 mM dithiothreitol (DTT)<br />

10 mM potassium phosphate buffer, pH 7.4 (APPENDIX 2A)<br />

Filter and degas<br />

Store up to several weeks at room temperature<br />

HPLC buffer<br />

100 mM potassium phosphate buffer, pH 6.5 (APPENDIX 2A)<br />

10 mM tetrabutylammonium bromide (e.g., Merck)<br />

7.5% to 25% (v/v) acetonitrile as specified in protocol<br />

Filter and degas<br />

Store up to several weeks at room temperature<br />

Standard buffer<br />

30 mM Tris·Cl, pH 7.5 (APPENDIX 2A)<br />

5mMMgCl2<br />

3 mM dithiothreitol (DTT)<br />

50 mM NaCl<br />

Filter and degas<br />

Store up to several weeks at room temperature<br />

Terrific broth (TB) medium<br />

12 g/liter Bacto-tryptone (BD Difco)<br />

24 g/liter yeast extract (BD Difco)<br />

0.4% (v/v) glycerol<br />

2.31 g/liter KH2PO4<br />

12.54 g/liter K2HPO4<br />

Sterilize by autoclaving<br />

Store up to 2 weeks at 4◦C Wash buffer<br />

30 mM Tris·Cl, pH 7.5 (APPENDIX 2A)<br />

5mMMgCl2<br />

3 mM dithiothreitol (DTT)<br />

100 mM NaCl<br />

Filter and degas<br />

Store up to several weeks at room temperature<br />

COMMENTARY<br />

Background <strong>In</strong>formation<br />

Fluorescence techniques to study the intrinsic<br />

properties of GTPase-like nucleotide<br />

binding, nucleotide exchange, or GTP hydrolysis<br />

have been evolving over more than two<br />

decades. They were pioneered by Toshiaki<br />

Supplement 43 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


Hiratsuka and Roger S. Goody (Alexandrov<br />

et al., 2001; Hiratsuka, 2003). Since that time,<br />

further development has been going on, with<br />

the design of new fluorescent molecules, enhanced<br />

technical instrumentation, and new applications<br />

to study biochemical reactions and<br />

processes.<br />

Fluorescence-based GEF and GAP assays<br />

described in Basic <strong>Protocols</strong> 1 and 2 and<br />

Alternate <strong>Protocols</strong> 1 through 4 are convenient<br />

methods to study the process of nucleotide release<br />

or hydrolysis. It has been shown that the<br />

extrinsic fluorophore usually does not influence<br />

these reactions. Fluorescence-based assays<br />

allow real-time monitoring of ligand- and<br />

protein-protein interactions at submicromolar<br />

concentrations, as well as quantification of the<br />

kinetic and equilibrium constants.<br />

Critical Parameters and<br />

Troubleshooting<br />

Spectroscopic measurements like the fluorescence<br />

assays described in this unit require<br />

the use of very clean quartz cuvettes, filtered<br />

and degassed buffers, and protein solutions<br />

without precipitate or any other solid material.<br />

Otherwise, light dispersion will take place<br />

and the signal-to-noise ratio will deteriorate. It<br />

is, therefore, very important to centrifuge the<br />

protein solution immediately before using it in<br />

assays.<br />

To obtain reliable and reproducible kinetic<br />

data, the protein and nucleotide quality need to<br />

be high. Thus, nucleotides with >90% purity<br />

should be used and, if necessary, additional purification<br />

steps should be carried out to obtain<br />

nucleotides and proteins of a high purity. For<br />

HPLC measurements, the performance of the<br />

guard and main columns are essential for an<br />

optimal separation of the nucleotides. Washing<br />

the system with filtered and degassed deionized<br />

water should be carried out daily to prevent<br />

valve blockage by buffer salts. Regeneration<br />

of the columns should be accomplished<br />

periodically according to the column manufacturer’s<br />

instructions to maintain separation<br />

performance.<br />

When purifying guanine nucleotide–<br />

binding proteins, it is mandatory to add both<br />

GDP and magnesium ions to the buffer; they<br />

are essential especially in the case of lowaffinity<br />

GDP/GTP-binding proteins, and will<br />

increase the protein stability.<br />

Releasing the GTPase from GDP (or GTP<br />

in the case of the constitutive mutants) and<br />

loading with fluorescent nucleotides, as described<br />

above, are prerequisites to perform<br />

fluorescence measurements. The incubation<br />

time for preparing the nucleotide-free proteins<br />

varies among GDP/GTP-binding proteins, and<br />

has to be established for every GTPase.<br />

The amounts of proteins and (fluorescent)<br />

nucleotides required are rather dependent on<br />

the assay used. For the determination of intrinsic<br />

nucleotide dissociation or intrinsic GTP<br />

hydrolysis in a cuvette (at a final volume of<br />

600 μl), ∼10 to 20 μg of nucleotide-bound<br />

GTPase is required for three identical experiments.<br />

At least 60 μg of catalytic domains of<br />

GEF or GAP proteins (250 to 300 amino acids)<br />

is needed for one experiment to measure the<br />

specificity and activity of these regulatory proteins.<br />

A stopped-flow experiment requires 3 to<br />

5 μg GTPase, but provides an averaged value<br />

obtained from five to seven identical measurements.<br />

A stopped-flow analysis of the specificity<br />

of GEFs or GAPs requires about 15 to<br />

50 μg of these proteins. However, between 2<br />

and 10 mg of the catalytic domains will be<br />

required to quantitatively analyze the GEF or<br />

GAP activities.<br />

It is recommended to perform each experiment<br />

using a negative and a positive control<br />

sample. The negative sample, necessary<br />

in order to have correct instrument settings,<br />

is assessed by measuring free fluorescent nucleotide<br />

in the absence of GTPase. The positive<br />

sample, necessary in order to make sure<br />

that the method works, is assessed by using<br />

known proteins, for example Ras, to measure<br />

intrinsic nucleotide dissociation and GTPhydrolysis<br />

as well as GTPases in combination<br />

with their specific GEFs (e.g., Ras/Sos1,<br />

Rac1/Tiam1, Cdc42/Asef or RhoA/p115) or<br />

GAPs (Ras/p120, Rho GTPases/p50).<br />

Anticipated Results<br />

The elucidation of the molecular switch<br />

mechanism of the GTPases and particularly<br />

their specificities and affinities for regulators<br />

require the dissection of such interactions at<br />

the molecular level by utilizing a sensitive biochemical<br />

assay. Fluorescence spectroscopic<br />

methods provide researchers with a number of<br />

tools for studying the intercommunication of a<br />

GTPase with nucleotides and binding partners.<br />

Compared to other qualitative assays (e.g.,<br />

filter-binding assay or thin-layer chromatography,<br />

which contain between three and six<br />

time points), fluorescence methods described<br />

in this unit allow monitoring of the activity<br />

of the GEFs and GAPs in real time, where<br />

every single measurement consists of at least<br />

400 data points per reaction trace. These assays<br />

are highly sensitive and, in principle, reproducible<br />

presuming: (1) that the proteins of<br />

<strong>Signal</strong><br />

<strong>Transduction</strong>:<br />

<strong>Protein</strong><br />

Phosphorylation<br />

14.9.23<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 43


<strong>In</strong> Vitro GEF and<br />

GAP Assays<br />

14.9.24<br />

interest do not reveal the expected activity;<br />

and (2) that the proteins and reagents are carefully<br />

prepared from high-purity materials and<br />

