13.12.2012 Views

GaN devices

GaN devices

GaN devices

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Unipolar Devices III:<br />

<strong>GaN</strong> Electronic Devices<br />

Tutorial in the frame of the TARGET network<br />

Joachim Würfl<br />

Ferdinand-Braun-Institut für<br />

Höchstfrequenztechnik<br />

Gustav-Kirchhoff-Straße 4<br />

12489 Berlin<br />

Participating institutions:<br />

� Fraunhofer Institut für angewandte<br />

Festkörperphysik, Freiburg, Germany<br />

� Technical University Vienna, Austria<br />

� AMS, Rome, Italy<br />

...Translating ideas into innovation<br />

IAF<br />

Fraunhofer Institut<br />

Angewandte<br />

Festkörperphysik


Outline<br />

<strong>GaN</strong> electronic <strong>devices</strong> –<br />

An introduction<br />

Device fabrication<br />

Understanding device<br />

operation<br />

Design of high power<br />

microwave <strong>GaN</strong> <strong>devices</strong><br />

Future <strong>GaN</strong> <strong>devices</strong><br />

Conclusions<br />

� Comparison to other device families<br />

� Applications<br />

� Principles of operation<br />

� Epitaxy<br />

� Processing<br />

� Performance limitations and how to get rid of it<br />

� Reliability<br />

� Field plate <strong>devices</strong><br />

� Power bar designs<br />

� State of the art results<br />

� Novel epitaxial approaches<br />

� <strong>GaN</strong> HBTs


<strong>GaN</strong> electronic <strong>devices</strong><br />

– An introduction


Semiconductor microwave power <strong>devices</strong><br />

maximale maximale Leistung Leistung (Watt) (Watt)<br />

Maximum power (W)<br />

1000<br />

100<br />

10<br />

1<br />

SiC <strong>GaN</strong> HFET<br />

SiC <strong>GaN</strong> HFET<br />

Si LDMOS GaAs HBT, HEMT<br />

Si LDMOS GaAs HBT, HEMT<br />

0,1<br />

0,1 1 10 100 1000<br />

Frequency Frequenz (GHz) (GHz)<br />

InP HBT, HEMT<br />

InP HBT, HEMT<br />

Device classes and frequency vs. maximum possible<br />

microwave power


Comparison of semiconductor materials<br />

Band Gap (eV)<br />

Electron mobility<br />

(cm²/Vs)<br />

Electric breakdown field<br />

(10 6 V/cm)<br />

Saturation velocity<br />

(10 7 cm/s)<br />

Thermal conductivity<br />

(W/Kcm)<br />

Johnsons Figure of Merit<br />

(~V Br ² x v sat ²)<br />

Maximum estimated operation<br />

temperature (°C)<br />

Si<br />

1.1<br />

ind.<br />

1500<br />

0.3<br />

1.0<br />

1.5<br />

1<br />

200<br />

GaAs<br />

1.43<br />

dir.<br />

8500<br />

0.4<br />

2.0<br />

0.46<br />

7<br />

300<br />

4H-SiC<br />

3.26<br />

ind.<br />

1000<br />

2.0<br />

2.0<br />

4.9<br />

180<br />

500<br />

6H SiC<br />

3.0<br />

ind.<br />

500<br />

2.4<br />

2.0<br />

4.9<br />

260<br />

500<br />

<strong>GaN</strong>/<br />

Al<strong>GaN</strong><br />

3.42<br />

dir.<br />

1250*<br />

3.3<br />

2.7<br />

1.3<br />

760<br />

500<br />

* 2DEG mobility up to 2000 cm²/Vs


Applications<br />

Oscillator<br />

1/f noise<br />

Distortion<br />

RF noise<br />

High power amplifier<br />

Low noise amplifier<br />

Breakdown<br />

Voltage<br />

High speed communication Gate array<br />

f max<br />

Power<br />

Handling<br />

f T<br />

P diss<br />

ADC ASIC Air cooled LSI<br />

g m<br />

σVT<br />

GaAs - HEMT<br />

GaAs - HBT<br />

Si - BJT<br />

<strong>GaN</strong> - HEMT


<strong>GaN</strong> high power <strong>devices</strong>: Applications<br />

Demands from system<br />

applications<br />

More demanding<br />

requirements regarding:<br />

� Linearity<br />

� Output power<br />

� Efficiency<br />

� Heat sinking<br />

� Total system noise factor<br />

To be expected in future:<br />

Realization in <strong>GaN</strong> technology<br />

<strong>GaN</strong> <strong>devices</strong> for<br />

„Enabling microwave components“<br />

� High power microwave amplifier (HPA)<br />

� Highly linear amplifiers<br />

� Robust low noise amplifiers (LNA)<br />

� Power switches<br />

Civil applications<br />

� Base stations for mobile communications<br />

� Satellite communication<br />

Military applications<br />

� Phased array radar systems


Advantages of <strong>GaN</strong>-HFETs in power amplifiers<br />

conventional technology <strong>GaN</strong> technology<br />

T T<br />

T<br />

T<br />

T T<br />

T T<br />

input T T<br />

output input output<br />

T<br />

T T<br />

T<br />

Higher operation voltage leads to:<br />

� Higher power densities<br />

� Higher impedance level<br />

� Higher linearity<br />

� Less complex transformation and power combining networks<br />

Less complex circuit design<br />

� Small chip areas<br />

� Higher reliability


III-Nitride hetero structures for<br />

microwave power transistors<br />

R.J.. Trew, MTT-S 2004<br />

Bandgap-Engineering<br />

� Realization of HEMTs<br />

