12.12.2012 Views

Mechanisms of the ultraviolet light response in mammalian cells

Mechanisms of the ultraviolet light response in mammalian cells

Mechanisms of the ultraviolet light response in mammalian cells

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

COMMENTARY<br />

<strong>Mechanisms</strong> <strong>of</strong> <strong>the</strong> <strong>ultraviolet</strong> <strong>light</strong> <strong>response</strong> <strong>in</strong> <strong>mammalian</strong> <strong>cells</strong>*<br />

SABINE MAI, BERND STEIN, SUSANNE VAN DEN BERG, BERND KAINA,<br />

CHRISTINE LtlCKE-HUHLE, HELMUT PONTA, HANS J. RAHMSDORF, MARCUS KRAEMER,<br />

STEPHAN GEBEL and PETER HERRLICH<br />

Keniforschungszentnim Karlsruhe, Institute <strong>of</strong> Genetics and Toxicology, PO Box 3640, D-7500 Karlsruhe 1, FRG<br />

*This article is based on a keynote address by Peter Herrlich to <strong>the</strong> Jo<strong>in</strong>t UKEMS and DNA Repair Network Meet<strong>in</strong>g <strong>in</strong> Brighton, April 1989.<br />

Introduction<br />

Environmental stresses produce physical and/or chemical<br />

damage <strong>in</strong> <strong>cells</strong>. Commonly, we accept that an<br />

affected cell may ei<strong>the</strong>r die or repair <strong>the</strong> damage. Over<br />

<strong>the</strong> past few years a much more elaborate type <strong>of</strong> <strong>response</strong><br />

to environmental stress has been elucidated. A common<br />

feature <strong>of</strong> <strong>the</strong> new type <strong>of</strong> <strong>response</strong> is <strong>the</strong> syn<strong>the</strong>sis <strong>of</strong> new<br />

macromolecules and <strong>the</strong> subsequent change <strong>in</strong> behavior<br />

that could at least <strong>in</strong> part be def<strong>in</strong>ed as '<strong>response</strong><br />

modification'. Transiently, <strong>the</strong> <strong>cells</strong> ma<strong>in</strong>ta<strong>in</strong> memory <strong>of</strong><br />

<strong>the</strong> particular stress factor and will react differently upon<br />

a second encounter with <strong>the</strong> same or a related factor.<br />

Examples are <strong>the</strong> syn<strong>the</strong>sis <strong>of</strong> heat-shock prote<strong>in</strong>s and <strong>the</strong><br />

concomittantly acquired heat resistance (Johnston and<br />

Kucey, 1988; Riabowohl et al. 1988); reduced metal<br />

toxicity by cadmium-<strong>in</strong>duced metal b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>s<br />

(Beach and Palmiter, 1981; Kar<strong>in</strong> et al. 1983; for earlier<br />

evidence, see Kagi and Nordberg, 1979) and <strong>the</strong> 'u.v.<br />

<strong>response</strong>' (Schorpp et al. 1984; Ka<strong>in</strong>a et al. 1989a,fe).<br />

We use <strong>the</strong> term 'u.v. <strong>response</strong>' for <strong>the</strong> genetic changes<br />

that follow irradiation with <strong>ultraviolet</strong> <strong>light</strong> (u.v.) or<br />

treatment with o<strong>the</strong>r DNA damag<strong>in</strong>g agents (Schorpp et<br />

al. 1984; Ka<strong>in</strong>a et al. 19896). The u.v. <strong>response</strong> overlaps<br />

with o<strong>the</strong>r <strong>response</strong>s such as those to phorbol esters, to<br />

growth factors and to heat shock. Our laboratory has been<br />

concentrat<strong>in</strong>g on two immediate reactions that occur <strong>in</strong><br />

u.v.-irradiated human or rodent <strong>cells</strong> <strong>in</strong> culture: gene<br />

amplification and <strong>in</strong>duction <strong>of</strong> gene expression. Several<br />

o<strong>the</strong>r laboratories share this <strong>in</strong>terest (Scher and Friend,<br />

1978; Lavi, 1981; Misk<strong>in</strong> and Ben-Ishai, 1981; Nomura<br />

and Oishi, 1983; Schimke, 1984; Johnson et al. 1986;<br />

Ronai et al. 1987; Valerie et al. 1988; Kartasova and van<br />

de Putte, 1988; Fornace et al. 1988; Yalk<strong>in</strong>oglu et al.<br />

1988; Kar<strong>in</strong> and Herrlich, 1989; Lambert et al. 1989;<br />

Angulo et al. 1989).<br />

Gene amplification is detected several hours after<br />

treatment <strong>of</strong> <strong>cells</strong> ei<strong>the</strong>r with u.v., gamma or alpha<br />

irradiation, or with one <strong>of</strong> several DNA-damag<strong>in</strong>g chemical<br />

agents. Many portions <strong>of</strong> <strong>the</strong> genome can presumably<br />

be amplified. In <strong>the</strong> absence <strong>of</strong> selection for <strong>the</strong> amplified<br />

gene, <strong>the</strong> amplification is <strong>of</strong>ten too low for experimental<br />

Journal <strong>of</strong> Cell Science 94, 609-615 (1989)<br />

Pr<strong>in</strong>ted <strong>in</strong> Great Brita<strong>in</strong> © The Company <strong>of</strong> Biologists Limited 1989<br />

detection. A simian virus 40 (SV40) T antigen-responsive<br />

orig<strong>in</strong> <strong>of</strong> replication represents a unique exception.<br />

Although <strong>the</strong> primary events at orig<strong>in</strong>s may well be<br />

identical, T antigen magnifies <strong>the</strong> <strong>response</strong> so that a 20fold<br />

<strong>in</strong>crease, or more, <strong>in</strong> copy number is readily seen<br />

(Lavi, 1981). Over-replication occurs several hundred<br />

kilobases <strong>in</strong> both directions from an <strong>in</strong>tegrated SV40<br />

orig<strong>in</strong> (Lticke-Huhle and Herrlich, 1987).<br />

Induction by u.v. irradiation <strong>of</strong> expression is detected<br />

for many genes (Misk<strong>in</strong> and Ben-Ishai, 1981; Rahmsdorf<br />

etal. 1982, 1983; Maltzman and Czyzyk, 1984; Schorpp<br />

et al. 1984; Kartasova and van de Putte, 1988; Fornace et<br />

al. 1988) <strong>in</strong>clud<strong>in</strong>g those cod<strong>in</strong>g for <strong>the</strong> human collagenase<br />

and <strong>the</strong> human immunodeficiency virus (HIV-1)<br />

(Angel et al. 1986, 1987; Herrlich, 1987; Ste<strong>in</strong> et al.<br />

1989a,b). These genes are activated with<strong>in</strong> m<strong>in</strong>utes <strong>of</strong><br />

u.v. treatment and gene expression cont<strong>in</strong>ues for several<br />

hours. By nuclear run-on experiments, <strong>the</strong> maximal<br />

transcriptional rate <strong>of</strong> at least some genes is reached<br />

with<strong>in</strong> about 15 m<strong>in</strong> after treatment <strong>of</strong> <strong>the</strong> <strong>cells</strong>.<br />

For didactic reasons we dist<strong>in</strong>guish three consecutive<br />

steps <strong>in</strong> <strong>the</strong> u.v. <strong>response</strong> (Fig. 1), which help <strong>in</strong> <strong>the</strong><br />

discussion <strong>of</strong> <strong>the</strong> mechanisms <strong>in</strong>volved. (1) The primary<br />

<strong>in</strong>teraction between <strong>the</strong> DNA damag<strong>in</strong>g agent relevant to<br />

<strong>the</strong> <strong>response</strong> and <strong>the</strong> cell; (2) signal transduction and<br />

molecular targets; and (3) long-last<strong>in</strong>g consequences.<br />

The primary <strong>in</strong>teraction<br />

For <strong>in</strong>duced gene amplification it has long been recognized<br />

that <strong>the</strong> replicon exam<strong>in</strong>ed does not need to absorb<br />

radiation energy or to react with an <strong>in</strong>duc<strong>in</strong>g chemical.<br />

For <strong>in</strong>stance, amplification can be elicited <strong>in</strong> a nonirradiated,<br />

non-treated nucleus upon fusion <strong>of</strong> <strong>the</strong> cell<br />

with an irradiated or chemically treated cell (Nomura and<br />

Oishi, 1984; van der Lubbe et al. 1986; Lambert et al.<br />

1986; Liicke-Huhle and Herrlich, 1987). The amplification<br />

depended on <strong>the</strong> dose to which <strong>the</strong> irradiated cell<br />

was exposed. Thus <strong>the</strong> site <strong>of</strong> energy absorption or<br />

primary <strong>in</strong>teraction with <strong>the</strong> chemical agent could be<br />

dist<strong>in</strong>guished from <strong>the</strong> site <strong>of</strong> gene amplification. Pre-<br />

609


sumably, genes that respond to u.v. by elevated expression<br />

(without be<strong>in</strong>g amplified) are also entities dist<strong>in</strong>ct<br />

from <strong>the</strong> primary target <strong>of</strong> u.v. absorption. S<strong>in</strong>ce<br />

u.v. irradiation <strong>of</strong> <strong>cells</strong> leads to <strong>the</strong> secretion <strong>of</strong> a factor,<br />

which also activates most <strong>of</strong> <strong>the</strong> genes that are activated<br />

by direct u.v. (see below), cell fusion experiments cannot<br />

prove this hypo<strong>the</strong>sis. But dose-target size calculations<br />

lead to a similar conclusion for both <strong>in</strong>duced gene<br />

amplification and gene activation: <strong>the</strong> genes expressed or<br />

amplified do not need to react directly with <strong>the</strong> <strong>in</strong>duc<strong>in</strong>g<br />

agent.<br />

u.v. and reactive chemicals can <strong>of</strong> course alter a large<br />

number <strong>of</strong> macromolecules <strong>in</strong> a cell. The relevant target<br />

with respect to <strong>the</strong> genetic <strong>response</strong> turned out to be<br />

