11.05.2017 Views

Nelvens-Final-LabNotes

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

PREPARATION OF SERIAL<br />

DILUTION OF BACTERIAL<br />

SUSPENSION<br />

BY: NELVEN M. GALLEGO, RMT, MLS(ASCPI)<br />

MAAM GINA SADANG, RMT, MSMT


Exercise No. 13<br />

Serial Dilution of<br />

Bacterial Suspension<br />

is a very significant<br />

step in determining<br />

bacterial colony count<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Exercise No. 13<br />

Culture Media Plates<br />

having 30-300<br />

colonies are considered<br />

for colony counting<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Materials<br />

Original bacterial suspension<br />

Sterilized Wassermann test tubes<br />

Test tube rack<br />

Sterilized serological pipette<br />

Sterile distilled H2O<br />

O.5% McFarland standard<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


• Sterilize the Wassermann test<br />

tubes<br />

• Label the test tubes (1:10, 1:100,<br />

1:1,000, 1:10,000 & 1:100,000)<br />

• Deliver 4.5 mL of Distilled H2O on<br />

each tube<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Procedure<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Procedure<br />

Using the Original Bacterial<br />

Suspension<br />

Compare the turbidity with<br />

0.5% McFarland standard.<br />

Prepare a serial dilution by<br />

transferring 0.5mL<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Procedure<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Procedure<br />

Bacterial Suspension<br />

Save the diluted<br />

bacterial suspensions<br />

for future use<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


PREPARATION OF SPREAD PLATE<br />

FOR COLONY COUNT<br />

BY: NELVEN M. GALLEGO, RMT, MLS(ASCPI)<br />

MAAM GINA SADANG, RMT, MSMT


Exercise No. 14<br />

Spread Plate Method<br />

Measures the number<br />

of viable bacterial cell<br />

in a milliliter of culture<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Exercise No. 14<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Exercise No. 14<br />

The number of colonies counted<br />

(30-300 colonies/plate)<br />

Is multiplied by the reciprocal<br />

of the dilution to get the<br />

number of bacteria for every<br />

millimeter of the original<br />

bacterial suspension<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Exercise No. 14<br />

Plates with colonies 300<br />

is “too many to count”<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Exercise No. 14<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Materials<br />

Serially diluted bacterial<br />

suspension<br />

Sterile serological pipette<br />

Trypticase soy agar<br />

Bent glass rod spreaders<br />

Quebec colony counter<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Procedure<br />

Using a sterile serological<br />

pipette, deliver 0.1mL of<br />

the serially diluted<br />

bacterial suspension (5<br />

Dilutions) to 5 different TSA.<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Procedure<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Procedure<br />

Spread the bacterial suspension<br />

on the surface of the agar using<br />

a bent glass rod spreader<br />

Turn the plate clockwise and<br />

repeat the spreading ensuring<br />

that the entire surface is<br />

“lawned” with the bacterial<br />

suspension<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Procedure<br />

Plates are inverted,<br />

wrapped, and<br />

incubated at 37<br />

centigrade for 18-<br />

24 hours<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Procedure<br />

After incubation, count<br />

the number of bacterial<br />

colonies (30-300) using a<br />

Quebec colony counter<br />

Compute for the average<br />

number of bacterial cell<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Thanks for Listening <br />

Get ¼ sheet of paper<br />

Prepared by: Nelven M. Gallego, RMT, MLS(ASCPi)<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


IDENTIFICATION OF GRAM<br />

POSITIVE COCCI<br />

BY: NELVEN M. GALLEGO, RMT, MLS(ASCPI)<br />

MAAM GINA SADANG, RMT, MSMT


Exercise No. 16<br />

Gram positive<br />

microorganisms are normal<br />

inhabitants of human skin &<br />

mucous membranes<br />

Infections caused by these<br />

microorganisms can spread<br />

through direct contact w/<br />

infected person or fomites<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Exercise No. 16<br />