tested for quality. Thus, optimal gene expression<br />

and protein purification as well as sufficient<br />

quality of fluorescent nucleotide-bound<br />

GTPases and other components including GEF<br />

and GAP proteins and nucleotide derivatives<br />

are prerequisites for reliable and reproducible<br />

measurements. <strong>In</strong> all assays described in this<br />

unit, a decrease in fluorescence should be monitored<br />

in a time-dependent manner. However,<br />

another important aspect to be considered is<br />

the fluorescence offset, which represents the<br />

actual fluorescence signal value before the fluorescence<br />

decay is initiated by starting the reaction.<br />

This should be relatively similar for all<br />

experiments (1) when using the same instrument<br />

settings (e.g. the same monochromator<br />

slit with in a fluorescence spectrometer and<br />

photomultiplier tension in case of the stoppedflow<br />

instrument); (2) under the same concentrations<br />

of the fluorescent nucleotides in the<br />

complex with the GTPase; and (3) independent<br />

of the GEF or GAP concentrations.<br />

The fluorescence-based assays described in<br />

this unit are quite sensitive methods which<br />

give proper results even if using submicromolar<br />

protein and nucleotide concentrations. The<br />

fluorescence decay followed over time is usually<br />

in the range of 40% to 60% in the case of<br />

nucleotide exchange experiments (GEF assay)<br />

and 10% to 15% in the case of the fluorescence<br />

GTP hydrolysis assay using tamra-GTP.<br />

Time Considerations<br />

The expression of a protein in E. coli takes<br />

about 2 days, including inoculation of the culture<br />

and induction of gene expression. On the<br />

second day, the culture is harvested, washed,<br />

resuspended, and stored in a buffer solution.<br />

When the expression is carried out for only<br />

2 to 4 hr, all steps should be performed in<br />

1 day. The purification of a protein usually involves<br />

several steps. It takes about 1 day to<br />

do the affinity chromatography, to elute, to analyze<br />

by SDS-PAGE, and to concentrate the<br />

fusion protein before the overnight protease<br />

digestion. On the next day, the protein can<br />

be applied to the size-exclusion chromatography<br />

(gel filtration) and subsequently analyzed<br />

by SDS-PAGE. Optionally, a second affinity<br />

chromatography may need to be carried out<br />

to completely remove the tag; it can be performed<br />

immediately after gel filtration. Finally<br />

the protein needs to be concentrated, which<br />

may take several hours, before it can be frozen<br />

in small aliquots and stored at –80 ◦ C.<br />

The preparation of Gpp(NH)p-bound and<br />

mantGpp(NH)p-bound GTPases takes 2 to<br />

48 hr, and usually can be carried out overnight.<br />

The generation of a nucleotide-free GTPase involves<br />

the same step followed by the phosphodiesterase<br />

reaction for another 2 to 30 hr until<br />

Gpp(CH2)p is completely degraded. The loading<br />

of a nucleotide-free GTPase with mant-<br />

GDP can be performed in 1 to 2 hr.<br />

GEF measurements in a fluorescence spectrometer<br />

usually take at least 16 hr before<br />

the intrinsic nucleotide dissociation in the absence<br />

of the GEF protein is recorded. GEFaccelerated<br />

processes usually take less than<br />

1 hr. Stopped-flow experiments are performed<br />

at higher concentrations of the GEF protein<br />

and are, thus, quite fast reactions on the order<br />

of seconds or even milliseconds. For quantitative<br />

measurements and evaluation of the data,<br />

2 to 3 hr should be allowed.<br />

<strong>In</strong>trinsic GTP-hydrolysis measurements for<br />

small GTPases take 0.5 to 6 hr (depending on<br />

the GTPase), whereas the presence of catalytic<br />

amounts of a GAP protein advances the reaction<br />

to a 0.5- to 30-min process. Quantitative<br />

measurements using increasing GAP concentrations<br />

are also very fast and complete after a<br />

few seconds or even milliseconds.<br />

Literature Cited<br />

Ahmadian, M.R., Hoffmann, U., Goody, R.S., and<br />

Wittinghofer, A. 1997a. <strong>In</strong>dividual rate constants<br />

for the interaction of Ras proteins with<br />

GTPase-activating proteins determined by fluorescence<br />

spectroscopy. Biochemistry 36:4535-<br />

4541.<br />

Ahmadian, M.R., Stege, P., Scheffzek, K., and<br />

Wittinghofer, A. 1997b. Confirmation of<br />

the arginine-finger hypothesis for the GAPstimulated<br />

GTP-hydrolysis reaction of Ras. Nat.<br />

Struc. Biol. 4:686-689.<br />

Ahmadian, M.R., Zor, T., Vogt, D., Kabsch, W.,<br />

Selinger, Z., Wittinghofer, A., and Scheffzek,<br />

K. 1999. Guanosine triphosphatase stimulation<br />

of oncogenic Ras mutants. Proc. Natl. Acad. Sci.<br />

U.S.A. 96:7065-7070.<br />

Ahmadian, M.R., Wittinghofer, A., and Herrmann,<br />

C. 2002. Fluorescence methods in the study of<br />

small GTP-binding proteins. Methods Mol. Biol.<br />

189:45-63.<br />

Ahmadian, M.R., Kiel, C., Stege, P., and Scheffzek,<br />

K. 2003. Structural fingerprints of the Ras-<br />

GTPase activating proteins neurofibromin and<br />

p120GAP. J. Mol. Biol. 329:699-710.<br />

Alexandrov, K., Scheidig, A.J., and Goody, R.S.<br />

2001. Fluorescence methods for monitoring interactions<br />

of Rab proteins with nucleotides, Rab<br />

escort protein, and geranylgeranyltransferase.<br />

Methods Enzymol. 329:14-31.<br />

Eberth, A., Dvorsky, R., Becker, C., Beste,<br />

A., Goody, R.S., and Ahmadian, M.R. 2005.<br />

Supplement 43 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


Monitoring the real-time kinetics of the hydrolysis<br />

reaction of guanine nucleotide binding proteins.<br />

Biol. Chem. 386:1105-1114.<br />

Guo, Z., Ahmadian, M.R., and Goody, R.S. 2005.<br />

Guanine nucleotide exchange factors operate<br />

by a simple allosteric competitive mechanism.<br />

Biochemistry 44:15423-15429.<br />

Haeusler, L.C., Blumenstein, L., Stege, P., Dvorsky,<br />

R., and Ahmadian, M.R. 2003. Comparative<br />

functional analysis of the Rac GTPases. FEBS<br />

Lett. 555:556-560.<br />

Hemsath, L. and Ahmadian, M.R. 2005. Fluorescence<br />

approaches for monitoring interactions of<br />

RhoGTPases with nucleotides, regulators and<br />

effectors. Methods 37:173-182.<br />

Hiratsuka, T. 2003. Fluorescent and colored trinitrophenylated<br />

analogs of ATP and GTP. Eur. J.<br />

Biochem. 270:3479-85.<br />

John, J., Sohmen, R., Feuerstein, J., Linke, R.,<br />

Wittinghofer, A., and Goody, R.S. 1990. Kinetics<br />

of interaction with nucleotide-free H-ras<br />

p21. Biochemistry 29:6058-6065.<br />

Scheffzek, K. and Ahmadian, M.R. 2005. GTPase<br />

activating proteins: Structural and functional insights<br />

18 years after discovery. Cell. Mol. Life<br />

Sci. 62:3014-3038.<br />

<strong>Signal</strong><br />

<strong>Transduction</strong>:<br />

<strong>Protein</strong><br />

Phosphorylation<br />

14.9.25<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 43


<strong>In</strong> Vivo Imaging of <strong>Signal</strong> <strong>Transduction</strong><br />

Cascades with Probes Based on Förster<br />

Resonance Energy Transfer (FRET)<br />

Takeshi Nakamura 1 and Michiyuki Matsuda 1<br />

1Laboratory of Bioimaging and Cell <strong>Signal</strong>ing, Graduate School of Biostudies,<br />