DNA. One type <strong>of</strong> evidence stems from a comparison <strong>of</strong><br />

<strong>in</strong>duction <strong>in</strong> <strong>cells</strong> from ei<strong>the</strong>r a normal <strong>in</strong>dividual or a<br />

patient with Xeroderma pigmentosum. The <strong>in</strong>duction <strong>of</strong><br />

gene expression <strong>in</strong> sk<strong>in</strong> fibroblasts from a patient with<br />

Xeroderma pigmentosum (group A) required a much<br />

smaller dose <strong>of</strong> u.v. than that required to obta<strong>in</strong> <strong>the</strong> same<br />

effect <strong>in</strong> fibroblasts from a normal <strong>in</strong>dividual (Misk<strong>in</strong> and<br />

Ben-Ishai, 1981; Schorppefa/. 1984; Ste<strong>in</strong> etal. 1989a).<br />

The <strong>cells</strong> from <strong>the</strong>se two sources are supposed to be<br />

isogenic except for <strong>the</strong> ability to handle u.v.-<strong>in</strong>duced<br />

photoproducts <strong>in</strong> <strong>the</strong> DNA. Cells from a patient with<br />

Xeroderma pigmentosum group A cannot remove photo-<br />

A. Genetic <strong>response</strong> to genotoxic agents<br />

Immediate<br />

Primary action<br />

<strong>response</strong><br />

Photoproducts,<br />

adducts,<br />

radicals,<br />

ionic fluxes<br />

Virus <strong>in</strong>duction,<br />

gene<br />

amplification,<br />

altered program<br />

<strong>of</strong><br />

gene expression<br />

Relevant target? Signal-receiv<strong>in</strong>g<br />

structures?<br />

B. <strong>Mechanisms</strong> <strong>in</strong>volved<br />

Boxl<br />

u.v. <strong>response</strong> is<br />

elicited by<br />

DNA damage.<br />

Critical lesions,<br />

e.g. O-6-alkyl-G,<br />

photoproducts<br />

unrepaired<br />

<strong>in</strong>XPA<br />

610 S. Mai et al.<br />

i i<br />

Signal transfer<br />

can occur<br />

via <strong>the</strong> cytoplasm<br />

Box 2<br />

Transcription<br />

and replication<br />

factors are<br />

activated:<br />

'early doma<strong>in</strong>'<br />

b<strong>in</strong>d<strong>in</strong>g factor,<br />

NF*rB, AP-1,<br />

p67/p62<br />

i<br />

Long-last<strong>in</strong>g<br />

consequences<br />

Chromosomal<br />

aberrations,<br />

rearrangements,<br />

po<strong>in</strong>t mutations<br />

Effector<br />

gene products?<br />

Box 3<br />

Avoidance <strong>of</strong><br />

death and <strong>of</strong><br />

mutations by<br />

repair<br />

Oncogene-driven<br />

mutagenesis<br />

SV40 amplification,<br />

<strong>in</strong>duction <strong>of</strong> genes<br />

that code for:<br />

transcription factors,<br />

enzymes act<strong>in</strong>g<br />

at <strong>the</strong> extracellular matrix,<br />

repair and mutator functions<br />

products. At a given time after u.v. treatment, normal<br />

<strong>cells</strong> will only reta<strong>in</strong> <strong>the</strong> same number <strong>of</strong> photoproducts<br />

as <strong>the</strong> Xeroderma <strong>cells</strong>, after receiv<strong>in</strong>g a much larger dose<br />

(e.g. 10-fold). Thus, one <strong>of</strong> <strong>the</strong> photoproducts that<br />

Xeroderma <strong>cells</strong> cannot remove must be an <strong>in</strong>termediate<br />

<strong>in</strong> <strong>the</strong> activation <strong>of</strong> genes.<br />

Because <strong>of</strong> <strong>the</strong> need for DNA damage, u.v. <strong>of</strong> wavelength<br />

260nm is most efficient <strong>in</strong> elicit<strong>in</strong>g <strong>the</strong> u.v.<br />

<strong>response</strong>. For <strong>in</strong>stance, <strong>the</strong> action spectrum for gene<br />

activation <strong>in</strong> human fibroblasts and <strong>in</strong> various cell l<strong>in</strong>es<br />

falls steeply to non-detectable effect-levels at wavelengths<br />

longer than 310nm (Ste<strong>in</strong> et al. 1989a). The action<br />

spectrum matches that <strong>of</strong> pathological changes <strong>in</strong> human<br />

sk<strong>in</strong> (Longstreth, 1988).<br />

Ano<strong>the</strong>r very promis<strong>in</strong>g approach towards explor<strong>in</strong>g<br />

<strong>the</strong> primary target <strong>of</strong> u.v. absorption and carc<strong>in</strong>ogen<br />

action <strong>in</strong>volves <strong>the</strong> <strong>in</strong>troduction <strong>of</strong> def<strong>in</strong>ed molecules <strong>in</strong>to<br />

<strong>cells</strong> (we are grateful to Dr Raymond Devoret for<br />

suggest<strong>in</strong>g this approach). We replace <strong>the</strong> direct treatment<br />

<strong>of</strong> <strong>cells</strong> by <strong>of</strong>fer<strong>in</strong>g <strong>cells</strong> carc<strong>in</strong>ogen-treated free<br />

DNA. The damaged DNA is <strong>in</strong>troduced ei<strong>the</strong>r by<br />

transfection or simply by uptake from solution (Liicke-<br />

Huhle et al. 1989). Structurally altered DNA can <strong>in</strong>deed<br />

elicit <strong>the</strong> u.v. <strong>response</strong> with respect to <strong>the</strong> two end po<strong>in</strong>ts<br />

chosen: gene amplification and gene <strong>in</strong>duction (a full<br />

account <strong>of</strong> <strong>the</strong>se experiments will be published elsewhere<br />

Fig. 1. Operational scheme <strong>of</strong> <strong>the</strong> u.v.<br />

<strong>response</strong>.


soon). The DNA sequence used is irrelevant and does not<br />

need to carry a eukaryotic orig<strong>in</strong> <strong>of</strong> replication. Thus <strong>the</strong><br />

altered DNA is not replicated. So far, u.v., gamma<br />

irradiation and alkylation by A'-methyl-JV'-nitrosoguanid<strong>in</strong>e<br />

have been tested with success. In addition,<br />

s<strong>in</strong>gle-strandedness <strong>of</strong> DNA may also elicit a <strong>response</strong>,<br />

although weakly. The alkylated DNA was most effective<br />

<strong>in</strong> HeLa <strong>cells</strong> defective <strong>in</strong> alkylation repair and <strong>the</strong> effect<br />

was counteracted by supply<strong>in</strong>g <strong>the</strong> same <strong>cells</strong> with <strong>the</strong><br />

bacterial ada gene (under SV40 promoter control). The<br />

ada gene codes for O-6-G-alkyltransferase (Karran et al.<br />

1979), thus def<strong>in</strong><strong>in</strong>g O-6-alkyl-G <strong>in</strong> DNA as one <strong>of</strong> <strong>the</strong><br />

relevant DNA alterations.<br />

We postulate that <strong>the</strong> altered DNA structure is recognized<br />

by a nuclear prote<strong>in</strong> that <strong>the</strong>n elicits a signal that is<br />

transferred to and received by <strong>the</strong> respond<strong>in</strong>g genetic<br />

structures: genes to be amplified or expressed. It is<br />

possible that <strong>the</strong> nucleus possesses a number <strong>of</strong> such<br />

prote<strong>in</strong>s recogniz<strong>in</strong>g very specific lesions, e.g. O-6-alkyl-<br />

G or thymid<strong>in</strong>e d<strong>in</strong>ners or 6-4 pyrimid<strong>in</strong>e crossl<strong>in</strong>ks. If<br />

this were <strong>the</strong> case, <strong>the</strong> signal transductions elicited would<br />

need to merge prior to reach<strong>in</strong>g <strong>the</strong> respond<strong>in</strong>g genes,<br />

s<strong>in</strong>ce <strong>the</strong> same genes are stimulated by <strong>the</strong>se treatments<br />

and many lesions cause amplification <strong>of</strong> genes.<br />

Signal transduction and molecular targets<br />

The site <strong>of</strong> primary <strong>in</strong>teraction <strong>of</strong> a carc<strong>in</strong>ogen with <strong>the</strong><br />

cell can thus be separated <strong>in</strong> molecular terms from <strong>the</strong> site<br />

