4569846498

01.05.2017 Views

Kinematics and dynamics of rigid bodies 67 ⎡1 [ T] T [ T] ⎢ 0 ⎢ ⎣⎢ 0 (2.204) This allows us to further develop (2.203) to give [I 2 ] 2/2 { 2 } 1/2 [T 3 ] 2 [I 2 ] 2/3 [T 3 ] T 2[T 3 ] 2 { 2 } 1/3 (2.205) Since we also know that { 2 } 1/2 [T 3 ] 2 { 2 } 1/3 we can therefore write [I 2 ] 2/2 [T 3 ] 2 [I 2 ] 2/3 [T 3 ] T 2 (2.206) In this case we require a transformation matrix [T 3 ] 2 which is orthogonal and will lead to a diagonal matrix [I 2 ] 2/2 . If we now take (2.206) and premultiply by [T 3 ] T 2 we get [T 3 ] T 2[I 2 ] 2/2 [I 2 ] 2/3 [T 3 ] T 2 ⎡T T T ⎢ ⎢ T T T ⎣⎢ T T T 11 21 31 12 22 32 13 23 33 0 0⎤ 1 0 ⎥ ⎥ 0 1⎦⎥ ⎡T11I1 T21I2 T31I3 ⎤ ⎢ T I T I T I ⎥ ⎢ 12 1 22 2 32 3⎥ ⎣⎢ T13I1 T23I2 T33I3⎦⎥ ⎡IxxT11 IxyT12 IxzT13 IxxT21 IxyT22 IxzT23 IxxT31 IxyT32 IxzT33⎤ ⎢ ⎥ ⎢IxyT11 IyyT12 IxzT13 IxyT21 IyyT22 IyzT23 IxyT31 IyyT32 IyzT33⎥ ⎢ I T I T I T I T I T I T I T I T I T ⎥ ⎣ xz 11 yz 12 zz 13 xz 21 yz 22 zz 23 xz 31 yz 32 zz 33 ⎦ (2.207) Equating the first columns from the matrices on either side of (2.207) leads to the eigenvalue equation in (2.208): ⎡T11⎤ ⎡Ixx Ixy Ixz ⎤ ⎡T11⎤ I ⎢ T ⎥ ⎢ ⎥ 1 ⎢ 12 ⎥ I I I ⎢ T ⎥ ⎢ xy yy yz ⎥ ⎢ 12 ⎥ (2.208) ⎣⎢ T13⎦⎥ ⎢I I I ⎥ ⎣ xz yz zz ⎦ ⎣⎢ T13⎦⎥ This equation can be rearranged to give ⎡Ixx I1 Ixy Ixz ⎤ ⎡T11⎤ ⎡0⎤ ⎢ ⎥ ⎢ Ixy Iyy I1 I ⎢ yz ⎥ ⎢ T ⎥ 12 ⎥ ⎢ 0 ⎥ ⎢ ⎥ (2.209) ⎢ ⎣ Ixz Iyz Izz I ⎥ 1⎦ ⎣⎢ T13⎦⎥ ⎣⎢ 0⎦⎥ For a non-trivial solution to (2.209) we require the determinant of the square matrix containing I 1 to be zero leading to the characteristic equation: Ixx I1 Ixy Ixz Ixy Iyy I1 Iyz I I I I ⎤ ⎡I1 0 0⎤ ⎡I I I ⎥ ⎢ 0 I2 0 ⎥ ⎢ ⎥ ⎢ ⎥ ