12.12.2012 Views

Electromagnetic spectrum and the LASER

Electromagnetic spectrum and the LASER

Electromagnetic spectrum and the LASER

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Electromagnetic</strong> <strong>spectrum</strong> <strong>and</strong><br />

<strong>the</strong> <strong>LASER</strong><br />

September 2011<br />

Zoltán Ujfalusi<br />

University of Pécs, Faculty of Medicine,<br />

Dept. Biophysics<br />

Scientists<br />

physicists, chemists, astronomers<br />

• Sir Isaac Newton<br />

• Sir William Herschel<br />

• Johann Wilhelm Ritter<br />

• Joseph von Fraunhofer<br />

• Robert Wilhelm Bunsen<br />

• Gustav Robert Kirchhoff<br />

• Albert Einstein<br />

• Louis-Victor de Broglie<br />

• James Clerk Maxwell<br />

• Heinrich Rudolf<br />

- dispersion (1664)<br />

- IR (1800)<br />

- UV (1801)<br />

- lines in <strong>the</strong> solar spectra (1814)<br />

- interpretation of lines (1861)<br />

- interpretation of lines (1861)<br />

- light quantum (photon) (1904)<br />

- matter-waves (1924)<br />

- EM radiation <strong>the</strong>oretically (1864)<br />

- EM radiation pragmatically (1888)<br />

Huygens-Fresnel principle<br />

1. All points on a wave front can be considered as<br />

point sources for <strong>the</strong> production of spherical<br />

secondary wavelets.<br />

2. The interference of <strong>the</strong> secondary wavelets<br />

determines <strong>the</strong> fur<strong>the</strong>r behaviour of <strong>the</strong> wave.<br />

Transversal<br />

wave<br />

E<br />

B<br />

x<br />

x<br />

The light<br />

<strong>Electromagnetic</strong> wave<br />

magnetic field<br />

strength- vector<br />

electric field strength -<br />

vector<br />

wavelength<br />

The vectors of <strong>the</strong> electric <strong>and</strong> <strong>the</strong> magnetic gradients<br />

are perpendicular to each o<strong>the</strong>r <strong>and</strong> to <strong>the</strong> direction of<br />

<strong>the</strong> propagation of <strong>the</strong> wave.<br />

• James Clerk Maxwell (1864)<br />

verified <strong>the</strong>ir existence <strong>the</strong>oretically.<br />

• Heinrich Rudolf (1888) confirmed<br />

<strong>the</strong>ir existence experimentally.<br />

Interaction of <strong>the</strong> light with matter<br />

• Quanted energy uptaking (photon)<br />

• Interaction of electromagnetic wave<br />

with atomic system (matter):<br />

• reflection<br />

• absorption<br />

• transmission<br />

• (scattering)<br />

1


The dual nature of <strong>the</strong> light<br />

Wave<br />

(propagation)<br />

• Diffraction<br />

• Interference<br />

• Polarization<br />

Particle<br />

(interaction)<br />

• photoeffect<br />

• Compton-effect<br />

Albert Einstein (1905) : photoelectric effect<br />

photon (light quantum), its energy: E = h·n (or E = h·f)<br />

Louis-Victor de Broglie (1924) : Matter-waves <strong>the</strong>ory<br />

(All materials have wave nature as well.)<br />

λ = h/p, where p is <strong>the</strong> impulse => λ = h/m·v<br />

Polarization<br />

Important physical quantities <strong>and</strong><br />

relations<br />

Frequency: n (1/s)<br />

Wavelength:<br />

� (m)<br />

Wavenumber: n (cm-1 )<br />

c<br />

v<br />

1<br />

�<br />

Energy: E (J) h . n<br />

Extinct. coeff.:� (M -1 cm -1 or (mg/ml) -1 cm -1 )<br />

a<br />

Interference<br />

�x � s � s � a�<br />

sin�<br />

1<br />

2<br />

Einstein: energy of a photon (light-quantum)<br />

To achieve max. gain: To achieve max. weakening:<br />

1<br />

a� sin� � n�<br />

� a�<br />

� � ( n � ) ��<br />

sin 2<br />

Linearly polarized light<br />

2


Praya dubia<br />

Joseph von Fraunhofer<br />

(1787–1826)<br />

Types of <strong>the</strong> luminescence<br />

Bathocyroë<br />

Atolla vanhoeffeni<br />

Line spectra (emission) of some elements<br />

He<br />

Hg<br />

Na<br />

Ne<br />

Ar<br />

<strong>LASER</strong> HISTORY IN A NUTSHELL<br />

Light Amplification by Stimulated Emission of Radiation<br />

1917 - Albert Einstein: <strong>the</strong>oretical prediction of stimulated emission<br />