Kyoto University, Kyoto, Japan<br />

ABSTRACT<br />

Genetically encoded FRET probes enable us to visualize a variety of signaling events<br />

such as protein phosphorylation and G-protein activation in living cells. This unit focuses<br />

on FRET probes wherein both the donor and acceptor are ßuorescence proteins and<br />

incorporated into a single molecule, i.e., a unimolecular probe. Advantages of these<br />

probes lie in their easy loading into cells, simple acquisition of FRET images, and<br />

clear evaluation of data. We have developed FRET probes for Ras-superfamily GTPases,<br />

designated Ras and interacting protein chimeric unit (Raichu) probes. We hereby describe<br />

strategies to develop Raichu-type FRET probes, procedures for their characterization,<br />

and acquisition and processing of images. Although improvements upon FRET probes<br />

are still based on trial-and-error, we provide practical tips for their optimization and<br />

brießy discuss the theory and applications of unimolecular FRET probes. Curr. Protoc.<br />

Cell Biol. 45:14.10.1-14.10.12. C○ 2009 by John Wiley & Sons, <strong>In</strong>c.<br />

Keywords: FRET � unimolecular probe � CFP � YFP � Ras GTPase � Rho GTPase<br />

INTRODUCTION<br />

<strong>Signal</strong> transduction is an organized ensemble of dynamic state changes in signaling<br />

molecules, which is often caused by phosphorylation and guanine nucleotide exchange<br />

reactions. Needless to say, the timing and localization of these events critically inßuence<br />

the outcomes. To visualize such spatio-temporal changes in the activity of signaling<br />

molecules, several research groups have been developing probes based on the principle<br />

of Förster resonance energy transfer (FRET; Miyawaki, 2003; Kiyokawa et al., 2006).<br />

FRET is a radiation-less transfer of excited-state energy from a donor ßuorophore to an<br />

acceptor ßuorophore (Lakowicz, 2006). This unit focuses on FRET probes wherein both<br />

the donor and acceptor ßuorophores are proteins and incorporated into a single molecule,<br />

i.e., genetically encoded unimolecular probes. The advantages of these probes lie in their<br />

easy loading into cells, simple acquisition of FRET images, and clear evaluation of the<br />

data (Kurokawa et al., 2004). Another type of FRET probe, namely, the bimolecular<br />

probe, is preferably used for monitoring protein-protein interactions (UNIT 21.3; also see<br />

UNITS 17.1 & 17.9).<br />

A major application of unimolecular FRET probes is the monitoring of protein kinase<br />

activities. The activities of EGF receptor, Src, PKA, and PKC have been successfully<br />

monitored by FRET probes containing the speciÞc substrate peptides for each kinase<br />

(Kurokawa et al., 2001; Ting et al., 2001; Zhang et al., 2001; Violin et al., 2003; Wang<br />

et al., 2005). Furthermore, FRET probes that monitor the activation-related conformational<br />

change have also been developed for PKC, Raf, Erk, and CaMKII (Braun et al.,<br />

2005; Takao et al., 2005; Terai and Matsuda, 2005; Fujioka et al., 2006). Visualization<br />

of the “on” and “off” states of Ras-superfamily GTPases is another valuable application<br />

of unimolecular FRET probes; such FRET probes developed in the authors’ laboratory<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology 14.10.1-14.10.12, December 2009<br />

Published online December 2009 in Wiley <strong>In</strong>terscience (www.interscience.wiley.com).<br />

DOI: 10.1002/0471143030.cb1410s45<br />

Copyright C○ 2009 John Wiley & Sons, <strong>In</strong>c.<br />

UNIT 14.10<br />

<strong>Signal</strong><br />

<strong>Transduction</strong>:<br />

<strong>Protein</strong><br />

Phosphorylation<br />

14.10.1<br />

Supplement 45


BASIC<br />

PROTOCOL 1<br />

<strong>In</strong> Vivo Imaging of<br />

<strong>Signal</strong><br />

<strong>Transduction</strong><br />

Cascades with<br />

FRET Probes<br />

14.10.2<br />

are collectively designated Ras and interacting protein chimeric unit (Raichu) probes<br />

(Mochizuki et al., 2001).<br />

The following procedure describes the development of Raichu-type FRET probes and<br />

the use of these probes to visualize the activation state of GTPases.<br />

DEVELOPMENT OF RAICHU FRET PROBES<br />

Raichu probes are composed of four modules: donor (CFP), acceptor (YFP), a GTPase,<br />

and the GTPase-binding domain of its binding partner (Fig. 14.10.1). <strong>In</strong> the Raichu probes<br />

for Ras-family GTPases, YFP, GTPase, GTPase-binding domain, and CFP are sequentially<br />

connected from the N-terminus by spacer peptides (Mochizuki et al., 2001). A typical<br />

mode of action of Raichu is as follows. <strong>In</strong> the inactive GDP-bound conformation, CFP<br />

and YFP are located at a distance from each other. Therefore, excitation of CFP results in<br />

emission mostly from CFP. Upon stimulation, GDP on the GTPase is exchanged for GTP,<br />

which induces an interaction between the GTP-bound GTPase and the GTPase-binding<br />

domain. This intramolecular binding brings CFP within close proximity to YFP, thereby<br />

permitting energy transfer from CFP to YFP. FRET is manifested by a quenching of CFP<br />

ßuorescence and an increase in sensitized emission of YFP; therefore the ßuorescence intensity<br />

ratio of YFP versus CFP can be conveniently used as a representation of FRET efÞciency.<br />

This YFP/CFP value of the Raichu-expressing cells correlates with the molecular<br />

ratio of GTP-bound probes versus GDP-bound probes, which reßects the balance between<br />

guanine nucleotide exchange factors (GEFs) and GTPase-activating domains (GAPs) for<br />

the GTPase within the probe (Mochizuki et al., 2001; Yoshizaki et al., 2003). Therefore,<br />

the activities of endogenous GTPases, which are under the control of the same set of GEFs<br />

and GAPs, can be estimated by measuring the YFP/CFP ratio of Raichu-expressing cells.<br />

YFP<br />

Ras<br />

GDP<br />

activation inactivation<br />

530 nm FRET<br />

GTP<br />

Ras<br />

433nm 475 nm<br />

farnesyl moiety<br />

433 nm<br />

Supplement 45 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology<br />

YFP<br />

RBD<br />

RBD<br />

Figure 14.10.1 Basic structure of the GFP-based FRET probe for Ras GTPases (Raichu-Ras).<br />

The FRET probe for Ras activation comprises H-Ras and the Ras-binding domain (RBD) of Raf<br />

sandwiched between YFP and CFP. For plasma-membrane localization, this probe is fused to the<br />

carboxyl-terminal region of K-Ras4B. Upon stimulation, GDP on Ras is exchanged for GTP, and<br />

FRET occurs.<br />

CFP<br />

CFP


Materials<br />

Needed DNA constructs:<br />

Plasmid for the Raichu probe (available from Matsuda Lab,<br />

http://www.path1.med.kyoto-u.ac.jp/mm/e-phogemon/index.htm)<br />

cDNA of the GTPase of interest (can either be purchased from a public<br />

depository or cloned by PCR from cDNA libraries)<br />

cDNA of GTPase-binding domains of effector proteins (can either be purchased<br />

from a public depository or cloned by PCR from cDNA libraries; try at least a<br />

few known effectors for initial experiments)<br />

Ion-exchange resin for DNA puriÞcation (e.g., Qiagen; also see Ausubel et al.,<br />