<strong>of</strong> <strong>the</strong> genetic <strong>response</strong> (box 2 <strong>in</strong> Fig. 1). Obviously <strong>the</strong>re<br />

must be communication (signal transfer) between <strong>the</strong>se<br />

two separate sites. We will first consider what happens <strong>in</strong><br />

box 2 <strong>of</strong> Fig. 1, and <strong>the</strong>n how <strong>the</strong> site <strong>of</strong> DNA damage<br />

communicates with <strong>the</strong> genetic structures respond<strong>in</strong>g: <strong>in</strong><br />

our case SV40 DNA and cellular genes. These genetic<br />

structures respond by replication and transcription, respectively.<br />

What dist<strong>in</strong>guishes <strong>the</strong>se genes from o<strong>the</strong>rs<br />

that do not respond, and how is <strong>the</strong> signal received? In<br />

our laboratory we have discovered that replication and<br />

transcription factors are activated <strong>in</strong> a post-translational<br />

manner follow<strong>in</strong>g u.v. irradiation <strong>of</strong> <strong>cells</strong> (Ste<strong>in</strong> et al.<br />

1989a; Lucke-Huhle et al. 1989) and that <strong>the</strong>se activations<br />

are <strong>the</strong> limit<strong>in</strong>g steps <strong>of</strong> <strong>the</strong> DNA damage<strong>in</strong>duced<br />

genetic changes.<br />

For amplification we assumed that <strong>the</strong> decisive steps<br />

<strong>in</strong>duced by u.v. would most probably concern <strong>the</strong><br />

<strong>in</strong>itiation <strong>of</strong> replication, and we speculated that u.v.<br />

might <strong>in</strong>crease <strong>the</strong> activity <strong>of</strong> a prote<strong>in</strong> b<strong>in</strong>d<strong>in</strong>g to <strong>the</strong><br />

orig<strong>in</strong> <strong>of</strong> replication. The SV40 orig<strong>in</strong> <strong>in</strong> fact b<strong>in</strong>ds<br />

several cellular prote<strong>in</strong>s, some <strong>of</strong> which are more active or<br />

more abundant <strong>in</strong> u.v.-treated <strong>cells</strong>. One <strong>of</strong> those prote<strong>in</strong>s<br />

augmented by u.v. is also enhanced by treatment<br />

with alkylat<strong>in</strong>g agents (Lucke-Huhle et al. 1989) or alpha<br />

irradiation (unpublished) <strong>of</strong> <strong>cells</strong> and b<strong>in</strong>ds to <strong>the</strong> 'early<br />

doma<strong>in</strong>' <strong>of</strong> <strong>the</strong> 'm<strong>in</strong>imal orig<strong>in</strong>' <strong>of</strong> SV40. The <strong>in</strong>crease <strong>in</strong><br />

b<strong>in</strong>d<strong>in</strong>g occurs <strong>in</strong> <strong>the</strong> presence <strong>of</strong> cycloheximide or<br />

anisomyc<strong>in</strong>. Thus a pre-exist<strong>in</strong>g prote<strong>in</strong> is activated by<br />

post-translational modification. Full activation is seen<br />

with<strong>in</strong> 30m<strong>in</strong>. B<strong>in</strong>d<strong>in</strong>g <strong>of</strong> a prote<strong>in</strong> <strong>in</strong> <strong>the</strong> 'early doma<strong>in</strong>'<br />

has been reported (Traut and Fann<strong>in</strong>g, 1988) and <strong>the</strong><br />

'early doma<strong>in</strong>' sequence is required for SV40 replication<br />

(Li et al. 1986). If this prote<strong>in</strong> were <strong>in</strong>deed decisive for<br />

<strong>the</strong> u.v.-<strong>in</strong>duced amplification process, compet<strong>in</strong>g excess<br />

amounts <strong>of</strong> <strong>the</strong> early doma<strong>in</strong> DNA sequence <strong>in</strong>troduced<br />

<strong>in</strong>to <strong>cells</strong> should prevent u.v.-<strong>in</strong>duced amplification.<br />

Indeed, <strong>the</strong> early doma<strong>in</strong> sequence totally and specifically<br />

obliterates <strong>the</strong> replicative <strong>response</strong>. From <strong>the</strong> k<strong>in</strong>etics<br />

<strong>of</strong> <strong>the</strong> uptake and <strong>the</strong> brief half-life <strong>of</strong> <strong>the</strong> oligonucleotide<br />

we conclude that <strong>the</strong> early doma<strong>in</strong> prote<strong>in</strong> acts<br />

very early, with<strong>in</strong> <strong>the</strong> first 2-3 h after <strong>the</strong> u.v. irradiation.<br />

Thus u.v. treatment leads to <strong>the</strong> activation <strong>of</strong> a cellular<br />

replication function act<strong>in</strong>g at <strong>the</strong> SV40 orig<strong>in</strong>. Ano<strong>the</strong>r<br />

laboratory has also attempted to identify cellular prote<strong>in</strong>s<br />

<strong>in</strong>volved <strong>in</strong> viral replication (Ronai and We<strong>in</strong>ste<strong>in</strong>, 1988).<br />

Because <strong>of</strong> <strong>the</strong> differences <strong>in</strong> detection methodology a<br />

comparison <strong>of</strong> <strong>the</strong> replication prote<strong>in</strong>s must await fur<strong>the</strong>r<br />

progress.<br />

The transcription <strong>of</strong> genes is regulated by transcription<br />

factors that b<strong>in</strong>d to specific m-act<strong>in</strong>g regions <strong>in</strong> <strong>the</strong> gene<br />

and promote <strong>the</strong> <strong>in</strong>itiation <strong>of</strong> transcription by RNA<br />

polymerase (Banerji et al. 1981; Benoist and Chambon,<br />

1981; Dynan and Tjian, 1985; Schlokat and Gruss, 1986;<br />

Ptashne, 1988). These regions are usually assembled <strong>in</strong><br />

<strong>the</strong> 5' flank<strong>in</strong>g region <strong>of</strong> <strong>the</strong> gene. Previous work,<br />

particularly with hormone-responsive genes, has shown<br />

that <strong>in</strong>ducible genes are selected for a <strong>response</strong> on <strong>the</strong><br />

basis <strong>of</strong> specific 'hormone-responsive' sequences<br />

(Chandler et al. 1983; Hynes et al. 1983; Majors and<br />

Varmus, 1983; Kar<strong>in</strong>e^a/. 1984). The hormone activates<br />

<strong>the</strong> specific transcription factor recogniz<strong>in</strong>g <strong>the</strong>se sequences<br />

(Geisse et al. 1982; Scheidereit et al. 1983;<br />

Payvareia/. 1983). u.v. responsive genes have s<strong>in</strong>ce been<br />

exam<strong>in</strong>ed by mutational analysis and specific 'u.v. responsive'<br />

cw-act<strong>in</strong>g elements have been found (Ste<strong>in</strong> et<br />

al. 1988; Buschere^/. 1988; Ste<strong>in</strong>e/a/. 1989a,6). There<br />

is not just one class <strong>of</strong> u.v.-responsive elements, but<br />

many. Each <strong>of</strong> <strong>the</strong> different elements is supposed to b<strong>in</strong>d<br />

a different transcription factor. Thus <strong>the</strong>re must be<br />

several transcription factors, all <strong>of</strong> which receive <strong>the</strong> u.v.<strong>in</strong>duced<br />

signals. For <strong>the</strong> HIV-1 promoter, NFKB seems<br />

to be <strong>the</strong> relevant transcription factor. Us<strong>in</strong>g <strong>the</strong> KB motif<br />

<strong>of</strong> <strong>the</strong> HIV-1 promoter <strong>in</strong> gel-retardation experiments, a<br />

threefold <strong>in</strong>crease <strong>in</strong> NF/cB activity is detected <strong>in</strong> nuclear<br />

extracts with<strong>in</strong> 30m<strong>in</strong>. The activation <strong>of</strong> NFicB is posttranslational,<br />

<strong>in</strong> a similar or identical manner to that<br />

detected after phorbol ester treatment <strong>of</strong> <strong>cells</strong> (Baeuerle<br />

and Baltimore, 1988a,6). Po<strong>in</strong>t mutations <strong>in</strong> <strong>the</strong> KB motif<br />

prevent both NFfcB b<strong>in</strong>d<strong>in</strong>g and u.v. responsiveness <strong>of</strong><br />

<strong>the</strong> HIV-1 promoter. Thus u.v. causes <strong>the</strong> post-translational<br />

activation <strong>of</strong> NF/cB. Similar arguments can be<br />

given for o<strong>the</strong>r genes. Fig. 1 lists two o<strong>the</strong>r transcription<br />

factors that respond to u.v. <strong>in</strong> <strong>the</strong> absence <strong>of</strong> new prote<strong>in</strong><br />

syn<strong>the</strong>sis: AP-1, which is a heterodimer <strong>of</strong> <strong>the</strong> prote<strong>in</strong>s<br />

Fos and Jun, and <strong>the</strong> factors b<strong>in</strong>d<strong>in</strong>g to <strong>the</strong> dyad<br />

symmetry element <strong>of</strong> c-fos. Thus u.v. activates several<br />

different pre-exist<strong>in</strong>g transcription factors.<br />

Know<strong>in</strong>g some <strong>of</strong> <strong>the</strong> signal-receiv<strong>in</strong>g structures, replication<br />

and transcription factors, we can exam<strong>in</strong>e <strong>the</strong><br />

communication between <strong>the</strong> site <strong>of</strong> primary DNA<br />

damage and <strong>the</strong>se factors. With<strong>in</strong> 5—10 m<strong>in</strong> a measurable<br />

<strong>in</strong>crease <strong>in</strong> transcriptional rate <strong>of</strong> several u.v.-responsive<br />

