01.05.2017 Views

4569846498

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

68 Multibody Systems Approach to Vehicle Dynamics<br />

The process used to find the determinant is documented in standard texts<br />

dealing with the mathematical manipulation of matrices but for a general three<br />

by three square matrix may be summarized as follows:<br />

A B C<br />

D E F A( EI HF)<br />

B( DI GF) C( DH GE)<br />

G H I<br />

(2.211)<br />

The solution of (2.210) leads to a cubic equation in I 1 with three positive real<br />

roots, these being the three principal moments of inertia I 1 , I 2 and I 3 . If each<br />

of these is substituted in turn into equations that equate all three columns<br />

on either side of (2.207) we get<br />

I<br />

1<br />

⎡T<br />

⎢<br />

⎢<br />

T<br />

⎣⎢<br />

T<br />

11<br />

12<br />

13<br />

⎤ ⎡I I I<br />

⎥ ⎢<br />

⎥<br />

⎢I I I<br />

⎦⎥<br />

⎢<br />

⎣<br />

I I I<br />

xx xy xz<br />

xy yy yz<br />

xz yz zz<br />

⎤ ⎡T<br />

⎥ ⎢<br />

⎥ ⎢<br />

T<br />

⎥<br />

⎦ ⎣⎢<br />

T<br />

11<br />

12<br />

13<br />

⎤<br />

⎥<br />

⎥<br />

⎦⎥<br />

(2.212)<br />

I<br />

2<br />

⎡T<br />

⎢<br />

⎢<br />

T<br />

⎣⎢<br />

T<br />

21<br />

22<br />

23<br />

⎤ ⎡I I I<br />

⎥ ⎢<br />

⎥<br />

⎢I I I<br />

⎦⎥<br />

⎢<br />

⎣<br />

I I I<br />

xx xy xz<br />

xy yy yz<br />

xz yz zz<br />

⎤ ⎡T<br />

⎥ ⎢<br />

⎥ ⎢<br />

T<br />

⎥<br />

⎦ ⎣⎢<br />

T<br />

21<br />

22<br />

23<br />

⎤<br />

⎥<br />

⎥<br />

⎦⎥<br />

(2.213)<br />

I<br />

3<br />

(2.214)<br />

The solution of (2.212) to (2.214) thus yields all the terms in [T 3 ] 2 , the transformation<br />

matrix from frame O 3 to O 2 . In summary I 1 , I 2 and I 3 are the<br />

eigenvalues of the inertia matrix [I 2 ] 2/3 and are also the principal moments<br />

of inertia for Body 2, these being the diagonal terms in the matrix [I 2 ] 2/2 . The<br />

three column matrices in (2.212) to (2.214) are the eigenvectors of [I 2 ] 2/3 :<br />

⎡T<br />

⎢<br />

⎢<br />

T<br />

⎣⎢<br />

T<br />

⎡T<br />

⎢<br />

⎢<br />

T<br />

⎣⎢<br />

T<br />

11<br />

12<br />

13<br />

⎤<br />

⎥<br />

⎥<br />

⎦⎥<br />

31<br />

32<br />

33<br />

⎤ ⎡I I I<br />

⎥ ⎢<br />

⎥<br />

⎢I I I<br />

⎦⎥<br />

⎢<br />

⎣<br />

I I I<br />

⎡T<br />

⎢<br />

⎢<br />

T<br />

⎣⎢<br />

T<br />

21<br />

22<br />

23<br />

xx xy xz<br />

xy yy yz<br />

xz yz zz<br />

⎤<br />

⎥<br />

⎥<br />

⎦⎥<br />

⎡T<br />

⎢<br />

⎢<br />

T<br />

⎣⎢<br />

T<br />

31<br />

32<br />

33<br />

⎤<br />

⎥<br />

⎥<br />

⎦⎥<br />

⎤ ⎡T<br />

⎥ ⎢<br />

⎥ ⎢<br />

T<br />

⎥<br />

⎦ ⎣⎢<br />

T<br />

31<br />

32<br />

33<br />

⎤<br />

⎥<br />

⎥<br />

⎦⎥<br />

If each vector is now normalized so that the length of the vector is unity, we<br />

get the direction cosines between each of the axes of O 2 , the principal axes<br />

of Body 2, and O 3 .<br />

We can now consider a practical application of this with regard to vehicle<br />

dynamics where the body of a vehicle will generally be the largest and<br />

most significant mass in the model. For the vehicle body, Body 2, shown in<br />

Figure 2.35 we can take frame O 3 to be positioned at the mass centre and<br />

orientated so that the x-axis is along the centre line and pointing to the rear<br />

of the vehicle and the z-axis is vertical. The X 3 Z 3 plane is thus a plane of<br />

symmetry. It should be noted that in reality this assumption involves some<br />

approximation due to the asymmetry of the masses that may be lumped<br />

with the vehicle body such as the engine, battery, exhaust system and fuel

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!