1946 - G. Meyer-Schwickera<strong>the</strong>r: first eye surgery with light<br />

1950 - Arthur Schawlow <strong>and</strong> Charles Townes: emitted photons may be in <strong>the</strong><br />

visible range<br />

1954 - N.G. Basow, A.M. Prochorow, <strong>and</strong> C. Townes: ammonia maser<br />

1960 - Theodore Maiman: first laser (ruby laser)<br />

1964 - Basow, Prochorow, Townes (Nobel prize): quantum electronics<br />

1970 - Arthur Ashkin: laser tweezers<br />

1971 - Dénes Gábor (Nobel prize): holography<br />

1997 - S. Chu, W.D. Phillips <strong>and</strong> C. Cohen-Tanoudji (Nobel prize): atom cooling<br />

with laser<br />

3


E 2<br />

r(n)<br />

E 1<br />

Laser principles I. Stimulated emission<br />

Elementary radiative processes:<br />

1. Absorption 2. Spontaneous emission 3. Stimulated emission<br />

B 12<br />

•Frequency of transition:<br />

n 12=N 1B 12r(n)<br />

•�E= E 2-E 1=hn<br />

energy quantum<br />

is absorbed.<br />

N 2<br />

N 1<br />

Explanation: two-state atomic or molecular system<br />

E 1, E2 : energy levels, E2>E1<br />

r(n) : spectral power density of external field<br />

N 1, N2 : number of atoms, molecules on <strong>the</strong> given energy level<br />

B 12, A21, B21: transition probabilities between energy levels (Einstein coefficients), B12 = B21<br />

A 21<br />

•Frequency of transition:<br />

n 21=N 2A 21<br />

•E 2-E 1 photons<br />

radiate independently<br />

in all directions.<br />

r(n)<br />

B 21<br />

•Frequency of transition:<br />

n 21=N 2B 21r(n)<br />

•Upon external stimulation.<br />

•Field energy increases.<br />

•Phase, direction <strong>and</strong><br />

frequency of emitted <strong>and</strong><br />

external photons are identical.<br />

Laser principles III. Optical resonance<br />

End mirror<br />

Pumping<br />

Active medium<br />

d=n�/2<br />

Partially<br />

transparent mirror<br />

Resonator:<br />

•two, parallel planar (or concave) mirrors<br />

•Couples part of <strong>the</strong> optical power back in <strong>the</strong> active medium<br />

•Positive feedback -> self-excitation -> resonance<br />

Types of laser<br />

Based on active medium:<br />

1. Solid state lasers<br />

Crystals or glasses doped with metal ions; Ruby, Nd-YAG, Ti-zaphire<br />

Red - infrared spectral range; CW, Q-switched modes, high power<br />

2. Gas lasers<br />

Best known: He-Ne laser (10 He/Ne). Small energy, wide use<br />

CO 2 laser: CO 2-N 2-He mixture; �~10 µm; enormous power (100 W)<br />

Laser beam<br />

3. Dye lasers<br />

Dilute solution of organic dyes (e.g., rhodamine, coumarine); pumped with ano<strong>the</strong>r laser<br />

Large power (in Q-switched mode); Tunable<br />

4. Semiconductor lasers<br />

No need for resonator mirrors (internal reflection)<br />

Red, IR spectral range. Large CW power (up to 100 W)<br />

Beam characteristics not ideal. Wide use due to small size.<br />

Laser principles II. Population inversion<br />

•Amplification depends<br />

on <strong>the</strong> relative population<br />

of energy levels<br />

E 1<br />

E 0<br />

A<br />

F<br />

Active<br />

medium F+dF<br />

dz<br />

Thermal equilibrium Population inversion<br />

•Population inversion only<br />

in multiple-state systems!<br />

•Pumping: electric,<br />

optical, chemical energy<br />

1. Small divergence<br />

Parallel, collimated beam<br />

E 2<br />

Pumping<br />

E 0<br />

E 1<br />

E 0<br />

E 1<br />

Fast relaxation<br />

Metastable state<br />

Properties of laser<br />

2. High power<br />

In continuous (CW) mode: tens, hundreds of watts (e.g., CO 2)<br />

Q-switched mode: instantaneous power is enormous (GW)<br />

Large spatial power density due to small divergence<br />

3. Small spectral width<br />

“Monochrome”<br />

Large spectral power density<br />

4. Polarized<br />

5. Possibility of very short pulses<br />

ps, fs<br />

Laser transition<br />

6. Coherence<br />

phase equivalence, ability for interference<br />

Temporal coherence (phase equivalence of photons emitted at different times)<br />

Spatial coherence (phase equivalence across beam diameter)<br />

4

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!