Spontaneous and<br />

piezoelectric polarization<br />

Advantages:<br />

� Reduced Coulomb-<br />

Scattering in 2DEG<br />

� Higher mobility<br />

� Higher carrier<br />

concentration in 2DEG


High Electron Mobility Transistors (HEMT):<br />

How does it work?<br />

Source<br />

AlGaAs<br />

Gate<br />

Drain<br />

GaAs 2-DEG<br />

spacer<br />

AlGaAs GaAs<br />

Distribution<br />

of 2DEG carriers<br />

Additional<br />

features<br />

Example: GaAs/AlGaAs HEMTs<br />

� Electrons from AlGaAs drift to<br />

AlGaAs/GaAs interface<br />

� There: Formation of 2DEG<br />

� Extremely high electron mobility<br />

along interface<br />

� 2DEG concentration controllable by<br />

Gate electrode<br />

Speciality: <strong>GaN</strong>/Al<strong>GaN</strong> HEMT<br />

� Parameters controlling 2DEG<br />

concentration:<br />

-Doping of Al<strong>GaN</strong> barrier<br />

-Spontaneous polarization<br />

-Piezoelectric polarization


Spontaneous and piezoelectric polarization<br />

Relaxed<br />

Substrate<br />

Compressive<br />

strain<br />

Substrate


Mechanism of spontaneous polarization<br />

Charge distribution of<br />

valence electrons (e/ų)<br />

Ionic character of<br />

Ga-N compound<br />

+<br />

Deviation from ideal<br />

c/a ratio<br />

Resulting<br />

polarization<br />

Spontaneous<br />

polarization


c/a ratio<br />

c/a-ratio and spontaneous polarization<br />

Spont. polarization (C/m²)<br />

� c/a ratio always smaller as in ideal case<br />

� Spontaneous polarization increases in the order <strong>GaN</strong>, InN, Al<strong>GaN</strong><br />

� Relevant for high power <strong>GaN</strong> microwave transistors:<br />

Difference between <strong>GaN</strong> and Al<strong>GaN</strong>


Principles of 2DEG formation in Al<strong>GaN</strong>/<strong>GaN</strong> structures<br />

E F<br />

Al x Ga 1-x N<br />

P piezo<br />

∆P 0<br />

2DEG<br />

<strong>GaN</strong><br />

∇<br />

∆P 0 = P 0 (<strong>GaN</strong>)- P 0 (Al<strong>GaN</strong>)<br />

differential spontaneous polarization at the<br />

junction<br />

P piezo<br />

Gauss theorem: -ρ total = . (P piezo + P 0 )<br />

positive polarization-induced charge ρtotal to compensate ρtotal tensile strain in the<br />

Al<strong>GaN</strong> lattice-matched to <strong>GaN</strong><br />

2DEG accumulation<br />

polarization doping no intentional doping necessary !


2DEG formation in Al<strong>GaN</strong>/<strong>GaN</strong> HFET-structures<br />

<strong>GaN</strong><br />

Al<strong>GaN</strong><br />

<strong>GaN</strong><br />

Saphir<br />

P SP<br />

P SP<br />

P SP<br />

P PE<br />

-<br />

+<br />

ρ+<br />

N<br />

Ga<br />

O<br />

Al<br />

E F<br />

[0001]<br />

E C<br />

2DEG<br />

[0001]<br />

Ga-face polarity N-face polarity<br />

P SP<br />

P SP<br />

P SP<br />

P PE<br />

+<br />

-<br />

ρ+<br />

Ga<br />

N<br />

O<br />

Al<br />

E F<br />

E C<br />

2DEG


Device fabrication


Epitaxy on non-lattice matched substrates (1)<br />

Possible substrate solutions for <strong>GaN</strong> FETs:<br />

Lattice mismatch (%)<br />

Availability / Price (2“, $)<br />

Thermal Conductivity<br />

(W/cmK)<br />

Sapphire<br />

13<br />

100<br />

0.3<br />

n-type<br />

SiC<br />

3.1<br />

500<br />

4<br />

s.i.<br />

SiC<br />

3.1<br />

3000<br />

4<br />

<strong>GaN</strong> bulk<br />

0<br />

not<br />

available<br />

1.3<br />

IAF<br />

Fraunhofer Institut<br />

Angewandte<br />

Festkörperphysik<br />

Si<br />

17<br />

100<br />

1.48


Epitaxy on non-lattice matched substrates (2)<br />

Analysis of dislocations and epitaxial quality<br />

dislocations � TEM image<br />

Non-lattice matched substrate (sapphire)<br />

IAF<br />

Fraunhofer Institut<br />

Angewandte<br />

Festkörperphysik<br />

� PEC: photo enhanced etching<br />

� Dislocations are etched slower than<br />

defect free areas<br />

� Dislocation rich area up to a thickness<br />

of 500 nm


Epitaxy on non-lattice matched substrates (3)<br />

Metal Organic Chemical<br />

Vapour Deposition (MOCVD)<br />

Both types deliver similar epitaxial quality<br />

MOCVD:<br />

� Faster growth<br />

� Mass production<br />

Molecular Beam Epitaxy<br />

(MBE)<br />

MBE:<br />

� More options for polarity of<br />

interfaces<br />

IAF<br />

Fraunhofer Institut<br />

Angewandte<br />

Festkörperphysik


Impact of epitaxy on polar hetero<strong>devices</strong><br />

� Material composition x:<br />

Increasing n s while<br />

preserving mobility µ<br />

� No/little doping required<br />

Source<br />

Al x Ga 1-x N<br />

Al x Ga 1-x N<br />

Gate<br />

Drain<br />

Si-doping<br />

<strong>GaN</strong> 2-DEG<br />

Mobility (cm 2 / Vs)<br />

Sheet Carrier Concentration (1E13 cm -2 )<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