Medically significant Gram<br />

positive cocci include<br />

Staphylococcus &<br />

Streptococcus<br />

Although both genera<br />

contain large amount of<br />

peptidoglycan<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Isolation of G+ cocci<br />

Day1 Inoculate the bacterial<br />

suspension of G+ organism on<br />

BAP, CAP and PEA using a<br />

simple streaking<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Procedure<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Blood Agar Plate<br />

Basal medium +<br />

enriched substance 5-<br />

10%<br />

Sheep/rabbit/horse/h<br />

uman blood.<br />

Cultivation of<br />

moderately<br />

fastidious<br />

microorganisms<br />

BAP<br />

Tryptones, soybean<br />

digest, NaCl, agar,<br />

5% blood:<br />

Extracellular enzymes<br />

Differentiation of<br />

types of<br />

hemolysis<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Chocolate Agar Plate<br />

Basal medium +<br />

enriched<br />

substance<br />

Cultivation of<br />

Haemophilus and<br />

other fastidious spp.<br />

CAP<br />

5-10% Sheep,<br />

rabbit, horse or<br />

human<br />

Warm enough to<br />

lyse RBC and<br />

release Hb and<br />

NAD<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Phenyl Ethyl Alcohol<br />

5% Sheeps blood primarily<br />

to isolate G+ cocci such as<br />

Enterococci, Staph and<br />

Strep from specimens with<br />

mixed microbiota<br />

Phenylethyl alcohol<br />

inhibits facultative G-<br />

rods, especially<br />

swarming Proteus spp<br />

PEA<br />

G- rods may grow on PEA<br />

agar, but colonies are<br />

smaller than usual and<br />

can be readily differentiated<br />

from those of G+ rods<br />

P. aeruginosa is not inhibited.<br />

Some G+ cocci may require more<br />

than 24H of incubation. Although it<br />

contains blood it is not be used in<br />

the interpretation of hemolytic<br />

reactions<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Swarming of Proteus<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Procedure<br />

Day1<br />

Incubate BAP and PEA<br />

at 37 degrees celcius<br />

for 18-24 hours.<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Procedure<br />

Day1<br />

CAP is incubated in an<br />

anaerobic environment<br />

using a candle jar.<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Bacterial Diversity and Umbiquity<br />

Capnophiles<br />

• are microorganisms that thrive in the presence<br />

of high concentrations of carbon dioxide<br />

Obligate anaerobe<br />

• is any organism that does not<br />

require oxygen for growth<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Anaerobic Cultivation<br />

Gas pack<br />

Candle Jar<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Exercise No. 16<br />

Day2 They can be differentiated by<br />

their reaction to different tests<br />

such as hemolysis test and<br />

catalase test<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Procedure<br />

Day2 Interpret the result basing on the<br />

hemolytic characteristic<br />

(BAP and CAP) and colony<br />

size (PEA)<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Types of Hemolysis<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Types of Hemolysis<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Types of Hemolysis<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Phenyl Ethyl Alcohol agar<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Pinpoint vs. Pinhead colonies<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Gram stain<br />

G+ cocci<br />

Catalase<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Catalase test<br />

Day2 Perform the catalase test by mixing<br />

the microorganism w/ 1 drop<br />

3% H2O2 in clean glass slide.<br />

Observe for bubbling or<br />

effervescence<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Catalase test<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Catalase test<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Catalase test<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Catalase test<br />

Catalase<br />

Positive<br />

Negative<br />

Slide<br />

Coagulase<br />

Tube<br />

Coagulase<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Procedure<br />

Day2 Proceed to slide coagulase test<br />

by transferring the microorganism to a<br />

slide containing 1 drop of plasma.<br />

Observe for clumping indicating<br />

presence of enzyme-bound<br />

coagulase<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Procedure<br />

Day2<br />

Perform the tube<br />

coagulase test by<br />

inoculating on a tube<br />

containing 0.5mL of human<br />

plasma. Incubate at 37<br />

degrees Celsius for 4 hours<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Procedure<br />