The u.v. <strong>response</strong> <strong>in</strong> <strong>mammalian</strong> <strong>cells</strong> 611


genes (HIV-1, collagenase) occurs. NF/cB and 'early<br />

doma<strong>in</strong>' prote<strong>in</strong> activation by <strong>the</strong> less-sensitive gel shift<br />

technique are well detected at 30 m<strong>in</strong>. The signal transfer<br />

from <strong>the</strong> orig<strong>in</strong> <strong>of</strong> <strong>the</strong> stimulus to <strong>the</strong>se prote<strong>in</strong>s is thus<br />

fairly rapid and operates with and through preformed<br />

macromolecular components, s<strong>in</strong>ce no new prote<strong>in</strong> syn<strong>the</strong>sis<br />

is required (Ste<strong>in</strong>et al. 1989a; Ste<strong>in</strong>, unpublished;<br />

Liicke-Huhle et al. 1989). The location <strong>of</strong> DNA damage<br />

and <strong>the</strong> location <strong>of</strong> <strong>the</strong> active transcription factors are <strong>in</strong><br />

<strong>the</strong> nucleus. One could imag<strong>in</strong>e a short-cut communication<br />

between two nuclear sites. The activation <strong>of</strong><br />

NFrfS, however, tells us that signal transduction can pass<br />

through <strong>the</strong> cytoplasm. Inactive NF/cB is stored <strong>in</strong> <strong>the</strong><br />

cytoplasm where it needs to be released from its stoichiometrically<br />

act<strong>in</strong>g <strong>in</strong>hibitor IKB (Baeuerle and Baltimore,<br />

19886). The release requires a cytoplasmic event.<br />

Whe<strong>the</strong>r u.v.-<strong>in</strong>duced signal transduction always passes<br />

<strong>the</strong> cytoplasm cannot be answered at this time. The<br />

possibility exists that <strong>the</strong> signal transfer is even more<br />

elaborate, u.v. DNA damage may trigger <strong>the</strong> release <strong>of</strong> a<br />

pre-exist<strong>in</strong>g growth factor, which <strong>the</strong>n acts on <strong>the</strong> same<br />

<strong>cells</strong> and <strong>in</strong>duces a receptor-mediated signal that <strong>the</strong>n<br />

passes through <strong>the</strong> cytoplasm to <strong>the</strong> nucleus. There is<br />

some evidence for such a loop <strong>in</strong>volv<strong>in</strong>g a released<br />

extracellular factor (Schorpp et al. 1984; Rotem et al.<br />

1987; Ste<strong>in</strong> et al. 19896).<br />

Signal transduction makes use <strong>of</strong> prote<strong>in</strong> k<strong>in</strong>ases. u.v.<strong>in</strong>duced<br />

activation <strong>of</strong> HIV-1 or collagenase transcription<br />

is blocked by <strong>in</strong>hibition <strong>of</strong> prote<strong>in</strong> k<strong>in</strong>ases (Ste<strong>in</strong> et al.<br />

1988). These prote<strong>in</strong> k<strong>in</strong>ases have not been identified and<br />

it is not clear whe<strong>the</strong>r <strong>the</strong>y shuttle between cytoplasm and<br />

nucleus, or whe<strong>the</strong>r <strong>the</strong>y activate <strong>the</strong> transcription factors<br />

by phosphorylation or by activat<strong>in</strong>g a prote<strong>in</strong> phosphatase<br />

or some o<strong>the</strong>r modify<strong>in</strong>g enzyme. The nature <strong>of</strong> <strong>the</strong><br />

<strong>in</strong>duced post-translational modification <strong>of</strong> <strong>the</strong> transcription<br />

factors has resisted unravell<strong>in</strong>g. One <strong>of</strong> <strong>the</strong> factors<br />

activated by u.v., AP-1, is phosphorylated (Fos: Curran<br />

et al. 1984; Miiller et al. 1987; Lee et al. 1988; Jun:<br />

Angel et al. 1988) and glycosylated (Jackson and Tjian,<br />

1988). For <strong>the</strong> 'early doma<strong>in</strong>' prote<strong>in</strong> no such data exist.<br />

Only site-directed mutagenesis affect<strong>in</strong>g <strong>the</strong> modified<br />

am<strong>in</strong>o acids <strong>of</strong> <strong>the</strong> genes cod<strong>in</strong>g for <strong>the</strong>se prote<strong>in</strong>s will<br />

help to reveal <strong>the</strong> relevant modification. Indirect evidence<br />

suggests that <strong>the</strong> types <strong>of</strong> modification <strong>in</strong>duced by<br />

u.v. and by phorbol esters are similar but not identical.<br />

For <strong>in</strong>stance, <strong>the</strong> complex and phorbol ester-responsive<br />

SV40 enhancer that has not yet been mentioned here can<br />

be subdivided <strong>in</strong>to s<strong>in</strong>gle doma<strong>in</strong>s (Zenke et al. 1986;<br />

Fromental et al. 1988). Many <strong>of</strong> <strong>the</strong>se act as enhancers.<br />

We found conditions where <strong>the</strong> s<strong>in</strong>gle doma<strong>in</strong>s are<br />

equally u.v.- and phorbol ester-<strong>in</strong>ducible, while <strong>the</strong><br />

composite enhancer is only u.v.-<strong>in</strong>duced (experiments <strong>in</strong><br />

collaboration with P. Chambon). This suggests that <strong>the</strong><br />

<strong>in</strong>dividual DNA b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> components are modified<br />

to active forms but <strong>in</strong> <strong>the</strong>ir collaboration <strong>the</strong> type or<br />

site <strong>of</strong> modification matters.<br />

The conversion <strong>of</strong> an immediate <strong>response</strong> to a<br />

susta<strong>in</strong>ed <strong>response</strong><br />

The communication between <strong>the</strong> site <strong>of</strong> DNA damage<br />

612 S. Mai et al.<br />

and <strong>the</strong> site <strong>of</strong> action <strong>of</strong> both transcription and replication<br />

factors is a matter <strong>of</strong> seconds to m<strong>in</strong>utes. The genetic<br />

<strong>response</strong> <strong>in</strong> <strong>the</strong> nucleus will be turned on <strong>in</strong>stantaneously.<br />

In order to be able to respond aga<strong>in</strong>, <strong>the</strong> cell must<br />

ext<strong>in</strong>guish <strong>the</strong> 'signal' <strong>the</strong>reafter. In fact, several levels <strong>of</strong><br />

down-modulation have been described for o<strong>the</strong>r <strong>in</strong>ducible<br />

systems (e.g. see Nishizuka, 1986). These or similar<br />

mechanisms <strong>of</strong> down-modulation may also apply for <strong>the</strong><br />

u.v. <strong>response</strong>, e.g. <strong>in</strong>activation <strong>of</strong> <strong>the</strong> enzyme modify<strong>in</strong>g<br />

a replication or transcription factor, or loss <strong>of</strong> <strong>the</strong><br />

modification. Cells have, however, adopted ways <strong>of</strong><br />

expand<strong>in</strong>g <strong>the</strong> <strong>response</strong>. For <strong>the</strong> components <strong>of</strong> <strong>the</strong> AP-1<br />

transcription factor act<strong>in</strong>g on <strong>the</strong> collagenase promoter<br />

we know that u.v. <strong>in</strong>creases <strong>the</strong>ir syn<strong>the</strong>sis. The<br />

<strong>in</strong>creased level <strong>of</strong> AP-1 prolongs <strong>the</strong> secondary <strong>response</strong>,<br />

e.g. <strong>the</strong> transcription <strong>of</strong> collagenase. At 30-60 m<strong>in</strong> after<br />

stimulation <strong>the</strong> <strong>in</strong>duced transcription <strong>of</strong> AP-1 is turned<br />

<strong>of</strong>f. This is an autoregulatory process (Schonthal et al.<br />

1988a, 1989; Sassone-Corsi et al. 1988; Konig et al.<br />

1989).<br />

Under abnormal conditions it is conceivable that <strong>the</strong><br />

transcription factors rema<strong>in</strong> <strong>in</strong> <strong>the</strong> activated form. We<br />

assume this to be <strong>the</strong> case <strong>in</strong> <strong>cells</strong> that ma<strong>in</strong>ta<strong>in</strong> an<br />

elevated signal flow, e.g. by oncogenic transformation.<br />

Although <strong>the</strong> components that transfer <strong>the</strong> signal from<br />

<strong>the</strong> site <strong>of</strong> DNA damage to <strong>the</strong> transcription factor are not<br />

known, <strong>the</strong> elevated signal flow can be imitated: we and<br />

o<strong>the</strong>rs have found that activated oncogenes or elevated<br />

expression <strong>of</strong> an oncogene can replace <strong>the</strong> need for <strong>the</strong><br />

stimulus, e.g. u.v. (Matrisian et al. 1986; Wasylyk et al.<br />

1987; Schonthal et al. 1988a,6). Several cytoplasmic<br />

oncogene products seem to participate <strong>in</strong> a signal transduction<br />

pathway term<strong>in</strong>at<strong>in</strong>g <strong>in</strong> <strong>the</strong> transcription factor<br />

AP-1. Thus <strong>the</strong> elevated level <strong>of</strong> one <strong>of</strong> <strong>the</strong>se oncogene<br />

products causes part or all <strong>of</strong> <strong>the</strong> u.v. <strong>response</strong>.<br />

Long-last<strong>in</strong>g consequences<br />

It is obvious that DNA damage can cause permanent<br />

genetic changes. If part or all <strong>of</strong> <strong>the</strong>se were a consequence<br />