2009)<br />

Transfection reagent for calcium phosphate coprecipitation (UNIT 20.3)<br />

293T cells (ATCC cat. no. CRL-11268), cultured in 100-mm-diameter<br />

collagen-coated dishes, 80% conßuent<br />

MEM (<strong>In</strong>vitrogen, cat. no. 10370) containing 10% fetal bovine serum (FBS)<br />

Phenol-red-free MEM (<strong>In</strong>vitrogen, cat. no. 11054) containing 10% FBS<br />

Lysis buffer (see recipe)<br />

Fluorescence spectrophotometer (for example, JASCO FP-750) and 3-ml cuvettes<br />

Additional reagents and equipment for basic molecular biology techniques<br />

including restriction digestion, PCR, plasmid preparation, cloning of DNA, and<br />

puriÞcation of DNA (Ausubel et al., 2009), and calcium phosphate transfection<br />

of DNA (UNIT 20.3)<br />

Make candidate probes<br />

1. Design a candidate Raichu probe.<br />

To achieve a wide dynamic range, it is desirable to search for a GTPase-binding domain<br />

having a moderate afÞnity for the GTPase (Yoshizaki et al., 2003). One explanation for<br />

this is that the GTPase-binding domain competes with GTPase-activating proteins (GAPs)<br />

in cells (Kurokawa et al., 2004). This inhibition of GAPs leads to a relatively high GTP<br />

level in the probe, even in the unstimulated state, and may therefore cause a narrowing<br />

of the dynamic range.<br />

Crystallographic data for the GTPase and GTPase-binding domain can help to determine<br />

the minimum regions to be incorporated into the probe. Unfortunately, crystallographic<br />

data for optimal design of a Raichu probe cannot currently be obtained in most cases.<br />

Therefore, various lengths of the GTPase and GTPase-binding domain should be tried<br />

until a satisfactory result is obtained. <strong>In</strong> addition, various combinations of the four<br />

modules, namely, YFP, CFP, GTPase, and the GTPase-binding domain, should be tested.<br />

YFP is usually placed before CFP because an excess of acceptor (YFP) does not decrease<br />

the signal-to-noise ratio by much, even when the translation of the probe is prematurely<br />

terminated.<br />

Eleven amino acids at the carboxyl terminus of GFP can be truncated without affecting<br />

its ßuorescence proÞle. <strong>In</strong> most Raichu probes, we have removed the 11 carboxyl-terminal<br />

residues of YFP, hoping to reduce the ßexibility between YFP and the subsequent module.<br />

The length and sequence of the spacers are also critical. If the FRET efÞciency of a prototype<br />

probe varies to some extent upon activation, the possibility of further improvement<br />

by changing the spacer should be considered. As spacers, we usually use 1 to 6 repeats<br />

of the pentapeptide Gly-Gly-Ser-Gly-Gly. It is believed that Gly provides ßexibility while<br />

Ser prevents aggregation of peptide chains. Misfolding of CFP occasionally occurs, and<br />

this can sometimes be rectiÞed by modifying the spacer before the CFP. The ideal location<br />

for a probe in a cell has been a matter of debate. The most persuasive idea is that the<br />

probe should be colocalized with the endogenous protein; for this purpose, the GTPase’s<br />

own authentic CAAX-box should be added to the C-terminus of the probe. Alternatively,<br />

the addition of the CAAX-box of K-Ras4B to the C-terminus enables the probe to be located<br />

mostly at the plasma membrane; this approach yields a high signal-to-noise ratio,<br />

especially when only a limited fraction of the GTPase is activated upon stimulation.<br />

<strong>Signal</strong><br />

<strong>Transduction</strong>:<br />

<strong>Protein</strong><br />

Phosphorylation<br />

14.10.3<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 45


<strong>In</strong> Vivo Imaging of<br />

<strong>Signal</strong><br />

<strong>Transduction</strong><br />

Cascades with<br />

FRET Probes<br />

14.10.4<br />

2. Construct a plasmid for a candidate probe.<br />

If you use the basic Raichu probe structure (Fig. 14.10.1), you should Þrst perform PCR<br />

cloning of the trimmed GTPase and GTPase-binding domain with restriction enzyme<br />

recognition sites. Thereafter, insert the PCR fragments into the basic FRET vector.<br />

The 5 ′ and 3 ′ primers for the GTPase should have XhoI and Aor13HI restriction sites,<br />

respectively. The 5 ′ and 3 ′ primers for the GTPase-binding domain should have KpnI<br />

and NotI restriction sites, respectively. Any restriction enzymes that generate compatible<br />

ends can also be used. The primers must be designed so that the inserted cDNA is<br />

in the correct reading frame of the Raichu (http://www.path1.med.kyoto-u.ac.jp/mm/ephogemon/index.htm).<br />

The ampliÞed cDNAs of the GTPase and GTPase-binding<br />

domain are cleaved with the aforementioned restriction enzymes and subcloned into<br />

XhoI/Aor13HI and KpnI/NotI restriction sites, respectively. The order of the GTPase and<br />

GTPase-binding domain can be reversed by changing the restriction sites in the primers<br />

accordingly.<br />

3. Prepare transfection-quality plasmid DNA.<br />

DNA puriÞed using Qiagen ion-exchange resin (or equivalents from other manufacturers)<br />

performs well. Also see Ausubel et al. (2009).<br />

Characterize candidate probes<br />

4. Grow 293T cells to 80% conßuence in MEM containing 10% FBS (may contain<br />

phenol red). Transfect 10 μg of a probe-encoding plasmid into 293T cells using<br />

calcium phosphate coprecipitation (UNIT 20.3).<br />

Candidate probes without lipid modiÞcation at the C-terminus are often preferable for<br />

spectral analysis, because this lipid modiÞcation generally reduces the level of probe<br />

expression.<br />

5. At 6 hr after transfection, change the culture medium to phenol red–free MEM/10%<br />

FBS.<br />

6. At 48 hr after transfection, harvest the cells in 1 ml lysis buffer. Microcentrifuge the<br />

lysates at 15 min at 10,000 × g,4 ◦ C.<br />

The centrifugation serves to clear the lysate. If necessary, the cell lysates may be cleared<br />

by ultracentrifugation for 15 min at 100,000 × g, 4 ◦ C, to reduce the autoßuorescence<br />

from cell debris.<br />

7. Transfer the cleared lysates into 3-ml cuvettes and place the cuvettes in a ßuorescence<br />

spectrophotometer. Next, illuminate lysates with an excitation wavelength of 433 nm,<br />

and obtain a ßuorescence spectrum from 450 nm to 550 nm. Subtract the background<br />

using the spectra of cell lysates prepared without transfection.<br />

Fluorescence spectral analysis becomes even easier when the FreeStyle 293-F cell line<br />

(<strong>In</strong>vitrogen), a variant of the 293 cell line adapted for suspension growth, is used. This<br />

cell line is very easy to culture, transfect, and harvest, and only 1.5 ml of cell suspension<br />

is required to obtain a ßuorescence spectrum.<br />

8. Evaluate a candidate probe using the ßuorescence spectrum (Fig. 14.10.2).<br />

For the characterization of a candidate probe, we introduce a constitutively active or<br />

inactive mutation into the GTPase in the probe for comparison with the same probe<br />

containing the wild-type GTPase. Alternatively, we cotransfect the candidate probe with<br />

guanine nucleotide exchange factor (GEF) and GAP toward the GTPase, and compare<br />

the new spectrum with those of samples transfected with the probe alone. Under our<br />

criteria, Raichu-type probes can be applicable for imaging analysis when the maximum<br />

increase (%) in the YFP/CFP ratio exceeds 30%.<br />

Practically, further evaluation of a probe is recommended before use in a wide range of<br />

applications: i.e., (1) whether the probe shows a near-linear correlation between its GTP<br />

loading and FRET efÞciency upon cotransfection with various quantities of GEF or GAP<br />

and (2) whether the probe and its endogenous counterpart show comparable responses<br />

to physiological stimulations when examined by biochemical methods.<br />

Supplement 45 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


Emission intensity<br />

(arbitrary units)<br />

450 500<br />

Wavelength (nm)<br />

Sos (+)<br />

Sos (-)<br />

Figure 14.10.2 Fluorescence spectral analysis using 293T cells. Shown are emission spectra<br />

of Raichu-Ras expressed with the guanidine nucleotide factor Sos (black line, Sos +) or without<br />