25 30<br />

Al content (%)<br />

35<br />

HEMT on Sapphire<br />

Al=25%<br />

Al=30%<br />

Al=35%<br />

0.4 0.6 0.8 1.0 1.2 1.4 1.6<br />

Sheet Carrier Concentration (1E13 cm -2 )<br />

IAF<br />

Fraunhofer Institut<br />

Angewandte<br />

Festkörperphysik


Technology of Al<strong>GaN</strong>/<strong>GaN</strong> HFETs (1)<br />

S D<br />

S D<br />

Ti-reflector layer on transparent wafer<br />

� Structuring of reflector layer<br />

� Definition of alignment marks<br />

Deposition of Source-/Drain contacts<br />

(Ti/Al/Ti/Au/WSiN)<br />

� Removal of reflector layer<br />

� Annealing at 850°C in N 2<br />

On chip isolation:<br />

� Dry etching of active layers<br />

� RIE-process, BCl 3 :Cl 2 :Ar


Technology of Al<strong>GaN</strong>/<strong>GaN</strong> HFETs (2)<br />

Dielectric<br />

passivation<br />

S G D<br />

S G D<br />

MIM-capacitor<br />

Resistor<br />

Gate-Technology (Pt-Au):<br />

� Electron beam lithography:<br />

Gate length 0.3 µm<br />

Passivation and dry etching of contact<br />

windows<br />

1 st interconnect (Ti-Pt-Au, 500nm)<br />

Passive components:<br />

� MIM-capacitor<br />

� NiCr-resistor<br />

� Electroplated Au air bridge<br />

(6 µm)


Technology of Power Cells<br />

WSiN x -Diffusionbarrier<br />

encapsulats ohmic contact<br />

Power cell with common Source Design<br />

(connected by airbridge)


Backend Processing<br />

Wafer thinning<br />

Via etching and<br />

metalization<br />

Chip dicing


Backend Processing (1)<br />

Thinning of SiC-Substrate to 100 µm<br />

� Lapping with different diamond<br />

pastes<br />

� Polishing<br />

Via technology<br />

� Dry chemical via process<br />

� Laser micro-machining<br />

Via metallization<br />

� Plating base: Ti/Au 30/1000 nm<br />

Electroplating


Backend Processing (2)<br />

Definition of dicing streets<br />

� Lithography and etching<br />

� Laser micro-machining<br />

Wafer dicing<br />

� Sawing and cleaving<br />

Chip delivery:<br />

� Diced chips on dicing frame


L-Band Powerbars based on laser-vias<br />

� Full wafer thickness<br />

(Wafer not thinned)<br />

� Via-diameter 90 µm<br />

� Technological specialty<br />

Through-Vias


Chip Dicing<br />

Laser scribe lines<br />

Laser induced removal of Au in<br />

dicing streets<br />

(focus on backside)<br />

Dicing street<br />

Dicing street after wafer sawing<br />

and cleaning<br />

(focus on front side)


<strong>GaN</strong>-HFETs:<br />

Power <strong>devices</strong> on transparent wafers


16x250 µm power cells<br />

Device data at 2 GHz:<br />

� P max = 12.3 W<br />

� PAE = 59%<br />

� Linear gain: 19 dB<br />

� Gain at P max : 16 dB<br />

dB MSG<br />

Po(dBm); G(dB); PAE<br />

(%)<br />

40<br />

30<br />

20<br />

10<br />

0<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0,1 1 10 100<br />

Pout<br />

G<br />

PAE<br />

ID<br />

f (GHz)<br />

Pmax=12.3W<br />

-10 0 10 20 30<br />

Pin (dBm)<br />

0,8<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

ID (A)


Understanding device operation


I D (A)<br />

DC-characteristics<br />

Device:<br />

<strong>GaN</strong>-HFET 2x50 µm,<br />

L g = 0.3 µm<br />

0.12<br />

0.1<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

I D (A)<br />

0.12<br />

0.1<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0 5 10 15 20 25 30<br />

V DS (V)<br />

0<br />

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2<br />

V GS (V)<br />

Typical <strong>GaN</strong>-HFET I/Vcharacteristics:<br />

� I DSS_max = 1.1 A/mm<br />

� g m = 220 mS/mm<br />

� Slight hysteresis in output<br />

characteristics


I (mA) ds<br />

Compression of drain current: Gate lag conditions<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 5 10 15 20 25 30<br />

V (V)<br />

ds V = 0.0 V, V = 0.0 V<br />

gs ds<br />

V = -3.0 V, V = 0.0 V<br />

gs ds<br />

I (mA)<br />

ds 140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 5 10 15 20 25 30<br />