Day2 Observe clot formation<br />

at 30 minute interval.<br />

Formation of solid clot<br />

indicates the presence of<br />

enzyme free<br />

coagulase<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Procedure<br />

Day2<br />

Inoculate the<br />

microorganism on<br />

MSA. Incubate at 37<br />

degree Celsius for<br />

18-24 hours<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Mannitol Salt Agar<br />

Selective and<br />

differential medium<br />

A high salt conc. (7.5%<br />

) inhibits most gramnegative<br />

and grampositive<br />

bacteria except<br />

Staphlococcus spp.<br />

MSA<br />

S. aureus can ferment<br />

mannitol, the sole<br />

carbohydrate in the medium,<br />

to produce acid products<br />

This lowers the pH and<br />

changes the color of<br />

the pH indicator,<br />

phenol red, to yellow<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Procedure<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Isolation of Enterics<br />

Plates<br />

Plates<br />

Plates<br />

EMB<br />

HEA<br />

SSA<br />

Mac<br />

XLD<br />

BSA<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


MacConkey Agar<br />

Selective,<br />

differential, primary<br />

plating medium for<br />

enterics<br />

Lactose as the sole CHO<br />

source. G- rods that is LF<br />

produces red or pink<br />

colonies w/ precipitated<br />

bile<br />

MacConkey<br />

Acid production from LF<br />

causes the the neutral<br />

red dye as an indicator<br />

G+ organisms inhibited by<br />

Crystal violet and bile<br />

salts<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


NELVEN M. GALLEGO, RMT, MLS(ASCPi)


MAC<br />

MACCONKEY AGAR<br />

LACTOSE FERMENTER DARK PINK COLONY<br />

LATE-LACTOSE<br />

FERMENTER<br />

NON-LACTOSE<br />

FERMENTER<br />

LIGHT PINK COLONY<br />

WHITE/ DIRTY WHITE<br />

COLONY<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Eosin Methylene Blue<br />

Peptone base<br />

containing lactose<br />

& sucrose<br />

Eosin Y &<br />

methylene blue as<br />

indicators and<br />

selective ingredients<br />

EMB<br />

Fermentation is detected<br />

by color changes and<br />

precipitation of the<br />

incorporated dyes as the<br />

pH drops<br />

Sucrose serves as an<br />

alternative CHO source<br />

for slow-lactose<br />

fermenters<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Eosin Methylene Blue<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Eosin Methylene Blue<br />

EMB<br />

LACTOSE<br />

FERMENTER<br />

LATE-LACTOSE<br />

FERMENTER<br />

NON-LACTOSE<br />

FERMENTER<br />

EOSIN METHYLENE BLUE<br />

AGAR<br />

DARK PINK COLONY<br />

LIGHT PINK COLONY<br />

WHITE/ COLORLESS<br />

COLONY<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Hektoen Enteric Agar<br />

Selective<br />

differential medium<br />

used for direct isolation<br />

of enteric pathogen from<br />

feces<br />

Selective ingredients<br />

are bile salts. pH:<br />

Bromthymol blue<br />

& acid fuchsin<br />

HEA<br />

Not only inhibit the<br />

growth of G+ but<br />

also the growth of<br />

many G- organisms<br />

Ferric salts (Na<br />

thiosulfate, ferric<br />

ammonium citrate):<br />

Hydrogen sulfide gas<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Hektoen Enteric Agar<br />

HEA<br />

LACTOSE<br />

FERMENTER<br />

NON-<br />

LACTOSE<br />

FERMENTER<br />

HEKTOEN ENTERIC AGAR<br />

NON-PATHOGENIC<br />

ORANGE/ SALMON<br />

ORANGE<br />

PATHOGENIC/ GREEN OR<br />

BLUE COLOR<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Thiosulfate Bile Salt Sucrose<br />