Sos (gray line, Sos −) in 293T cells at an excitation wavelength of 433 nm.<br />

IMAGING WITH FRET PROBES<br />

Imaging with FRET probes must be performed with general live-cell imaging precautions,<br />

and should be modiÞed depending on the speciÞc cell type; these modiÞcations are<br />

beyond the scope of this unit. Furthermore, the technical details differ among optical<br />

imaging systems and image analysis software. The following is only a typical example<br />

of such an analysis.<br />

Materials<br />

Cells for experiment [e.g., HeLa cells (ATCC cat. no. CRL-2) or COS7 cells<br />

(ATCC cat. no. CRK-1651)] and appropriate medium<br />

Expression plasmid for FRET probe (Basic Protocol 1)<br />

Transfection reagent<br />

Phenol red-free medium<br />

Mineral oil (Sigma)<br />

35-mm glass-base dish (Asahi Techno Glass; http://www.agc.co.jp/) with a<br />

10-mm-diameter glass coverslip mounted on the bottom<br />

Temperature-controlled chamber with thermostat and/or a CO2 controller<br />

A ßuorescence microscope with a CCD camera including:<br />

IX81 inverted microscope<br />

75-W xenon arc lamp<br />

60× oil immersion objective lens, PlanApo 60×/1.4 (Olympus)<br />

Cool SNAP-HQ cooled CCD camera (Roper ScientiÞc)<br />

Laser-based auto-focusing system, IX2-ZDC (Olympus)<br />

Automatically programmable XY stage, MD-XY30100T-Meta (SIGMA KOKI).<br />

Excitation and emission Þlter wheels: Filter wheel 99A354 and MAC5000 shutter<br />

controller (Ludl Electronic Products)<br />

<strong>Signal</strong><br />

<strong>Transduction</strong>:<br />

<strong>Protein</strong><br />

Phosphorylation<br />

14.10.5<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 45<br />

550<br />

BASIC<br />

PROTOCOL 2


<strong>In</strong> Vivo Imaging of<br />

<strong>Signal</strong><br />

<strong>Transduction</strong><br />

Cascades with<br />

FRET Probes<br />

14.10.6<br />

Filters:<br />

XF1071 (Omega Optical; cat. no. 440AF21) excitation Þlter<br />

XF2034 (Omega Optical; cat. no. 455DRLP) dichroic mirror<br />

XF3075 (Omega Optical; cat. no. 480AF30) emission Þlter for CFP<br />

XF3079 (Omega Optical; cat. no. 535AF26) emission Þlter for FRET<br />

Neutral-density (ND) Þlters<br />

Software for operation of the microscope and analysis of acquired images; e.g.,<br />

MetaMorph software (Universal Imaging)<br />

Additional reagents and equipment for construction of the FRET probe (Basic<br />

Protocol 1)<br />

Prepare cells<br />

1. Seed the cells onto a glass-base dish with a glass coverslip at the bottom.<br />

The coverslip at the bottom may be coated with collagen, Þbronectin etc., depending on<br />

the cell types used. The cell density can be varied depending on the purpose of experiments<br />

and the transfection protocol.<br />

2. Transfect cells with the plasmid for a FRET probe using any protocol suitable for<br />

the cells of interest.<br />

The transfection efÞciency need not be high, because fewer than 10 cells can be timelapse<br />

imaged in most experiments. Rather, the transfection method should be chosen to<br />

minimize cell toxicity.<br />

3. Grow the cells, typically for 1 to 3 days, depending on the probe and cell type.<br />

<strong>In</strong> most cases, within 2 days the amount of probe reaches a level sufÞcient for imaging.<br />

<strong>In</strong> cases where the overexpression of the probes is toxic to the cells, the cells should be<br />

used 1 day after transfection.<br />

4. On the day of the experiments, change the medium to phenol red-free medium and<br />

overlay the medium in the cell-containing dish with mineral oil.<br />

A reduction in the amount of serum is preferable to reduce the background ßuorescence.<br />

Bovine serum albumin may be included when serum is not included. HEPES should be<br />

included in the medium unless CO2 is supplied during imaging. <strong>In</strong> some cases, phosphate<br />

or HEPES-buffered saline may be preferable to minimize the background ßuorescence.<br />

Note that some media, such as Opti-MEM, give off high ßuorescence.<br />

Acquire images of a single Þeld of view<br />

5. Warm the temperature control chamber to 37 ◦ C and set up ßuorescence microscope.<br />

A large chamber that covers most of the microscope is preferable to minimize defocusing<br />

during image acquisition. However, if the microscope is equipped with an autofocusing<br />

system, the chamber may be as small as needed to keep the cells warm. Always<br />

use a neutral density (ND) Þlter to minimize the photobleaching of the probe during<br />

observation.<br />

6. View the specimen on the microscope using a 60× oil-immersion objective and a<br />

Þlter set for CFP, and Þnd a cell for time-lapse imaging.<br />

Cells to be observed should look healthy and represent the cell population. The optimal<br />

expression level varies depending on each FRET probe. Repeated experiments are required<br />

to determine the conditions suitable for the imaging.<br />

7. Set up the image-acquisition software, with the following being a typical setup for<br />

the FRET imaging of growth factor-induced activation of signaling molecules:<br />

ND Þlter, 10%<br />

Camera binning, 4<br />

Digitizer, 10 MHz<br />

Gain 2 (4×)<br />

Supplement 45 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


Shutter speed for phase contrast image or differential interference contrast<br />

image, 50 msec<br />

Shutter speed for CFP and FRET, 200 msec<br />

Time-lapse interval, 1 min<br />

Number of images, 60.<br />

The conditions should be optimized for the probes and cells to be analyzed.<br />

What should be most considered in this process is the photobleaching of YFP and phototoxicity<br />

to the cells. For an unknown reason, images obtained with shorter exposure time<br />

and brighter excitation light, which can be easily achieved by removing the ND Þlter,<br />

usually result in lower FRET efÞciency. This is a principal reason why we prefer the<br />

conventional epißuorescence microscope to the scanning laser confocal microscope.<br />

8. Start time-lapse imaging.<br />

When cells of interest become defocused, stop the image acquisition and focus the cells<br />

again. Minimize the time to focus, or YFP intensity will be decreased (YFP bleaches faster<br />

than CFP), resulting in apparent decrease in FRET.<br />

Acquire images of multiple Þelds of view with autofocusing system<br />

9. Set up the microscope as described above. Find the Þrst cell to be monitored and<br />

focus on it. Set the offset value by using the laser-based auto-focusing system.<br />

Offset value is the distance from the top of the objective lens to the top of the coverslip.<br />

With a “Þnd focus” command, the autofocusing system remembers the distance between<br />

the top of the objective lens to the top of the coverslip, and thereby corrects the z-axis<br />

coordinate prior to image acquisition. Usually, this correction is required only for the<br />