V (V) ds<br />

V = 0.0 V, V = 0.0 V<br />

gs ds<br />

V = -3.0 V, V = 0.0 V<br />

gs ds<br />

Biasing point for pulse measurements: V GS = -3 V, (pinch off); V DS = 0 V<br />

Before passivation:<br />

� Drain current reduction<br />

After passivation<br />

� Slight recovery of drain current


Reduction of power dispersion (3)<br />

5. Field plate structures<br />

� Suppressing surface/interface traps<br />

� Field plate flattens electric field distribution<br />

G<br />

� High electric field<br />

� Trapped electrons<br />

form virtual gate<br />

Al<strong>GaN</strong><br />

+ + + + + + + + + + + + + + + + + + +<br />

<strong>GaN</strong><br />

Without field plate<br />

D<br />

� Electric field<br />

maximum reduced<br />

� Modulation of<br />

carriers due to F.P<br />

Al<strong>GaN</strong><br />

+ + + + + + + + + + + + + + + + + +<br />

<strong>GaN</strong><br />

With field plate<br />

D


I (mA)<br />

ds Compression of drain current: Drain lag conditions<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 5 10 15 20 25 30<br />

V (V) ds<br />

V gs = -3.0 V, V ds = 0.0 V<br />

V gs = -3.0 V, V ds = 26.0 V<br />

I (mA) ds<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

V gs = -3.0 V, V ds = 0.0 V<br />

V gs = -3.0 V, V ds = 26.0 V<br />

0<br />

0 5 10 15 20 25 30<br />

V (V)<br />

ds Biasing point for pulse measurements: V GS = -3 V, (pinch off); V DS = 26 V<br />

Before passivation:<br />

� Very pronounced drain lag<br />

After passivation:<br />

� Strong recovery of drain lag


Maximum obtainable output power<br />

I DS<br />

V P<br />

g m<br />

I max<br />

V GS<br />

V K<br />

R opt = (V DSmax –V K ) / I max<br />

V GS =0<br />

V GS =V P<br />

P max = 1/2 · (V DSmax –V K ) · I max<br />

V DD<br />

V DSmax<br />

V DS<br />

Ohmic Saturation Breakdown<br />

∆I<br />

Optimum output impedance for<br />

max. output amplitude given by:<br />

� Voltage knee V K<br />

� Breakdown onset<br />

� Saturation current


If current compression:<br />

Strong reduction of maximum obtainable output power<br />

I DS<br />

V P<br />

g m<br />

Therefore:<br />

I max<br />

V GS<br />

V K<br />

Current compression has to<br />

reduced by any means<br />

V DSmax<br />

V DS<br />

Ohmic Saturation Breakdown<br />

Not accessible<br />

∆I<br />

Maximum power swing reduced by:<br />

� Surface traps<br />

� Buffer layer traps


I ds (mA)<br />

Dependency of output power density<br />

on current compression<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0<br />

0<br />

0 5 10 15 20 25 30<br />

0 5 10 15 20 25 30<br />

0 5 10 15 20 25 30<br />

V ds (V)<br />

Static<br />

Dynamic<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

V ds (V)<br />

Static<br />

Dynamic<br />

P out = 5.2 W/mm P out = 3.9 W/mm P out = 1.8 W/mm<br />

� Transistor geometry: 2x50 µm<br />

� Frequency: 2 GHz<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

V ds (V)<br />

RF-power performance<br />

Static<br />

Dynamic


Physical background of current compression<br />

Main cause of current compression<br />

� Electron/hole traps due to<br />

surface/interface states & material<br />

defects<br />

Location of traps<br />

� Al<strong>GaN</strong> surface / interface (I)<br />

� Al<strong>GaN</strong> layer (II)<br />

� <strong>GaN</strong> buffer (III)<br />

� Interface substrate / buffer (IV)<br />

Causes of trap formation<br />

� Impurity addition during growth<br />

� Threading dislocation due to lattice<br />

mismatch & defects<br />

� Excess of carrier gasses & uncontrolled<br />

growth parameters<br />

� Increasing Al mole fraction and Al<strong>GaN</strong><br />

relaxation<br />

� Surface exposure & damage during<br />

device processing<br />

S<br />

G<br />

D<br />

(I) (I)<br />

Al<strong>GaN</strong> (II)<br />

<strong>GaN</strong> (III)<br />

IV<br />

Substrate


Current compression:<br />

An analogue from every days world<br />

� A parallelism could be made for a choked tap, that<br />

cannot modulate the flowing liquid (the Drain current)<br />

because of a throttling (the virtual Gate due to the<br />

charged traps) in the tube (the channel) before<br />

and/or after it.


Gate lag<br />

I ds (mA)<br />

Experimental observation Explanation<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 5 10 15 20<br />

V ds (V)<br />

Bias points: V ds = 0.0 V; V gs = 0.0 V<br />

V ds = 0.0 V; V gs = -7.0 V<br />

Open channel: V ds = 0.0 V ; V gs = 0.0 V<br />

S D<br />

G<br />

Al<strong>GaN</strong><br />

+ + + + + + + + + + + + + + + + + + + + + + + + + + + +<br />

<strong>GaN</strong><br />

Depleted channel: V ds = 0.0 V ; V gs = -7.0 V<br />

� Pulsing the gate: ē are trapped in surface<br />

states, negative charging.<br />

S G<br />

D<br />

Al<strong>GaN</strong><br />

+ + + + + + + + + + + + + + + + + + + + + + + + + + + +<br />

<strong>GaN</strong><br />

Traps


I ds (mA)<br />

Drain lag<br />

Experimental observation Explanation<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 5 10 15 20<br />