Selective medium<br />

used to isolate Vibrio<br />

spp. from stool specimens<br />

having mixed biota<br />

TCBS agar is also<br />

differential in that<br />

Vibrio spp. may produce<br />

characteristic colonies<br />

TCBS<br />

Bromthymol blue<br />

and, in some formulations,<br />

thymol blue are<br />

incorporated to indicate<br />

the pH.<br />

Sodium citrate, sodium<br />

thiosulfate inhibits<br />

G+cocci and G-rods<br />

normally present in stool<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Thiosulfate Bile Salt Sucrose<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Salmonella Shigella Agar<br />

(SS) agar is used to select<br />

for Salmonella and<br />

some strains of Shigella<br />

from stool specimens.<br />

SS agar is also<br />

differential in that<br />

these organisms produce<br />

characteristic colonies on<br />

the medium<br />

Bile salts, sodium<br />

citrate, and brilliant<br />

green, which inhibit the<br />

growth of G+ and many<br />

LF, G- rods normally<br />

found in stool<br />

SSA<br />

Lactose is the sole<br />

carbohydrate source in the<br />

medium, and neutral red<br />

is the pH indicator<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Salmonella Shigella Agar<br />

Sodium thiosulfate<br />

is added as a source of<br />

sulfur for the production<br />

of H2S.<br />

If H2S is produced, it<br />

reacts with the ferric<br />

ammonium citrate<br />

SSA<br />

forming a black<br />

precipitate in the<br />

center of the colony<br />

If an organism ferments<br />

lactose, it will<br />

produce acid and<br />

change the indicator to<br />

pink-red.<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Salmonella Shigella Agar<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Xylose Lysine Deoxycholate<br />

(XLD) agar is selective<br />

and differential for<br />

Shigella spp. and<br />

Salmonella spp<br />

The salt, sodium<br />

desoxycholate, inhibits<br />

many G- rods that are not<br />

enteric pathogens and inhibits<br />

G+ organisms<br />

XLD<br />

A phenol red indicator<br />

in the medium detects<br />

increased acidity from<br />

carbohydrate.<br />

decarboxylation of<br />

lysine, which results in a pH<br />

increase that causes the pH<br />

indicator to turn red<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Xylose Lysine Deoxycholate<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Xylose Lysine Desoxycholate<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Bismuth Sulfite Agar<br />

Selective medium<br />

for the isolation of<br />

Salmonella spp.<br />

The selective ingredients are<br />

bismuth sulfite and brilliant<br />

green, which inhibit the growth of<br />

G+, most LF intestinal normal<br />

microbiota, and Shigella<br />

BSA<br />

the ferrous sulfate in<br />

this medium is reactive<br />

with hydrogen sulfide<br />

to produce ferric sufide<br />

which is deposited in the<br />

bacterial colony as a<br />

black, insoluble<br />

precipitate<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Bismuth Sulfite Agar<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Thanks for Listening <br />

Prepare for a 30 items Quiz on<br />

Wednesday nextweek<br />

Prepared by: Nelven M. Gallego, RMT, MLS(ASCPi)<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


BIOCHEMICAL TEST FOR<br />

ENTERICS<br />

BY: NELVEN M. GALLEGO, RMT, MLS(ASCPI)<br />

MAAM GINA SADANG, RMT, MSMT


Triple Sugar Iron<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Triple Sugar Iron<br />

TSI<br />

Differentiates glucose<br />

fermenters from non–glucose<br />

fermenters; also contains tests<br />

for sucrose and/or lactose<br />

fermentation, as well as gas<br />

production during glucose<br />

fermentation and H2S<br />

production.<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Triple Sugar Iron<br />

Glucose, Maltose,<br />

Sucrose<br />

Phenol red is the<br />

pH indicator. Turns to<br />

yellow when sugars<br />

are fermented.<br />

Sodium<br />

thiosulfate plus<br />

Ferric ammonium<br />

sulfate as H2S<br />

indicator<br />

TSI<br />

Gas bubbles :<br />

Production of gas<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Triple Sugar Iron<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Lysine Iron Agar<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Lysine Iron Agar<br />

