01.05.2017 Views

563489578934

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

80<br />

Signals and Spectra Chap. 2<br />

PROOF. For periodic w(t), the Fourier series representation is valid over all time and<br />

may be substituted into Eq. (2–12) to evaluate the normalized (i.e., R = 1)<br />

power:<br />

P w = ha an<br />

c n e jnv0t 2<br />

b i = h an<br />

a m<br />

c n c m<br />

* e jnv 0t e -jmv 0t i<br />

= an a m<br />

c n c m<br />

* 8e j(n-m)v 0t 9 = an a m<br />

c n c m<br />

*d nm = an<br />

c n c n<br />

*<br />

or<br />

P w = an ƒc n ƒ 2<br />

(2–125)<br />

Equation (2–124) is a special case of Parseval’s theorem, Eq. (2–40), as applied to<br />

power signals.<br />

EXAMPLE 2–15 AVERAGE POWER FOR A SQUARE WAVE<br />

Using Eq. (2–125), evaluate the approximate average power for a square wave. Compare this<br />

approximate value of the power with the exact value. See Example2_15.m for the solution.<br />

Power Spectral Density for Periodic Waveforms<br />

THEOREM.<br />

For a periodic waveform, the power spectral density (PSD) is given by<br />

ƒ<br />

T 0 = 1/f 0 where is the period of the waveform and the {c n } are the corresponding<br />

(f) = a ƒc 2 n d( f - nf 0 )<br />

(2–126)<br />

n=-q<br />

Fourier coefficients for the waveform.<br />

q<br />

PROOF. Let w(t) = a -q c ne jnv 0t<br />

. Then the autocorrelation function of w(t) is<br />

R(t) = 8w * (t)w(t + t)9<br />

or<br />

q<br />

= h a c n<br />

*e -jnv 0t<br />

n=-q<br />

n=q<br />

q<br />

a<br />

m=-q<br />

c m e jmv 0(t+t) i<br />

R(t) =<br />

q q<br />

a<br />

a<br />

n=-q m=-q<br />

c n<br />

*c m e jmv 0t 8e jv 0(m-n)t 9<br />

But 8e jv0(n-m)t 9 = d nm , so this reduces to<br />

R(t) =<br />

q<br />

a ƒc n ƒ 2 e jnv 0t<br />

n=-q<br />

(2–127)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!