V ds (V)<br />

Bias points: V ds = 0.0 V; V gs = -7.0 V<br />

V ds = 20.0 V; V gs = -7.0 V<br />

Depleted channel: V ds = 0.0 V ; V gs = -7.0 V<br />

S D<br />

G<br />

Al<strong>GaN</strong><br />

+ + + + + + + + + + + + + + + + + + + + + + + + + + + +<br />

<strong>GaN</strong><br />

More Depleted channel:<br />

V ds = 20.0 V ; V gs = -7.0 V<br />

Traps<br />

Pulsing the drain: ē are also trapped in<br />

buffer traps due to high V ds.<br />

S G<br />

D<br />

Al<strong>GaN</strong><br />

+ + + + + + + + + + + + + + + + + + + + + + + + + + + +<br />

Traps


Reduction of power dispersion (1)<br />

1. Surface passivation<br />

2. n- type <strong>GaN</strong> cap<br />

Mechanism:<br />

� Neutralizing surface / interface traps by n + -donors (n-doped <strong>GaN</strong><br />

cap) & shallow donors (SiN x )<br />

� Therefore: No virtual gate formation<br />

G<br />

Al<strong>GaN</strong><br />

Trapped electrons<br />

form virtual gate<br />

+ + + + + + + + + + + + + + + + + + +<br />

<strong>GaN</strong><br />

D<br />

G<br />

Al<strong>GaN</strong><br />

Removal of virtual<br />

gate due to SiN x<br />

+ + + + + + + + + + + + + + + + + + +<br />

<strong>GaN</strong><br />

D<br />

Al<strong>GaN</strong><br />

G<br />

Removal of virtual gate<br />

due to n-doped cap<br />

+ + + + + + + + + + + + + + + + + + +<br />

<strong>GaN</strong><br />

D


Reduction of power dispersion (2)<br />

3. Recessed gate process<br />

4. Light stimulation<br />

� Suppression of surface/interface traps<br />

� No effective charging of surface states and therefore removal of virtual gate<br />

� De-trapping of carriers<br />

G<br />

<strong>GaN</strong><br />

Trapped electrons<br />

form virtual gate<br />

Al<strong>GaN</strong><br />

+ + + + + + + + + + + + + + + + + + +<br />

D<br />

No trapping of<br />

electrons leaking<br />

from the gate<br />

D<br />

G<br />

Al<strong>GaN</strong><br />

+ + + + + + + + + + + + + + + + + + +<br />

<strong>GaN</strong><br />

Ec<br />

Ev<br />

Traps<br />

Electron<br />

hole<br />


Design and realization of<br />

high power microwave <strong>GaN</strong> <strong>devices</strong>


Field plates: Output power increase<br />

Psat [W/mm]<br />

8,0<br />

7,5<br />

7,0<br />

6,5<br />

6,0<br />

5,5<br />

5,0<br />

4,5<br />

4,0<br />

3,5<br />

3,0<br />

A2: G-D=2µm<br />

A6: G-D=6µm<br />

A6L: G-D=6µm, FP=1µm<br />

A6M: G-D=6µm, FP=2µm<br />

A6N: G-D=6µm, FP=3µm<br />

24 26 30 36 42 48 54 60<br />

Vds [V]<br />

<strong>GaN</strong> 707-4 (Wg=2*125µm)<br />

Power density vs. bias voltage<br />

� Systematically higher output power level<br />

� Power density can be increased by 100%<br />

S<br />

G<br />

D<br />

FP<br />

Field plate<br />

Field plate connected to<br />

gate at gate pad


Field plates: Trade-offs<br />

MSG [dB]<br />

24<br />

22<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

24 26 30 36 42<br />

Vds [V]<br />

A2: G-D=2µm<br />

A6: G-D=6µm<br />

A6L: G-D=6µm, FP=1µm<br />

A6M: G-D=6µm, FP=2µm<br />

A6N: G-D=6µm, FP=3µm<br />

<strong>GaN</strong> 707-4 (Wg=2*125µm)<br />

Maximum stable gain (MSG) vs. bias voltage<br />

� Reduced gain (MSG) due<br />

to field plate. Increase of<br />

- Base/collector<br />

capacitance<br />

- Effective gate length<br />

� Trade-off between<br />

maximum achievable<br />

power level and speed


High power transistors: Power bar structures<br />

S<br />

G<br />

S<br />

S<br />

G<br />

S<br />

S<br />

G<br />

S<br />

S<br />

G<br />

S<br />

S<br />

G<br />

S<br />

D<br />

S<br />

S<br />

D<br />

S<br />

S<br />

D<br />

S<br />

S<br />

D<br />

S<br />

S<br />

D<br />

S S<br />

� Bonding areas according to device current<br />

and mounting requirements<br />

� Sub-cells separated on chip<br />

- Avoid odd mode oscillations<br />

- On chip measurability<br />

� Inter sub-cell connection by power bar<br />

bonding


Thermal management<br />

Flip chip technology:<br />

� Flip chip bonding of <strong>GaN</strong> HEMT discrete <strong>devices</strong> on AlN substrates could<br />

be used to improve <strong>devices</strong> thermal management. It can be be also used<br />