Þrst cells at each time point.<br />

10. Find cells to be monitored and record the coordinates.<br />

The number of cells to be imaged can be reduced afterwards; therefore, a large number<br />

of cells should be recorded at this stage. When the interval of time lapse is 1 min, 10 to<br />

15 view Þelds can be imaged.<br />

11. By moving the motor-driven stage with the obtained coordinates, conÞrm the cells<br />

to be monitored and correct the focus, if necessary.<br />

The order of the image acquisition can be changed to minimize the movement of the stage.<br />

12. Start image acquisition and conÞrm whether a series of image acquisitions Þnishes<br />

within the interval time. If it goes well, continue image acquisition.<br />

If not, interrupt image acquisition and reduce the number of cells to be monitored, or<br />

extend the interval time. It is also strongly recommended to ensure that the hard disc<br />

contains sufÞcient space for the image.<br />

Analyze the images<br />

13. Create stack Þles for the acquired images and overview.<br />

Carefully examine for defocusing, ßoating bright debris, photobleaching, and phototoxic<br />

change in the cells.<br />

14. Create background-subtracted images for CFP and FRET. First, choose region(s) for<br />

background, where no cells or debris are observed during the entire time-lapse imaging.<br />

Second, subtract the averaged value of the background region from the image.<br />

Third, repeat this background subtraction for all planes and make a backgroundsubtracted<br />

stack Þle.<br />

The background value should be obtained for each plane. A macro should be prepared<br />

to repeat this process. Other corrections such as shading can be applied at this stage, if<br />

necessary.<br />

<strong>Signal</strong><br />

<strong>Transduction</strong>:<br />

<strong>Protein</strong><br />

Phosphorylation<br />

14.10.7<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 45


<strong>In</strong> Vivo Imaging of<br />

<strong>Signal</strong><br />

<strong>Transduction</strong><br />

Cascades with<br />

FRET Probes<br />

14.10.8<br />

15. Create ratio images either in simple pseudocolor or intensity-modulated display<br />

mode.<br />

The FRET/CFP value is usually used for showing the level of FRET.<br />

<strong>In</strong> the intensity-modulated display mode, the brightness and color of each pixel indicates<br />

the concentration of the probe and the FRET level, respectively.<br />

16. Create video Þles. From the stacked ratio image, create video Þles either in .avi,<br />

.mov, or.mpg format.<br />

REAGENTS AND SOLUTIONS<br />

Use deionized or distilled water in all recipes and protocol steps. For common stock<br />