LIA Measures three parameters<br />

that are useful for<br />

identifying<br />

Enterobacteriaceae (lysine<br />

decarboxylation, lysine<br />

deamination, and H2S<br />

production)<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Lysine Iron Agar<br />

Contains lysine, glucose,<br />

and protein,<br />

bromocresol purple<br />

(pH indicator)<br />

Sodium<br />

thiosulfate/ferric<br />

Ammonium citrate.<br />

Purple denotes alkaline<br />

(K), red color (R), acid (A).<br />

LIA<br />

K/K: Organism<br />

decarboxylates but<br />

cannot deaminate,<br />

ferments glucose<br />

K/A: Organism fermented<br />

glucose but was unable to<br />

deaminate or<br />

decarboxylate lysine<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Lysine Iron Agar<br />

R/A: Organism<br />

deaminated lysine<br />

but could not<br />

decarboxylate it.<br />

The lysine deamination<br />

combines with the ferric<br />

ammonium citrate,<br />

forming a burgundy color.<br />

LIA<br />

Blackening of the butt<br />

indicates production of<br />

H2S. The medium has an<br />

aerobic slant and an<br />

anaerobic butt.<br />

When glucose is<br />

fermented, the butt of the<br />

medium becomes acidic<br />

(yellow)<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Lysine Iron Agar<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Simmons’ Citrate<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Simmons’ Citrate<br />

Citrate<br />

Detect organisms capable<br />

of citrate utilization. Citrate<br />

as the sole carbon<br />

source, ammonium salt as<br />

nitrate. Ammonium salt<br />

alteration changes pH to<br />

alkaline, bromthymol blue<br />

shifts from green to blue.<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Simmons’ Citrate<br />

Determines whether an<br />

organism can use<br />

sodium citrate as a<br />

sole carbon source.<br />

Contains ammonium<br />

salts as the sole<br />

nitrogen source.<br />

Bacteria able to<br />

use citrate will use<br />

the ammonium salts,<br />

, releasing<br />

ammonia<br />

Citrate<br />

The alkaline pH that<br />

results from use of the<br />

ammonium salts changes<br />

the pH indicator,<br />

bromthymol blue<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Christensen’s Urease<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Christensen’s Urease<br />

Urease<br />

Identification of<br />

Enterobacteriaceae<br />

species capable of<br />

producing urease.<br />

(Citrobacter, Klebsiella,<br />

Proteus, Providencia, and<br />

Yersinia spp.)<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Christensen’s Urease<br />

Determines whether a<br />

microorganism can<br />

hydrolyze urea to<br />

form ammonia, water, and<br />

CO2<br />

Releasing a sufficient<br />

amount of ammonia to<br />

produce a color change by<br />

a pH indicator<br />

Urease<br />

The medium contains<br />

phenol red as the<br />

pH indicator.<br />

The resulting alkaline pH<br />

from hydrolysis of urea is<br />

indicated by a bright<br />

pink color<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Sulfide Indole Motility<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Sulfide Indole Motility<br />

SIM is a semisolid agar<br />

helpful in differentiating<br />

G- bacteria in the<br />

Enterobacteriaceae<br />

An inoculating needle<br />

is used to make a straight<br />

stab down the center of<br />

the medium<br />

SIM<br />

The production of H2S<br />

is indicated by a<br />

black precipitate<br />

pink to red color after<br />

the addition of Kovac’s<br />

reagent is positive for<br />

indole<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Sulfide Indole Motility<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Methyl Red Vogues Proskauer<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Methyl Red Vogues Proskauer<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Oxidase test<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)


NELVEN M. GALLEGO, RMT, MLS(ASCPi)


NELVEN M. GALLEGO, RMT, MLS(ASCPi)


Thanks for Listening <br />

Prepare for a 25 items Quiz on Friday<br />

Prepared by: Nelven M. Gallego, RMT, MLS(ASCPi)<br />

NELVEN M. GALLEGO, RMT, MLS(ASCPi)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!