as an alternative solution to via holes for MMIC ground connection.<br />

AlN Carrier Substrate <strong>GaN</strong> Chip<br />

Au/Sn<br />

bumps


Breakdown in <strong>GaN</strong> HEMTs<br />

+<br />

S<br />

EF<br />

G<br />

+<br />

breakdowns<br />

Reduction of break down:<br />

D<br />

Al<strong>GaN</strong><br />

<strong>GaN</strong><br />

� Highly resistive buffer<br />

� Dislocation-free surface<br />

� field plate (eliminates impact<br />

ionisation in the channel)<br />

S-D breakdown<br />

� Complex avalanche-injection process<br />

- Highly resistive buffer layer needed !<br />

G-D breakdown<br />

� Through the surface<br />

� Impact ionisation in the channel<br />

� Schottky barrier breakdown<br />

Literature<br />

� Vaschenko et.al.; Microelectron. Reliab. 37<br />

(1997), 1137-1141<br />

� Kuzmik et.al.; Appl. Phys. Letters 83 (2003),<br />

4655-4657)<br />

� Nakano et.al; phys. stat. sol. (c) 0 (2003)<br />

2335<br />

� Dayakonova et.al; Appl. Phys. Lett. 72 (1998)<br />

2562


Pout (dBm)<br />

<strong>GaN</strong>-Amplifier Module<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

22.4 W<br />

Pout<br />

PAE<br />

Gain<br />

28V D , 1A , 1.87GHz<br />

N0713-1 5x8X250 _16R10_4S3<br />

0 5 10 15 20 25 30 35 0<br />

Pin (dBm)<br />

Single stage amplifier<br />

� In- and output matching<br />

� 10 mm Gate width<br />

� 43,5dBm (22.4 W) @ 1.87GHz<br />

50<br />

40<br />

30<br />

20<br />

10<br />

PAE (%), Gain (dB)


Power bar <strong>devices</strong>: Performance<br />

Gain (dB) /Output Power (dBm)<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

Gain<br />

Output Power<br />

PAE<br />

10<br />

0<br />

0 5 10 15 20 25 30 35<br />

Input Power (dBm)<br />

Device in test fixture<br />

� P max = 32 W<br />

� PAE = 42%<br />

� Linear gain: 17 dB<br />

� Gain at P max : 15 dB<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

PAE (%)<br />

2 GHz test fixture


Bench marking of <strong>GaN</strong> power <strong>devices</strong><br />

P (W) bzw. P/WG (W/mm)<br />

1000<br />

100<br />

10<br />

1<br />

0,1<br />

NEC<br />

�<br />

�<br />

�<br />

�<br />

FBH �<br />

�<br />

�<br />

Fujitsu<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

Europe World wide<br />

Cree<br />

��<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

1 10 100<br />

DC<br />

FBH IAF<br />

TRW<br />

Frequenz (GHz)<br />

�<br />

Cree<br />

IAF<br />

Triquint<br />


Future <strong>GaN</strong> <strong>devices</strong>


New structures for high-power performance<br />

Energy gap at 300 K (eV)<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

AlN<br />

Al<strong>GaN</strong><br />

<strong>GaN</strong><br />

In 0.17 Al 0.83 N<br />

InAlN<br />

In<strong>GaN</strong><br />

InN<br />

3,1 3,2 3,3 3,4 3,5 3,6<br />

Lattice constant, at 300 K (Angstrom)<br />

Therefore:<br />

Goals:<br />

� Better carrier confinement in 2DEG<br />

� Increase 2 DEG concentration<br />

Conventional approach: Increase of<br />

Al mole-fraction in Al<strong>GaN</strong><br />

� Increase of strain in Al<strong>GaN</strong><br />

� Increase of spontaneous polarization<br />

� Increase of 2DEG density<br />

Problem:<br />

InAlN/(In)<strong>GaN</strong> QW new approach<br />

� Relaxation of the Al<strong>GaN</strong> layer


New structures for high-power performance<br />

In x Al 1-x N<br />

(lattice<br />

matched,<br />

x= 0.17, or<br />

tensile<br />

strain)<br />

Al0.2Ga0.8N/<strong>GaN</strong><br />

(conventional)<br />

E F<br />

P piezo<br />

DP 0<br />

2DEG<br />

PpiezoDP0 <strong>GaN</strong><br />

In y Ga 1-y N<br />

(lattice matched<br />

(y= 0) or<br />

compressive<br />

strain)<br />

∆ P0 (Ccm -2 ) Ppiezo (Ccm -2 ) ntotal (cm -2 ) ∆EC (eV)<br />

-1.04 x 10 -6<br />

In0.17Al0.83N/<strong>GaN</strong> -4.37 x 10 -6<br />

In0.17Al0.83N/ In0.10Ga0.90N -4.34 x 10 -6<br />

-6.9 x 10 -7<br />

1.08 x 10 13<br />

0 2.73 x 10 13<br />

1.6 x 10 -6<br />

3.71 x 10 13<br />

0.3 (0.75∆Eg)<br />

0.68<br />

>0.68


New structures for high-power performance<br />

Advantages<br />

� Very high 2 DEG density expected (� high power HEMTs), controlled<br />

strain<br />

Disadvantages<br />

� InAlN growth is difficult<br />

Literature<br />

� J. Kuzmik; IEEE El.Dev.Letters 22, 510-512 (2001)<br />

� M. Higashiwaki; Jap. J. Applied Physics 43, L768-770 (2004)