solutions, see APPENDIX 2A; for suppliers, see SUPPLIERS APPENDIX.<br />

Lysis buffer<br />

20 mM Tris·Cl, pH 7.5 (APPENDIX 2A)<br />

100 mM NaCl<br />

5mMMgCl2<br />

0.5% (v/v) Triton X-100<br />

Store indeÞnitely at 4 ◦ C<br />

COMMENTARY<br />

Background <strong>In</strong>formation<br />

FRET is a process by which a donor ßuorophore<br />

in an excited state transfers its excitation<br />

energy to an acceptor nonradiatively<br />

through dipole-dipole interactions if the emission<br />

spectrum of the donor overlaps the excitation<br />

spectrum of the acceptor (Lakowicz,<br />

2006; UNIT 17.1). This energy transfer manifests<br />

itself by a quenching of donor ßuorescence<br />

intensity and lifetime, as well as the<br />

simultaneous increase in the emission of acceptor<br />

ßuorescence. Because the efÞciency<br />

of FRET decreases in proportion to the inverse<br />

sixth power of the distance between<br />

the donor and acceptor, FRET has been utilized<br />

as a spectroscopic ruler to measure<br />

the distance (


etween two proteins, it is natural to select a bimolecular<br />

probe (UNIT 17.1 & 21.3). Correction<br />

of FRET signals obtained with a bimolecular<br />

probe is elaborate, but executable (Kraynov<br />

et al., 2000; Sekar and Periasamy, 2003). If<br />

one wishes to visualize the change of the activity<br />

of a protein, pH, Ca 2+ concentration,<br />

etc., a unimolecular probe is preferable; in this<br />

case, one might take advantage of the merits<br />

described above.<br />

Unimolecular FRET probes now cover a<br />

wide range of signal transduction cascades.<br />

The archetype is the Ca 2+ sensor, cameleon<br />

(Miyawaki et al., 1997). The unimolecular<br />

cameleon has been expressed in speciÞc cell<br />

types of genetically tractable animals, aiming<br />

at in vivo Ca 2+ imaging (Kerr et al., 2000;<br />

Fiala et al., 2002). Concentration of other<br />

second-messenger molecules such as cyclic<br />

nucleotides and phosphoinositides can be visualized<br />

using unimolecular FRET probes<br />

(Sato et al., 2000, 2003; Zhang et al., 2001).<br />

<strong>In</strong>dicators for the on and off states of<br />

small GTPases such as Ras, Rap1, Ral, R-Ras,<br />

RhoA, Rac1, and Cdc42 have been developed<br />

(Mochizuki et al., 2001; Itoh et al.,<br />

2002; Yoshizaki et al., 2003; Takaya et al.,<br />

2004; Pertz et al., 2006; Takaya et al., 2007).<br />

These FRET probes have been used for the investigation<br />

of ligand-induced morphological<br />

change, cell migration, cell division, neurite<br />

outgrowth, and membrane trafÞcking. FRET<br />

imaging of Raichu-TC10 by total internal reßection<br />

microscopy uncovered that the activity<br />

of TC10 on the exocytic vesicles drops immediately<br />

before the vesicular fusion (Kawase<br />

et al., 2006).<br />

The largest number of unimolecular FRET<br />

probes are used to monitor protein kinase activities.<br />

<strong>In</strong> archetypical probes, an appropriate<br />

phosphorylation substrate peptide or domain<br />

and a phosphoamino acid binding domain have<br />

been linked to produce a hybrid protein, which<br />

was then ßanked by CFP and YFP. This approach<br />

has yielded indicators for the activities<br />

of PKA, PKC, Src, and EGF receptor<br />

(Kurokawa et al., 2001; Ting et al., 2001;<br />

Zhang et al., 2001; Violin et al., 2003). <strong>In</strong> a<br />

simpler form, the substrate peptide is sandwiched<br />

between CFP and YFP; conformational<br />

changes induced by the phosphorylation<br />

of substrate lead to the change in FRET efÞciency<br />

(Nagai et al., 2000; Yamada et al., 2005;<br />

Brumbaugh et al., 2006). Alternatively, entire<br />

protein kinases are ßanked by YFP and CFP to<br />

produce a kinase-type probe. <strong>Protein</strong> kinases<br />

generally consist of the catalytic and regulatory<br />

domains, the latter of which associates<br />

with the former to hold the enzyme in a closed,<br />

inactive state. Upon stimulation, the regulatory<br />

domain dissociates from the catalytic domain<br />

to drive the enzyme into an open, active state.<br />

This conformational change has been successfully<br />

monitored as a change in FRET efÞciency<br />

in the probes for PKC, Raf, Erk, and CaMKII<br />

(Braun et al., 2005; Terai and Matsuda, 2005;<br />

Takao et al., 2005; Fujioka et al., 2006).<br />

Critical Parameters<br />

For the development of a FRET probe, the<br />

signal gain, i.e., the difference in the FRET<br />

ratio (the lowest versus the highest value of<br />

[YFP ßuorescence]/[CFP ßuorescence] of the<br />

probe excited for CFP) should exceed 30%.<br />

If one uses probes in which the gain is less<br />

than 30%, it is typically difÞcult to observe<br />

a signiÞcant change in FRET efÞciency upon<br />

stimulation.<br />

As for image acquisition, we strongly recommend<br />

starting with the easiest experiment,<br />

using established probes, to become familiar<br />

with the imaging technique. For example, we<br />

recommend monitoring agonist-induced calcium<br />

oscillation with a recently developed<br />

calcium sensor, cameleon YC3.60, which has<br />

an extraordinarily wide dynamic range (Nagai<br />

et al., 2004). Imaging of Ras activation in EGFstimulated<br />

COS cells with Raichu-Ras probe<br />

(Mochizuki et al., 2001) is another fairly easy<br />

example (Fig. 14.10.3).<br />

Recently, the quantitative analysis of acquired<br />

images has become a necessary skill in<br />

live cell imaging. Therefore, it is desirable to<br />

have a good knowledge of image-processing<br />

software. For that purpose, expert training in<br />

image processing is helpful.<br />

Troubleshooting<br />

Table 14.10.1 provides troubleshooting information<br />

for these protocols.<br />

Anticipated Results<br />

Figure 14.10.3 shows the FRET images of<br />

COS-1 cells expressing Raichu-Ras following<br />

EGF stimulation. The FRET images are<br />

presented in an intensity-modulated display<br />

mode. EGF-induced Ras activation was detected<br />

at the periphery of the cell, where membrane<br />

rufßing was prominent. The increase in<br />

the YFP/CFP ratio of Raichu-Ras upon EGF<br />

stimulation is usually 30% to 50%.<br />

<strong>Signal</strong><br />

<strong>Transduction</strong>:<br />

<strong>Protein</strong><br />

Phosphorylation<br />

14.10.9<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 45


Table 14.10.1 Troubleshooting Guide to <strong>In</strong> Vivo Imaging of <strong>Signal</strong>ing Cascades<br />

Problem Possible cause Solution<br />

Gradual decrease in YFP/CFP<br />

ratio without stimulation<br />

Gradual increase in YFP/CFP<br />

ratio without stimulation<br />

<strong>In</strong> Vivo Imaging of<br />

<strong>Signal</strong><br />

<strong>Transduction</strong><br />

Cascades with<br />

FRET Probes<br />

14.10.10<br />

Photobleaching during imaging Lengthen time-lapse interval or<br />

shorten exposure time<br />

1. Photobleaching during<br />

searching for the target cell.<br />

2. Progress of folding of<br />

ßuorescence proteins. <strong>In</strong> this<br />

case, both YFP and CFP<br />

intensities should increase.<br />

Defocus during imaging Distortion of warmed<br />

microscope<br />

Higher (or lower) YFP/CFP ratio<br />

in speciÞc side of the image<br />

Appearance of paired high and<br />

low areas of YFP/CFP ratio at<br />

the edge of cells<br />

Cells expressing FRET probes look<br />

unhealthy<br />

Wait for 5-10 min and restart the<br />

imaging.<br />

Prolong the incubation time after<br />

probe transfection.<br />

Warm up microscope and chambers<br />

in advance.<br />

To avoid defocus completely, a<br />

focus-drift compensation system (e.g.,<br />

Olympus IX2-ZDC) is very useful.<br />

Uneven illumination to samples Align an arc lamp precisely<br />

Misregistration (subtle<br />

displacement between CFP<br />

and YFP images)<br />

Cell toxicity due to the<br />

overexpression of probes<br />

Correct misregistration using<br />

imaging software<br />

Choose the healthy cells expressing<br />

lowlevelsofprobesorretrythe<br />

transfection with less DNA<br />

Figure 14.10.3 Time-lapse experiment of Ras activation upon EGF stimulation in COS-1 cells.<br />

Serum-starved COS-1 cells expressing Raichu-Ras were treated with 50 ng/ml of EGF and imaged<br />

every 2 min. FRET images are shown at the indicated time points. For color figure go to<br />

http://www.currentprotocols.com/protocol/cb1410.<br />

Time Considerations<br />

<strong>In</strong> some cases, more than one hundred candidate<br />

probes should be designed, constructed,<br />

and checked for FRET efÞciency to obtain an<br />

ideal probe. Thus, the term needed to develop<br />

a good probe is ∼3 months. This time frame<br />

signiÞcantly varies, depending on the knowledge<br />

of the target for probe development.<br />

The entire cell-imaging procedure can be<br />

performed in 3 to 4 days from cell seeding.<br />

This period includes 1 day for expression of<br />

FRET probe after transfection, 1 day for data<br />

acquisition, and 1 day for data analysis.<br />

Literature Cited<br />

Ausubel, F.M., Brent, R., Kingston, R.E., Moore,<br />

D.D., Seidman, J.G., Smith, J.A., and Struhl, K.<br />

2009. <strong>Current</strong> <strong>Protocols</strong> in Molecular Biology.<br />