<strong>of</strong> <strong>the</strong> u.v. <strong>response</strong>, it would need to be one <strong>of</strong> <strong>the</strong><br />

immediate and transient genetic changes that affect <strong>the</strong><br />

fate <strong>of</strong> <strong>the</strong> cell: amplified DNA and <strong>in</strong>duced new gene<br />

products.<br />

The transiently <strong>in</strong>duced program <strong>of</strong> DNA damage<strong>in</strong>duced<br />

genes <strong>in</strong>cludes a grow<strong>in</strong>g list <strong>of</strong> identified<br />

functions. Transcription factors have been mentioned<br />

(Angel et al. 1985). In addition to <strong>the</strong> activation <strong>of</strong> a<br />

replication function act<strong>in</strong>g on SV40, o<strong>the</strong>r replication<br />

prote<strong>in</strong>s are newly syn<strong>the</strong>sized: DNA polymerase /5<br />

(Fornace et al. 1989), perhaps DNA ligase (so far only<br />

measured by enzyme activity: Mezz<strong>in</strong>a et al. 1982). u.v.<strong>in</strong>duced<br />

secreted proteases <strong>in</strong>clude plasm<strong>in</strong>ogen activator<br />

(Misk<strong>in</strong> and Ben-Ishai, 1981) and collagenase (Angel et<br />

al. 1986, 1987). There may also be various cell typespecific<br />

u.v. responsive genes (Kartasova and van de<br />

Putte, 1988).<br />

Among <strong>in</strong>duced gene products, four have been identified<br />

that affect <strong>the</strong> <strong>cells</strong>' fate. This type <strong>of</strong> <strong>response</strong><br />

modification <strong>in</strong>fluences <strong>the</strong> fate <strong>of</strong> <strong>the</strong> cell <strong>in</strong> a subsequent


encounter with a DNA damag<strong>in</strong>g agent. Several functions<br />

have been identified as be<strong>in</strong>g protective: metallothione<strong>in</strong><br />

helps <strong>cells</strong> aga<strong>in</strong>st alkylation toxicity (Ka<strong>in</strong>a et<br />

al. 1989a), mitochondrial manganese superoxide dismutase<br />

protects aga<strong>in</strong>st part <strong>of</strong> oxygen radical toxicity (D. V.<br />

Goeddel and G. H. W. Wong, unpublished). Radical<strong>in</strong>duced<br />

heme oxygenase syn<strong>the</strong>sis may also protect <strong>cells</strong><br />

(Keyse and Tyrrell, 1989). One <strong>of</strong> <strong>the</strong> most <strong>in</strong>trigu<strong>in</strong>g<br />

consequences <strong>of</strong> <strong>the</strong> u.v. <strong>response</strong> is, <strong>in</strong> fact, <strong>the</strong><br />

<strong>in</strong>creased risk <strong>of</strong> mutations and <strong>of</strong> transformation. Carc<strong>in</strong>ogens<br />

and tumor promoters share a promot<strong>in</strong>g effect<br />

<strong>in</strong> <strong>the</strong> mouse sk<strong>in</strong> carc<strong>in</strong>ogenesis protocol. By fluctuation<br />

analyses, <strong>in</strong>duced states <strong>of</strong> 'mutation proneness', that is<br />

an elevated chance to acquire a mutation several generations<br />

after contact with a mutagenic agent, have been<br />

postulated (Kennedy et al. 1980; Maher e< a/. 1988). One<br />

may even consider whe<strong>the</strong>r or not all mutations <strong>in</strong>troduced<br />

by a mutagenic agent require <strong>the</strong> participation <strong>of</strong><br />

cellular 'mutator' functions. Evidence for <strong>the</strong>ir existence<br />

has been obta<strong>in</strong>ed by turn<strong>in</strong>g <strong>the</strong> 'u.v. <strong>response</strong>' on <strong>in</strong> <strong>the</strong><br />

absence <strong>of</strong> DNA-damag<strong>in</strong>g agents. For <strong>in</strong>stance, elevated<br />

oncogene expression (follow<strong>in</strong>g <strong>the</strong> reason<strong>in</strong>g above)<br />

imitates <strong>the</strong> signal flow to AP-1 and to o<strong>the</strong>r transcription<br />

factors. The <strong>in</strong>duced expression <strong>of</strong> ras, mos orfos causes<br />

a 2- to 10-fold <strong>in</strong>crease <strong>in</strong> chromosomal aberrations and<br />

po<strong>in</strong>t mutations (unpublished). This suggests that<br />

enhanced signal flow through normal components <strong>of</strong><br />

signal transduction can br<strong>in</strong>g <strong>cells</strong> <strong>in</strong>to a constant state <strong>of</strong><br />

an <strong>in</strong>duced u.v. <strong>response</strong> or <strong>of</strong> tumor promotion. A<br />

second method <strong>of</strong> <strong>in</strong>duc<strong>in</strong>g <strong>the</strong> u.v. <strong>response</strong> <strong>in</strong> <strong>the</strong><br />

absence <strong>of</strong> DNA damage has been applied, u.v.-treated<br />

<strong>cells</strong> secrete one (or more) growth factor-like extracellular<br />

'messenger' prote<strong>in</strong>s (Schorpp et al. 1984; Rotem et al.<br />

1987; this factor can prevent mean<strong>in</strong>gful <strong>in</strong>terpretations<br />

<strong>of</strong> cell fusion experiments, as stated above). One <strong>of</strong> <strong>the</strong>se<br />

<strong>in</strong>duces, <strong>in</strong> non-irradiated <strong>cells</strong>, most aspects <strong>of</strong> <strong>the</strong> u.v.<br />

<strong>response</strong>, <strong>in</strong>clud<strong>in</strong>g HIV-1 and collagenase expression<br />

and one or several mutator functions (Maher et al. 1988;<br />

Ste<strong>in</strong> et al. 19896). This factor is thus a candidate for<br />

both long-term effects and spread <strong>of</strong> <strong>the</strong> effect with<strong>in</strong> a<br />

multicellular organism.<br />

F<strong>in</strong>ally, amplified DNA and <strong>in</strong>duced retroviruses are<br />

sources <strong>of</strong> genetic change. In order to enter a new cell<br />

cycle and round <strong>of</strong> replication, excess material <strong>of</strong> locally<br />

amplified DNA needs to be disconnected from <strong>the</strong><br />

chromosomes. We consider this material to be a substrate<br />

for recomb<strong>in</strong>ation enzymes that might cause permanent<br />

genetic changes by <strong>in</strong>tegrat<strong>in</strong>g excess DNA <strong>in</strong>to <strong>the</strong><br />

chromosomes. Retroviral DNA (e.g. HIV-1) has <strong>of</strong><br />

course evolved to cause proviral re<strong>in</strong>tegrations that are<br />

mutagenic.<br />

Perspectives<br />

This m<strong>in</strong>ireview is a summary <strong>of</strong> current ideas on u.v.<strong>in</strong>duced<br />

signal transduction (Fig. 1). Nei<strong>the</strong>r <strong>the</strong> overlaps<br />

with o<strong>the</strong>r genetic <strong>response</strong>s to environmental<br />

stresses have been addressed, nor is <strong>the</strong> physiological<br />

mean<strong>in</strong>g <strong>of</strong> <strong>the</strong> u.v. <strong>response</strong> very clear. We have<br />

identified detailed questions above. The primary prote<strong>in</strong><br />

components that recognize distorted DNA and <strong>the</strong> type<br />

<strong>of</strong> signal passed on have not been clarified. What type <strong>of</strong><br />

post-translational modification occurs at <strong>the</strong> preformed<br />

replication and transcription factors? How are chromosome<br />

and gene mutations generated? Know<strong>in</strong>g some <strong>of</strong><br />

<strong>the</strong> components <strong>in</strong>volved, experiments can now be<br />

designed to manipulate <strong>the</strong> u.v. <strong>response</strong> <strong>in</strong> <strong>the</strong> animal,<br />

e.g. by deletion <strong>of</strong> genes, by depriv<strong>in</strong>g <strong>cells</strong> <strong>of</strong> labile<br />

prote<strong>in</strong>s by <strong>in</strong>troduction <strong>of</strong> 'anti-sense' RNAs or by overexpression<br />

<strong>of</strong> identified genes. This will enable us to<br />

challenge <strong>the</strong> <strong>in</strong> vivo significance <strong>of</strong> data and ideas<br />

obta<strong>in</strong>ed so far <strong>in</strong> cell culture.<br />

References<br />

ANGEL, P., ALLEGRETTO, E. A., OKINO, S. T., HATTORI, K., BOYLE,<br />

W. J., HUNTER, T. AND KARIN, M. (1988). Oncogene jun encodes<br />

a sequence-specific trans-activator similar to AP-1. Nature, Land.<br />

332, 166-171.<br />

ANGEL, P., BAUMANN, I., STEIN, B., DELIUS, H., RAHMSDORF, H. J.<br />

AND HERRLICH, P. (1987). 12-O-Tetradecanoyl-phorbol-13-acetate<br />

<strong>in</strong>duction <strong>of</strong> <strong>the</strong> human collagenase gene is mediated by an<br />

<strong>in</strong>ducible enhancer element located <strong>in</strong> <strong>the</strong> S'-flank<strong>in</strong>g region.<br />

Molec. cell. Biol. 7, 2256-2266.<br />

ANGEL, P., POTING, A., MALLICK, U., RAHMSDORF, H. J., SCHORPP,<br />

M. AND HERRLICH, P. (1986). Induction <strong>of</strong> metallothione<strong>in</strong> and<br />

o<strong>the</strong>r mRNA species by carc<strong>in</strong>ogens and tumor promoters <strong>in</strong><br />

primary human sk<strong>in</strong> fibroblasts. Molec. cell. Biol. 6, 1760-1766.<br />