MOS <strong>GaN</strong> HEMT<br />

Advantages of MOS/MIS-Structures:<br />

� Low gate leakage<br />

� reduced current collapse<br />

� lower noise<br />

� positive sweep on gate (higher power, normally off device possible)<br />

Requirements on dielectric layers:<br />

� High electrical strength, no bulk traps<br />

� Good insulation,<br />

� Low interface state density<br />

Literature:<br />

� Khan et.al.; IEEE Trans. On Microw. Th. and Tech.51 (2003) 624-633.<br />

� Khan et.al.; phys. stat. sol. (a) 200 (2003) 155.<br />

� Adivarahan et.al.; IEEE Electron Dev. Lett. 24 (2003) 541


<strong>GaN</strong>-HBT: Main advantages<br />

Property<br />

Eg (eV)<br />

v sat (cm/s)<br />

E crit (MV/cm)<br />

χ (W/cmK)<br />

<strong>GaN</strong><br />

3.4<br />

3x10 7<br />

3.3<br />

1.3<br />

4H-SiC<br />

3.3<br />

2x10 7<br />

2.0<br />

4.9<br />

GaAs<br />

1.4<br />

2x10 7<br />

<strong>GaN</strong> wide-band-gap-material (Eg) as collector layer:<br />

� High RF-power<br />

� High operating voltage<br />

� Operation at high temperatures (300 - 500°C)<br />

Advantages of <strong>GaN</strong>:<br />

� Highest saturation velocity v sat gives lowest transit time<br />

0.4<br />

0.5<br />

� Highest breakdown field E crit allows highest bias voltage<br />

� Good thermal conductivity (SiC better!)<br />

Si<br />

1.1<br />

0.6x10 7<br />

0.3<br />

1.5<br />

<strong>GaN</strong> HBTs:<br />

Extremely high power<br />

at high frequency


<strong>GaN</strong>-HBT: Comparison with GaAs-HBT [2,3]<br />

Structure:<br />

<strong>GaN</strong>-HBT<br />

50 nm base<br />

100 nm collector<br />

<strong>GaN</strong>-HBT<br />

200 nm base<br />

7000 nm collector<br />

GaAs-HBT<br />

100 nm base<br />

3000 nm collector<br />

Breakdown<br />

voltage (V)<br />

15<br />

1000<br />

70<br />

Current gain<br />

cut-off<br />

frequency f T<br />

200<br />

6<br />

20<br />

Power gain<br />

cut-off<br />

frequency f max<br />

200<br />

300<br />

~100<br />

Superior RF-power performance expected for <strong>GaN</strong>-HBTs!


<strong>GaN</strong>-HBT: Main world-wide activities<br />

Research<br />

group:<br />

J. Pankove<br />

Astralux Inc.,<br />

USA [4,5]<br />

U.K. Mishra,<br />

et.al., UCSB<br />

USA [2,6,7,8]<br />

T. Makimoto,<br />

et.al., NTT<br />

Japan [9,10]<br />

S. Estrada,<br />

et.al., UCSB<br />

USA [11]<br />

Structure:<br />

emtter/base/<br />

collector<br />

n-<strong>GaN</strong>/p-SiC/<br />

n-SiC<br />

n-Al<strong>GaN</strong>/p-<strong>GaN</strong>/<br />

n-<strong>GaN</strong><br />

n-<strong>GaN</strong>/p-In<strong>GaN</strong>/<br />

n-<strong>GaN</strong><br />

n-AlGaAs/<br />

p-GaAs/n-<strong>GaN</strong><br />

Current gain at<br />

room or higher<br />

temperature<br />

β~10000000 (RT)<br />

β~100 (535°C)<br />

β ~ 3 - 35 (RT)<br />

β~ 20 - 2000 (RT)<br />

β~ 0.2 - 0.5 (RT)<br />

Remarks,<br />

drawbacks<br />

Differential current gain<br />

due to high leakage<br />

SiC-purity issue<br />

first <strong>GaN</strong>-HBT in 1998<br />

base doping issue<br />

processing issues<br />

double hetorojunction<br />

base regrowth optimized<br />

4 W DC-power obtained<br />

GaAs-<strong>GaN</strong>-hetero-<br />

interface by wafer fusion<br />

(1 h at 750°C and 2 Mpa)


<strong>GaN</strong>-HBT: Technological challenges (a few…)<br />

Highly p-doped and high quality p-<strong>GaN</strong> base not yet available:<br />

� shallowest acceptor Mg is a deep acceptor (E A -E V ~110-200 meV)<br />

� low activation at RT: N A ~5x10 19 cm -3 gives p~8x10 17 cm -3 (2 % activation!)<br />

� high base sheet resistance: 100 kΩ/ for 100 nm base (200 Ω/ for GaAs)<br />

� Mg-dopant memory effect during growth and out-diffusion of Mg into emitter<br />

� high density of point defects in the base leads to low minority lifetime<br />

and thus low current gain<br />

Lack of <strong>GaN</strong>-substrates: heteroepitaxy on sapphire or SiC<br />

� large lattice mismatch leads to high dislocation density in grown layers<br />

� threading dislocations identified as source of collector-emitter leakage current<br />

� <strong>GaN</strong> templates or LEO/ELO growth as possible improvements<br />

<strong>GaN</strong>-emitter definition:<br />

� Cl 2 RIE is primarily physical etching causing damage to extrinsic base<br />

� high contact resistance on RIE etched base leads to high offset voltage (~10 V)<br />

� selective extrinsic base regrowth as possible solution<br />

or selective area emitter growth using AlN or SiN mask


Al<strong>GaN</strong>/<strong>GaN</strong>-HBT: Towards an RF device…<br />

Development of the UCSB Al<strong>GaN</strong>/<strong>GaN</strong>-HBT device:<br />

� Offset voltage reduced from >10 V to 1-5 V by using regrown extrinsic base<br />