John Wiley & Sons, Hoboken, N.J.<br />

Braun, D.C., GarÞeld, S.H., and Blumberg, P.M.<br />

2005. Analysis by ßuorescence resonance energy<br />

transfer of the interaction between ligands<br />

and protein kinase Cδ in the intact cell. J. Biol.<br />

Chem. 280:8164-8171.<br />

Brumbaugh, J., Schleifenbaum, A., Gasch, A.,<br />

Sattler, M., and Schultz, C. 2006. A dual parameter<br />

FRET probe for measuring PKC and<br />

PKA activity in living cells. J. Am. Chem. Soc.<br />

128:24-25.<br />

Supplement 45 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology


Fiala, A., Spall, T., Diegelmann, S., Eisermann,<br />

B., Sachse, S., Devaud, J.M., Buchner, E.,<br />

and Galizia, C.G. 2002. Genetically expressed<br />

cameleon in Drosophila melanogaster is used<br />

to visualize olfactory information in projection<br />

neurons. Curr. Biol. 12:1877-1884.<br />

Fujioka, A., Terai, K., Itoh, R.E., Aoki, K.,<br />

Nakamura, T., Kuroda, S., Nishida, E., and<br />

Matsuda, M. 2006. Dynamics of the Ras/ERK<br />

MAPK cascade as monitored by ßuorescent<br />

probes. J. Biol. Chem. 281:8917-8926.<br />

Hailey, D.W., Davis, T.N., and Muller, E.G., 2002.<br />

Fluorescence resonance energy transfer using<br />

color variants of green ßuorescent protein.<br />

Methods Enzymol. 351:34-49.<br />

Itoh, R.E., Kurokawa, K., Ohba, Y., Yoshizaki, H.,<br />

Mochizuki, N., and Matsuda, M. 2002. Activation<br />

of rac and cdc42 video imaged by ßuorescent<br />

resonance energy transfer-based singlemolecule<br />

probes in the membrane of living cells.<br />

Mol. Cell. Biol. 22:6582-6591.<br />

Kawase, K., Nakamura, T., Takaya, A., Aoki,<br />

K., Namikawa, K., Kiyama, H., <strong>In</strong>agaki, S.,<br />

Takemoto, H., Saltiel, A.R., and Matsuda, M.<br />

2006. GTP hydrolysis by the Rho family GT-<br />

Pase TC10 promotes exocytic vesicle fusion.<br />

Dev. Cell 11:411-421.<br />

Kerr, R., Lev-Ram, V., Baird, G., Vincent, P., Tsien,<br />

R.Y., and Schafer, W.R. 2000. Optical imaging<br />

of calcium transients in neurons and pharyngeal<br />

muscle of C. elegans. Neuron 26:583-594.<br />

Kiyokawa, E., Hara, S., Nakamura, T., and<br />

Matsuda, M. 2006. Fluorescence (Förster) resonance<br />

energy transfer imaging of oncogene<br />

activity in living cells. Cancer Sci. 97:8-<br />

15.<br />

Kraynov, V.S., Chamberlain, C., Bokoch, G.M.,<br />

Schwartz, M.A., Slabaugh, S., and Hahn, K.M.<br />

2000. Localized Rac activation dynamics visualized<br />

in living cells. Science 290:333-337.<br />

Kurokawa, K., Mochizuki, N., Ohba, Y., Mizuno,<br />

H., Miyawaki, A., and Matsuda, M. 2001. A<br />

pair of ßuorescent resonance energy transferbased<br />

probes for tyrosine phosphorylation of the<br />

CrkII adaptor protein in vivo. J. Biol. Chem.<br />

276:31305-31310.<br />

Kurokawa, K., Takaya, A., Fujioka, A., Terai, K.,<br />

and Matsuda, M. 2004. Visualizing the signal<br />

transduction pathways in living cells with GFPbased<br />

FRET probes. Acta Histochem. Cytochem.<br />

37:347-355.<br />

Lakowicz, K.R. 2006. Energy transfer. <strong>In</strong> Principles<br />

of Fluorescence Spectroscopy, 3rd ed.<br />

(J.R. Lakowicz, ed.) pp. 443-475. Springer, New<br />

York.<br />

Miyawaki, A. 2003. Visualization of the spatial<br />

and temporal dynamics of intracellular signaling.<br />

Dev. Cell 4:295-305.<br />

Miyawaki, A., Llopis, J., Heim, R., McCaffery,<br />

J.M., Adams, J.A., Ikura, M., and Tsien, R.Y.<br />

1997. Fluorescent indicators for Ca2+ based<br />

on green ßuorescent proteins and calmodulin.<br />

Nature 388:882-887.<br />

Mochizuki, N., Yamashita, S., Kurokawa, K., Ohba,<br />

Y., Nagai, T., Miyawaki, A., and Matsuda, M.<br />

2001. Spatio-temporal images of growth-factorinduced<br />

activation of Ras and Rap1. Nature<br />

411:1065-1068.<br />

Nagai, T., Yamada, S., Tominaga, T., Ichikawa,<br />

M., and Miyawaki, A. 2004. Expanded dynamic<br />

range of ßuorescent indicators for Ca2+ by circularly permuted yellow ßuorescent proteins.<br />

Proc. Natl. Acad. Sci. U.S.A. 101:10554-<br />

10559.<br />

Nagai, Y., Miyazaki, M., Aoki, R., Zama, T.,<br />

<strong>In</strong>ouye, S., Hirose, K., Iino, M., and Hagiwara,<br />

M. 2000. A ßuorescent indicator for visualizing<br />

cAMP-induced phosphorylation in vivo. Nat.<br />

Biotechnol. 18:313-316.<br />

Pertz, O., Hodgson, L., Klemke, R.L., and Hahn,<br />

K.M. 2006. Spatiotemporal dynamics of RhoA<br />

activity in migrating cells. Nature 440:1069-<br />

1072.<br />

Sato, M., Hida, N., Ozawa, T., and Umezawa, Y.<br />

2000. Fluorescent indicators for cyclic GMP<br />

based on cyclic GMP-dependent protein kinase<br />

Iα and green ßuorescent proteins. Anal. Chem.<br />

72:5918-5924.<br />

Sato, M., Ueda, Y., Takagi, T., and Umezawa, Y.<br />

2003. Production of Ptd<strong>In</strong>sP3 at endomembranes<br />

is triggered by receptor endocytosis. Nat. Cell<br />

Biol. 5:1016-1022.<br />

Sekar, R.B. and Periasamy, A. 2003. Fluorescence<br />

resonance energy transfer (FRET) microscopy<br />

imaging of live cell protein localizations. J. Cell<br />

Biol. 160:629-633.<br />

Takao, K., Okamoto, K.I., Nakagawa, T., Neve,<br />

R.L., Nagai, T., Miyawaki, A., Hashikawa, T.,<br />

Kobayashi, S., and Hayashi, Y. 2005. Visualization<br />

of synaptic Ca2+ /calmodulin-dependent<br />

protein kinase II activity in living neurons. J.<br />

Neurosci. 25:3107-3112.<br />

Takaya, A., Ohba, Y., Kurokawa, K., and Matsuda,<br />

M. 2004. RalA activation at nascent lamellipodia<br />

of epidermal growth factor-stimulated Cos7<br />

cells and migrating Madin-Darby canine kidney<br />

cells. Mol. Biol. Cell 15:2549-2557.<br />

Takaya, A., Kamio, T., Masuda, M., Mochizuki, N.,<br />

Sawa, H., Sato, M., Nagashima, K., Mizutani,<br />

A., Matsuno, A., Kiyokawa, E., and Matsuda, M.<br />

2007. R-Ras regulates exocytosis by Rgl2/Rlfmediated<br />

activation of RalA on endosomes. Mol.<br />

Biol. Cell 18:1850-1860.<br />

Terai, K. and Matsuda, M. 2005. Ras binding opens<br />

c-Raf to expose the docking site for mitogenactivated<br />

protein kinase kinase. EMBO Rep.<br />

6:251-255.<br />

Ting, A.Y., Kain, K.H., Klemke, R.L., and Tsien,<br />

R.Y. 2001. Genetically encoded ßuorescent reporters<br />

of protein tyrosine kinase activities in living<br />

cells. Proc. Natl. Acad. Sci. U.S.A. 98:15003-<br />

15008.<br />

Violin, J.D., Zhang, J., Tsien, R.Y., and Newton,<br />

A.C. 2003. A genetically encoded ßuorescent<br />

reporter reveals oscillatory phosphorylation by<br />

protein kinase C. J. Cell Biol. 161:899-909.<br />

<strong>Signal</strong><br />

<strong>Transduction</strong>:<br />

<strong>Protein</strong><br />

Phosphorylation<br />

14.10.11<br />

<strong>Current</strong> <strong>Protocols</strong> in Cell Biology Supplement 45


<strong>In</strong> Vivo Imaging of<br />

<strong>Signal</strong><br />

<strong>Transduction</strong><br />

Cascades with<br />

FRET Probes<br />

14.10.12<br />

Wang, Y., Botvinick, E.L., Zhao, Y., Berns, M.W.,<br />

Usami, S., Tsien, R.Y., and Chien, S. 2005. Visualizing<br />

the mechanical activation of Src. Nature<br />

434:1040-1045.<br />

Yamada, A., Hirose, K., Hashimoto, A., and Iino,<br />

M. 2005. Real-time imaging of myosin II regulatory<br />

light-chain phosphorylation using a new<br />

protein biosensor. Biochem. J. 385:589-594.<br />

Yoshizaki, H., Ohba, Y., Kurokawa, K., Itoh, R.E.,<br />

Nakamura, T., Mochizuki, N., Nagashima, K.,<br />

and Matsuda, M. 2003. Activity of Rho-family<br />

G proteins during cell division as visualized with<br />

FRET-based probes. J. Cell Biol. 162:223-232.<br />

Zhang, J., Ma, Y., Taylor, S.S., and Tsien, R.Y. 2001.<br />

Genetically encoded reporters of protein kinase<br />

A activity reveal impact of substrate tethering.<br />

Proc. Natl. Acad. Sci. U.S.A. 98:14997-15002.<br />

Key References<br />

Miyawaki, 2003. See above.<br />

Comprehensive review of GFP-based FRET technology.<br />

<strong>In</strong>ternet Resources<br />

http://www.path1.med.kyoto-u.ac.jp/mm/<br />

e-phogemon/index.htm<br />

Web site for further information about the Raichutype<br />

FRET probe. Setup of the FRET imaging system<br />

is described.<br />

Supplement 45 <strong>Current</strong> <strong>Protocols</strong> in Cell Biology

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!