ANGEL, P., RAHMSDORF, H. J., POTING, A., LUCKE-HUHLE, C. AND<br />

HERRLICH, P. (1985). 12-0-tetradecanoylphorbol-13-acetate (TPA)<strong>in</strong>duced<br />

gene sequences <strong>in</strong> human primary diploid fibroblasts and<br />

<strong>the</strong>ir expression <strong>in</strong> SV40-transformed fibroblasts. J. Cell Biochem.<br />

29, 351-360.<br />

ANGULO, J. F., MOREAU, P. L., MAUNOURY, R., LAPORTE, J., HILL,<br />

A. M., BERTOLOTTI, R. AND DEVORET, R. (1989). KIN, a<br />

<strong>mammalian</strong> nuclear prote<strong>in</strong> immunologically related to E. coli<br />

RecA prote<strong>in</strong>. Mutat. Res. 217, 123-134.<br />

BAEUERLE, P. A. AND BALTIMORE, D. (1988a). Activation <strong>of</strong> DNAb<strong>in</strong>d<strong>in</strong>g<br />

activity <strong>in</strong> an apparently cytoplasmic precursor <strong>of</strong> <strong>the</strong><br />

NFkB transcription factor. Cell 53, 211-217.<br />

BAEUERLE, P. A. AND BALTIMORE, D. (19886). IkB: a specific<br />

<strong>in</strong>hibitor <strong>of</strong> <strong>the</strong> NF-kB transcription factor. Science 242, 540-546.<br />

BANERJI, J., RUSCONI, S. AND SCHAFFNER, W. (1981). Expression <strong>of</strong><br />

a /3-glob<strong>in</strong> gene is enhanced by remote SV40 DNA sequences. Cell<br />

27, 299-308.<br />

BEACH, L. R. AND PALMITER, R. D. (1981). Amplification <strong>of</strong> <strong>the</strong><br />

metallothione<strong>in</strong>-1 gene <strong>in</strong> cadmium-resistant mouse <strong>cells</strong>. Proc.<br />

natn.Acad. Sci. U.S.A. 78, 2110-2114.<br />

BENOIST, C. AND CHAMBON, P. (1981). In vivo sequence<br />

requirements <strong>of</strong> <strong>the</strong> SV40 early promoter region. Nature, Land.<br />

290, 304-310.<br />

BUSCHER, M., RAHMSDORF, H. J., LITFIN, M., KARIN, M. AND<br />

HERRLICH, P. (1988). Activation <strong>of</strong> <strong>the</strong> c-fos gene by UV and<br />

phorbol ester: different signal transduction pathways converge to<br />

<strong>the</strong> same enhancer element. Oncogene 3, 301-311.<br />

CHANDLER, V. L., MALER, B. A. AND YAMAMOTO, K. R. (1983).<br />

DNA sequences bound specifically by glucocorticoid receptor <strong>in</strong><br />

vitro render a heterologous promoter hormone responsive <strong>in</strong> vivo.<br />

Cell 33, 489-499.<br />

CURRAN, T., MILLER, A. D., ZOKAS, L. AND VERMA, I. M. (1984).<br />

Viral and cellular fos prote<strong>in</strong>s: a comparative analysis. Cell 36,<br />

259-268.<br />

DYNAN, W. S. AND TJIAN, R. (1985). Control <strong>of</strong> eukaryotic<br />

messenger RNA syn<strong>the</strong>sis by sequence-specific DNA-b<strong>in</strong>d<strong>in</strong>g<br />

prote<strong>in</strong>s. Nature, Land. 316, 774-778.<br />

FORNACE, A. J., JR, SCHALCH, H. AND ALAMO, I., JR (1988).<br />

Coord<strong>in</strong>ate <strong>in</strong>duction <strong>of</strong> metallothione<strong>in</strong>s I and II <strong>in</strong> rodent <strong>cells</strong><br />

by UV irradiation. Molec. cell. Biol. 8, 4716-4720.<br />

FORNACE, A. J., JR, ZMUDZKA, B., HOLLANDER, M. C. AND WILSON,<br />

S. H. (1989). Induction <strong>of</strong> /?-polymerase mRNA by DNA-<br />

The u.v. <strong>response</strong> <strong>in</strong> <strong>mammalian</strong> <strong>cells</strong> 613


damag<strong>in</strong>g agents <strong>in</strong> Ch<strong>in</strong>ese hamster ovary <strong>cells</strong>. Molec. cell. Biol.<br />

9, 851-853.<br />

FROMENTAL, C, KANNO, M., NOMIYAMA, H. AND CHAMBON, P.<br />

(1988). Cooperativity and hierarchical levels <strong>of</strong> functional<br />

organization <strong>in</strong> <strong>the</strong> SV40 enhancer. Cell 54, 943-953.<br />

GEISSE, S., SCHEIDEREIT, C, WESTPHAL, H. M., HYNES, N. E.,<br />

GRONER, B. AND BEATO, M. (1982). Glucocorticoid receptors<br />

recognize DNA sequences <strong>in</strong> and around mur<strong>in</strong>e mammary tumor<br />

virus DNA. EMBOJ. 1, 1613-1619.<br />

HERRLICH, P. (1987). The problem <strong>of</strong> latency <strong>in</strong> human disease:<br />

Molecular action <strong>of</strong> tumor promoters and carc<strong>in</strong>ogens. In<br />

Accomplishments <strong>in</strong> Cancel Research 1987. (ed. J. G. Former, J.<br />

E. Rhoads), pp. 213-230. Philadelphia: J. B. Lipp<strong>in</strong>cott.<br />

HYNES, N., VAN OOYEN, A. J. J., KENNEDY, N., HERRLICH, P.,<br />

PONTA, H. AND GRONER, B. (1983). Subfragments <strong>of</strong> <strong>the</strong> large<br />

term<strong>in</strong>al repeat cause glucocorticoid-responsive expression <strong>of</strong><br />

mouse mammary tumor virus and <strong>of</strong> an adjacent gene. Proc. natn.<br />

Acad. Sci. U.S.A. 80, 3637-3641.<br />

JACKSON, S. P. AND TJIAN, R. (1988). O-glycosylation <strong>of</strong> eukaryotic<br />

transcription factors; implications for mechanisms <strong>of</strong><br />

transcriptional regulation. Cell 55, 125-133.<br />

JOHNSON, A. L., BARKER, D. G. AND JOHNSTON, L. H. (1986).<br />

Induction <strong>of</strong> yeast DNA ligase genes <strong>in</strong> exponential and stationary<br />

phase cultures <strong>in</strong> <strong>response</strong> to DNA damag<strong>in</strong>g agents. Curr. Genet.<br />

22, 107-112.<br />

JOHNSTON, R. N. AND KUCEY, B. L. (1988). Competitive <strong>in</strong>hibition<br />

<strong>of</strong> hsp 70 gene expression causes <strong>the</strong>rmosensitivity. Science 242,<br />

1551-1553.<br />

KAGI, H. R. AND NORDBERG, M. (1979). Metallothione<strong>in</strong>. In<br />

Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> First International Meet<strong>in</strong>g on Metallothione<strong>in</strong><br />

and o<strong>the</strong>r low molecular iveight metal-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>s, (ed. H. R.<br />

Kagi and M. Nordberg). Stuttgart, FRG: Birkhauser Verlag.<br />

KAINA, B., LOHRER, H., KARIN, M. AND HERRLICH, P. (1989a).<br />

Overexpressed human metallothione<strong>in</strong> II-A gene protects CHO<br />

<strong>cells</strong> from kill<strong>in</strong>g by alkylat<strong>in</strong>g agents. Proc. natn. Acad. Sci.<br />

U.S.A. (<strong>in</strong> press).<br />

KAINA, B., STEIN, B., SCHONTHAL, A., RAHMSDORF, H. J., PONTA,<br />

H. AND HERRLICH, P. (19896). An update <strong>of</strong> <strong>the</strong> <strong>mammalian</strong> UV<br />

<strong>response</strong>: gene regulation and <strong>in</strong>duction <strong>of</strong> a protective function.<br />

In DNA Repair <strong>Mechanisms</strong> and <strong>the</strong>ir Biological Implications <strong>in</strong><br />

Mammalian Cells (ed. M. W. Lambert et al.). New York:<br />

Plenum, <strong>in</strong> press.<br />

KARIN, M., CATHALA, G. AND NGUYEN-HUU, M. C. (1983).<br />

Expression and regulation <strong>of</strong> a human metallothione<strong>in</strong> gene carried<br />

on an autonomously replicat<strong>in</strong>g shuttle vector. Proc. natn. Acad.<br />

Sci. U.S.A. 80, 4040-4044.<br />

KARIN, M., HASLINGER, A., HOLTGREVE, H., RICHARDS, R. I.,<br />

KRAUTER, P., WESTPHAL, H. M. AND BEATO, M. (1984).<br />

Characterization <strong>of</strong> DNA sequences through which cadmium and<br />

glucocorticoid hormones <strong>in</strong>duce human metallothione<strong>in</strong>-II A gene.<br />

Nature, Land. 308, 513-519.<br />

KARIN, M. AND HERRLICH, P. (1989). Cis- and trans-act<strong>in</strong>g genetic<br />

elements responsible for <strong>in</strong>duction <strong>of</strong> specific genes by tumor<br />

promoters, serum factors, and stress. In Genes and Signal<br />

Transduction <strong>in</strong> Multistage Carc<strong>in</strong>ogenesis. (ed. Nancy H.<br />