� Current gain increased from 3 to 10 due to improvement in dislocation density<br />

(LEO substrate)<br />

� Main issues: current leakage due to threading dislocations and low minority<br />

carrier lifetime in the base<br />

� Current gain cut-off frequency of 2 GHz reported


<strong>GaN</strong>/In<strong>GaN</strong>-DHBT: Better epi gives a better device…<br />

Improvements of the NTT <strong>GaN</strong>/In<strong>GaN</strong>-HBT device:<br />

� p-In<strong>GaN</strong>: 10% base dopant activation (N A ~2x10 19 cm -3 gives p~2x10 18 cm -3 )<br />

� Offset voltage reduced from 5 V to 1 V due to improved base contacts (optimized<br />

regrown extrinsic base): high current gain > 2000 obtained<br />

� Output characteristics indicates electron blocking "spike" at base-collector junction<br />

� Current limitation due to Kirk-effect at 7 kA/cm 2 (70 kA/cm 2 for GaAs-HBT [13])<br />

� 50x30 µm 2 DHBT operating up to 50 V gives 4 W of DC-power corresponding to<br />

DC power density of 270 kW/cm 2 (375 kW/cm 2 for GaAs-HBT [13])


<strong>GaN</strong>/SiC-HBT: Pankove´s approach<br />

Cross section of the <strong>GaN</strong>/SiC transistor Common-base I-V-characteristics<br />

Pankove´s (Astralux, Univ. of Colorado, USA) <strong>GaN</strong>/SiC-HBT device:<br />

� LPE grown SiC base and MBE grown <strong>GaN</strong> emitter<br />

� 100,000 of differential current gain obtained from common base characteristics<br />

� Poor RIE etch selectivity <strong>GaN</strong>-to-SiC causing high leakage current at V CB > 10V<br />

� Improvement with selectively grown <strong>GaN</strong> emitter:<br />

current gain of 1,000,000 at RT and 100 at 535°C reported<br />

� Not reproduced due to parasitic deep level defects in p-type 6H-SiC<br />

� Work in progress using purer 4H-SiC (β~15@ RT) but lack of production quantities


AlGaAs/GaAs/<strong>GaN</strong>-HBT: Fused-wafer approach<br />

Development of the UCSB fused-HBT device:<br />

� Joining the best of two worlds: high quality and highly doped p-GaAs base with<br />

high breakdown voltage of n-<strong>GaN</strong> collector<br />

� AlGaAs/GaAs fused with <strong>GaN</strong>: 1 h at 750°C in N 2 under 2 MPa pressure giving<br />

mechanically stable junction with good structural quality (


<strong>GaN</strong>-HBT: Perspectives<br />

Show-stoppers: a number of outstanding material and processing issues<br />

� Base layer: large acceptor ionization energies and low hole mobilities<br />

� Growth of <strong>GaN</strong> layers: still a high defect density<br />

� Base ohmic contacts: high resistance causes high offset voltage<br />

� Emitter definition: etching damage or base regrowth to be further optimized<br />

Possible solutions:<br />

� Improved substrates for <strong>GaN</strong> growth like HVPE-grown <strong>GaN</strong> templates<br />

� Further optimization of base layer regrowth<br />

� Direct wafer bonding (wafer-fusion): structural improvement<br />

References <strong>GaN</strong>-HBTs<br />

[1] S.J. Pearton et.al., Mater. Sci. Eng. 250 (2000) 1-158<br />

[2] L.S. McCarthy et.al., Trans. Electron Dev. 48 (2001) 543-551<br />

[3] P. Kurpas et.al., Technical Digest IEDM 2002 (2002) 682-684<br />

[4] http://www.mdatechnology.net/ (Tech Search, Spinoff Technology: #321)<br />

[5] L.S. McCarthy et.al., Electron Dev. Lett. 20 (1999) 277-279<br />

[6] H. Xing et.al., J. Phys.: Condens. Matter. 13 (2001) 7139-7157<br />

[7] T. Makimoto et.al., Proc. Int. Workshop on Nitride Semic. 2000 (2000) 969-972<br />

[8] http://www2.electrochem.org/cgi-bin/ abs?mtg=206&abs=1255&type=pdf<br />

[9] S. Estrada et.al., Appl. Phys. Lett. 82 (2003) 820-822


Conclusions


Conclusions (1)<br />

Material and<br />

manufacturing<br />

Device results<br />

Material continuously improves<br />

� High mobility structures<br />

� Reduced power compression<br />

� High voltage capability<br />

� <strong>GaN</strong> on Si substrates<br />

Established device processes available<br />

� Special process modules for suppression of power<br />

dispersion<br />

� Via and backside technology<br />

� Developments towards higher bias voltages<br />

Transition to larger wafers 2“ � 3“, 4“<br />

Promising results from S- to Q-Band<br />

� Power cells and power bars up to 250 W (L-Band)<br />

� <strong>GaN</strong> MMICs<br />

� Low noise applications


Conclusions (2)<br />

Present Challenges<br />

Future perspectives<br />

Still a problem: Power dispersion<br />

� Adapted technological solutions<br />

High voltage operation<br />

Reliability issues unsolved<br />

� Required: >10 6 h at 125 °C and 48 V<br />

Further optimization of conventional approaches<br />

New technologies on the horizon:<br />

� <strong>GaN</strong>-MOS <strong>devices</strong><br />

� <strong>GaN</strong> HBTs

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!