Colburn), pp. 415-440. New York: Marcel Dekker Inc.<br />

KARRAN, P., LINDAHL, T. AND GRIFFIN, B. (1979). Adaptive<br />

<strong>response</strong> to alkylat<strong>in</strong>g agents <strong>in</strong>volves alteration <strong>in</strong> situ <strong>of</strong> 0-6methylguan<strong>in</strong>e<br />

residues <strong>in</strong> DNA. Nature, bond. 280, 76-77.<br />

KARTASOVA, T. AND VAN DE PUTTE, P. (1988). Isolation,<br />

characterization, and UV-stimulated expression <strong>of</strong> two families <strong>of</strong><br />

genes encod<strong>in</strong>g polypeptides <strong>of</strong> related structure <strong>in</strong> human<br />

epidermal kerat<strong>in</strong>ocytes. Molec. cell. Biol. 8, 2195-2203.<br />

KENNEDY, A. R., Fox, M., MURPHY, G. AND LITTLE, J. B. (1980).<br />

Relationship between X-ray exposure and malignant transformation<br />

<strong>in</strong> C3H 10T1/2 <strong>cells</strong>. Pwc. natn. Acad. Sci. U.S.A. 77, 2762-2766.<br />

KEYSE, S. M. AND TYRRELL, R. M. (1989). Heme oxygenase is <strong>the</strong><br />

major 32-kDa stress prote<strong>in</strong> <strong>in</strong>duced <strong>in</strong> human sk<strong>in</strong> fibroblasts by<br />

UVA radiation, hydrogen peroxide, and sodium arsenite. Proc.<br />

natn. Acad. Sci. U.S.A. 86, 99-103.<br />

KONIG, H., PONTA, H., RAHMSDORF, U., BUSCHER, M., SCHONTHAL,<br />

A., RAHMSDORF, H. J. AND HERRLICH, P. (1989). Autoregulation<br />

<strong>of</strong> fos: <strong>the</strong> dyad symmetry element as <strong>the</strong> major target <strong>of</strong><br />

repression. EMBOJ. 8, 2559-2566.<br />

614 S. Mai et al.<br />

LAMBERT, M. E., PELLEGRINI, S., GATTONI-CELLI, S. AND<br />

WEINSTEIN, I. B. (1986). Carc<strong>in</strong>ogen <strong>in</strong>duced asynchronous<br />

replication <strong>of</strong> polyoma DNA is mediated by a trans-act<strong>in</strong>g factor.<br />

Carc<strong>in</strong>ogenesis 7, 1011-1017.<br />

LAMBERT, M. E., RONAI, Z. A., WEINSTEIN, I. B. AND GARRELS, J.<br />

I. (1989). Enhancement <strong>of</strong> major histocompatibility class I prote<strong>in</strong><br />

syn<strong>the</strong>sis by DNA damage <strong>in</strong> cultured human fibroblasts and<br />

kerat<strong>in</strong>ocytes. Molec. cell. Biol. 9, 847-850.<br />

LAvi, S. (1981). Carc<strong>in</strong>ogen-mediated amplification <strong>of</strong> viral DNA<br />

sequences <strong>in</strong> simian virus 40-transformed Ch<strong>in</strong>ese hamster embryo<br />

<strong>cells</strong>. Proc. natn. Acad. Sci. U.S.A. 78, 6144-6148.<br />

LEE, W. M. F., LIN, C. AND CURRAN, T. (1988). Activation <strong>of</strong> <strong>the</strong><br />

transform<strong>in</strong>g potential <strong>of</strong> <strong>the</strong> human fos proto-oncogene requires<br />

message stabilization and results <strong>in</strong> <strong>in</strong>creased amounts <strong>of</strong> partially<br />

modified fos prote<strong>in</strong>. Molec. cell. Biol. 8, 5521-5527.<br />

Li, J. J., PEDEN, K. W. C, DIXON, R. A. F. AND KELLY, T.<br />

(1986). Functional organization <strong>of</strong> <strong>the</strong> simian virus 40 orig<strong>in</strong> <strong>of</strong><br />

DNA replication. Molec. cell. Biol. 6, 1117-1128.<br />

LONGSTRETH, J. (1988). Cutaneous malignant melanoma and<br />

<strong>ultraviolet</strong> radiation: A review. Cancer anil Metastasis Rev. 7,<br />

321-333.<br />

LOCKE-HUHLE, C. AND HERRLICH, P. (1987). Alpha-radiation<strong>in</strong>duced<br />

amplification <strong>of</strong> <strong>in</strong>tegrated SV40 sequences is mediated by<br />

a trans-act<strong>in</strong>g mechanism. Int. J. Cancer 39, 94-98.<br />

LOCKE-HUHLE, C, MAI, S. AND HERRLICH, P. (1989). UV <strong>in</strong>duced<br />

"early doma<strong>in</strong>" b<strong>in</strong>d<strong>in</strong>g factor as <strong>the</strong> limit<strong>in</strong>g component <strong>of</strong> SV40<br />

DNA amplification <strong>in</strong> rodent <strong>cells</strong>. Molec. cell. Biol. (<strong>in</strong> press).<br />

MAHER, V. M., SATO, K., KATELEY-KOHLER, S., THOMAS, H.,<br />

MlCHAUD, S., McCORMICK, J. J., KRAMER, M., RAHMSDORF, H. J.<br />

AND HERRLICH, P. (1988). Evidence <strong>of</strong> <strong>in</strong>ducible error-prone<br />

mechanisms <strong>in</strong> diploid human fibroblasts. In DNA Replication and<br />

Mutagenesis (ed. R. E. Moses and W. C. Summers), pp. 465-471.<br />

Wash<strong>in</strong>gton DC: ASM.<br />

MAJORS, J. AND VARMUS, H. E. (1983). A small region <strong>of</strong> <strong>the</strong> mouse<br />

mammary tumor virus long term<strong>in</strong>al repeat confers glucocorticoid<br />

hormone regulation on a l<strong>in</strong>ked heterologous gene. Pwc. natn.<br />

Acad. Sci. U.S.A. 80, 5866-5870.<br />

MALTZMAN, W. AND CZYZYK, L. (1984). UV irradiation stimulates<br />

levels <strong>of</strong> p53 cellular tumor antigen <strong>in</strong> nontransformed mouse <strong>cells</strong>.<br />

Molec. cell. Biol. 4, 1689-1694.<br />

MATRISIAN, L. M., LEROY, P., RUHLMANN, C, GESNEL, M.-C. AND<br />

BREATHNACH, R. (1986). Isolation <strong>of</strong> <strong>the</strong> oncogene and epidermal<br />

growth factor-<strong>in</strong>duced transit! gene: complex control <strong>in</strong> rat<br />

fibroblasts. Molec. cell. Biol. 6, 1679-1686.<br />

MEZZINA, M., NOCENTINI, S. AND SARASIN, A. (1982). DNA ligase<br />

activity <strong>in</strong> carc<strong>in</strong>ogen-treated human fibroblasts. Biochimie 64,<br />

743-748.<br />

MISKIN, R. AND BEN-ISHAI, R. (1981). Induction <strong>of</strong> plasm<strong>in</strong>ogen<br />

activator by UV <strong>light</strong> <strong>in</strong> normal and xeroderma pigmentosum<br />

fibroblasts. Pivc. natn. Acad. Sci. U.S.A. 78, 6236-6240.<br />

MOLLER, R., BRAVO, R., MOLLER, D., KURZ, C. AND RENZ, M.<br />

(1987). Different types <strong>of</strong> modification <strong>in</strong> c-fos and its associated<br />

prote<strong>in</strong> p39: modulation <strong>of</strong> DNA b<strong>in</strong>d<strong>in</strong>g by phosphorylation.<br />

Oncogene Res. 2, 19-32.<br />

NISHIZUKA, Y. (1986). Studies and perspectives <strong>of</strong> prote<strong>in</strong> k<strong>in</strong>ase C.<br />

Science 233, 305-312.<br />

NOMURA, S. AND OISHI, M. (1983). Indirect <strong>in</strong>duction <strong>of</strong> erythroid<br />

differentiation <strong>in</strong> mouse Friend <strong>cells</strong>: evidence for two <strong>in</strong>tracellular<br />

reactions <strong>in</strong>volved <strong>in</strong> <strong>the</strong> differentiation. Proc. natn. Acad. Sci.<br />

U.S.A. 80, 210-214.<br />

NOMURA, S. AND OlSHI, M. (1984). UV-irradiation <strong>in</strong>duces an<br />

activity which stimulates simian virus 40 rescue upon cell fusion.<br />

Molec. cell. Biol. 4, 1159-1162.<br />

PAYVAR, F., DEFRANCO, D., FIRESTONE, G. L., EDGAR, B.,<br />

WRANGE, O., OKRET, S., GUSTAFSSON, J.-A. AND YAMAMOTO, K.<br />

R. (1983). Sequence-specific b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> glucocorticoid receptor to<br />

MTV DNA at sites with<strong>in</strong> and upstream <strong>of</strong> <strong>the</strong> transcribed region.<br />

Cell 35, 381-392.<br />

PTASHNE, M. (1988). How eukaryotic transcriptional activators work.<br />

Nature, bond. 335, 683-689.<br />

RAHMSDORF, H. J., KOCH, N., MALLICK, U. AND HERRLICH, P.<br />

(1983). Regulation <strong>of</strong> MHC class II <strong>in</strong>variant cha<strong>in</strong> expression:<br />

<strong>in</strong>duction <strong>of</strong> syn<strong>the</strong>sis <strong>in</strong> human and mur<strong>in</strong>e plasmocytoma <strong>cells</strong> by<br />

arrest<strong>in</strong>g replication. EMBOJ. 2, 811-816.


RAHMSDORF, H. J., MALLICK, U., PONTA, H. AND HERRLICH, P.<br />

(1982). A B- lymphocyte-specific high-turnover prote<strong>in</strong>:<br />

constitutive expression <strong>in</strong> rest<strong>in</strong>g B <strong>cells</strong> and <strong>in</strong>duction <strong>of</strong> syn<strong>the</strong>sis<br />

<strong>in</strong> proliferat<strong>in</strong>g <strong>cells</strong>. Cell 29, 459-468.<br />

RIABOWOHL, K. T., MIZZEN, L. A. AND WELCH, W. J. (1988). Heat<br />

shock is lethal to fibroblasts micro<strong>in</strong>jected with antibodies aga<strong>in</strong>st<br />

hsp70. Science 242, 433-436.<br />

RONAI, Z. A., LAMBERT, M. E., JOHNSON, M. D., OKIN, E. AND<br />

WEINSTEIN, B. (1987). Induction <strong>of</strong> asynchronous replication <strong>of</strong><br />

polyoma DNA <strong>in</strong> rat <strong>cells</strong> by <strong>ultraviolet</strong> irradiation and <strong>the</strong> effects<br />

<strong>of</strong> various <strong>in</strong>hibitors. Cancer Res. 47, 4565-4570.<br />

RONAI, Z. A. AND WEINSTEIN, I. B. (1988). Identification <strong>of</strong> a UV<strong>in</strong>duced<br />

Ira us-act<strong>in</strong>g prote<strong>in</strong> that stimulates polyomavirus DNA<br />

replication. J. Virol. 62, 1057-1060.<br />

ROTEM, N., AXELROD, J. H. AND MISKIN, R. (1987). Induction <strong>of</strong><br />

urok<strong>in</strong>ase-type plasm<strong>in</strong>ogen activator by UV <strong>light</strong> <strong>in</strong> human fetal<br />

fibroblasts is mediated through a UV-<strong>in</strong>duced secreted prote<strong>in</strong>.<br />

Molec. cell. Biol. 7,622-631.<br />

SASSONE-CORSI, P., SISSON, J. C. AND VERMA, I. M. (1988).<br />

Transcriptional autoregulation <strong>of</strong> <strong>the</strong> proto-oncogene fos. Nature,<br />

IJOIHL 334, 314-319.<br />

SCHEIDEREIT, C, GE1SSE, S., WESTPHAL, H. M. AND BEATO, M.<br />

(1983). The glucocorticoid receptor b<strong>in</strong>ds to def<strong>in</strong>ed nucleotide<br />

sequences near <strong>the</strong> promoter <strong>of</strong> mouse mammary tumour virus.<br />

Nature, ljoncl. 304, 749-752.<br />

SCHER, W. AND FRIEND, C. (1978). Breakage <strong>of</strong> DNA and alterations<br />

<strong>in</strong> folded genomes by <strong>in</strong>ducers <strong>of</strong> differentiation <strong>in</strong> Friend<br />

erythroleukemic <strong>cells</strong>. Cancer Res. 38, 841-849.<br />

SCHIMKE, R. T. (1984). Gene amplification <strong>in</strong> cultured animal <strong>cells</strong>.<br />

CW/37, 705-713.<br />

SCHLOKAT, U. AND GRUSS, P. (1986). Enhancers as control elements<br />

for tissue-specific transcription. In Oncogenes and Growth Control<br />

(ed P. Kahn and T. Graf), pp. 226-234. Berl<strong>in</strong>: Spr<strong>in</strong>ger-Verlag.<br />

SCHONTHAL, A., BOSCHER, M., ANGEL, P., RAHMSDORF, H. J.,<br />

PONTA, H., HATTORI, K., CHIU, R., KARIN, M. AND HERRLICH, P.<br />

(1989). The fos and jun/AP-1 prote<strong>in</strong>s are <strong>in</strong>volved <strong>in</strong> <strong>the</strong><br />

downregulation <strong>of</strong> fos transcription. Oncogene 4, 629-636.<br />

SCHONTHAL, A., GEBEL, S., STEIN, B., PONTA, H., RAHMSDORF, H.<br />

J. AND HERRLICH, P. (19886). Nuclear oncoprote<strong>in</strong>s determ<strong>in</strong>e <strong>the</strong><br />

genetic program <strong>in</strong> <strong>response</strong> to external stimuli. Cold Spr<strong>in</strong>g<br />

Harbor Symposia on Quantitative Biology 53, 779-787.<br />

SCHONTHAL, A., HERRLICH, P., RAHMSDORF, H. J. AND PONTA, H.<br />

(1988a). Requirement for fos gene expression <strong>in</strong> <strong>the</strong> transcriptional<br />

activation <strong>of</strong> collagenase by o<strong>the</strong>r oncogenes and phorbol esters.<br />

Cell 54, 325-334.<br />

SCHORPP, M., MALLICK, U., RAHMSDORF, H. J. AND HERRLICH, P.<br />

(1984). UV-<strong>in</strong>duced extracellular factor from human fibroblasts<br />

communicates <strong>the</strong> UV <strong>response</strong> to nonirradiated <strong>cells</strong>. Cell 37,<br />

861-868.<br />

STEIN, B., KRAMER, M., RAHMSDORF, H. J., PONTA, H. AND<br />

HERRLICH, P. (19896). UV <strong>in</strong>duced transcription from <strong>the</strong> HIV-1<br />

LTR and UV <strong>in</strong>duced secretion <strong>of</strong> an extracellular factor that<br />

<strong>in</strong>duces HIV-1 transcription <strong>in</strong> non-irradiated <strong>cells</strong>. .7. Virol, (<strong>in</strong><br />

press).<br />

STEIN, B., RAHMSDORF, H. J., SCHONTHAL, A., BOSCHER, M.,<br />

PONTA, H. AND HERRLICH, P. (1988). The UV <strong>in</strong>duced signal<br />

transduction pathway to specific genes. In <strong>Mechanisms</strong> and<br />

Consequences <strong>of</strong> DNA Damage Process<strong>in</strong>g, pp. 557-570. New<br />

York: Alan R. Liss, Inc.<br />

STEIN, B., RAHMSDORF, H. J., STEFFEN, A., LITFIN, M. AND<br />

HERRLICH, P. (1989a). UV <strong>in</strong>duced DNA damage is an<br />

<strong>in</strong>termediate <strong>in</strong> <strong>the</strong> UV <strong>in</strong>duced expression <strong>of</strong> HIV-1, collagenase,<br />

c-fos and metallothione<strong>in</strong>. Molec. cell. Biol., (<strong>in</strong> press).<br />

TRAUT, W. AND FANNING, E. (1988). Sequence-specific <strong>in</strong>teractions<br />

between a cellular DNA-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> and <strong>the</strong> simian virus 40<br />

orig<strong>in</strong> <strong>of</strong> DNA replication. Molec. cell. Biol. 8, 903-911.<br />

VALERIE, K., DELERS, A., BRUCK, C, THIRIART, C, ROSENBERG,<br />

H., DEBOUCK, C. AND ROSENBERG, M. (1988). Activation <strong>of</strong><br />

human immunodeficiency virus type 1 by DNA damage <strong>in</strong> human<br />

<strong>cells</strong>. Nature, Land. 333, 78-81.<br />

VAN DER LUBBE, J. L. M., ABRAHAMS, P. J., VAN DRUNEN, C. M.<br />

AND VAN DER EB, A. J. (1986). Enhanced <strong>in</strong>duction <strong>of</strong> SV40<br />

replication from transformed rat <strong>cells</strong> by fusion with UV-irradiated<br />

normal and repair-deficient human fibroblasts. Mutat. Res. 165,<br />

47-56.<br />

WASYLYK, C, IMLER, J. L., PEREZ-MUTUL, J. AND WASYLYK, B.<br />

(1987). The c-Ha-ras oncogene and a tumor promoter activate <strong>the</strong><br />

polyoma virus enhancer. Cell 48, 525-534.<br />

WONG, G. H. W., ELWELL, J. H., OBERLEY, L. W. AND GOEDDEL,<br />

D. V. (1989). Manganous superoxide dismutase is essential for<br />

cellular resistance to cytotoxicity <strong>of</strong> tumor necrosis factor. Cell 58,<br />

923-931.<br />

YALKINOGLU, A. O, HEILBRONN, R., BORKLE, A., SCHLEHOFER, J. R.<br />

AND ZUR HAUSEN, H. (1988). DNA amplification <strong>of</strong> adenoassociated<br />

virus as a <strong>response</strong> to cellular genotoxic stress. Cancer<br />

Res. 48, 3123-3129.<br />

ZENKE, M., GRUNDSTROM, T., MATTHES, H., WINTZERITH, M.,<br />

SCHATZ, C, WILDEMANN, A. AND CHAMBON, P. (1986). Multiple<br />

sequence motifs are <strong>in</strong>volved <strong>in</strong> SV40 enhancer function. EMBOJ.<br />

5, 387-397.<br />

The u.v. <strong>response</strong> <strong>in</strong> <strong>mammalian</strong> <strong>cells</strong> 615

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!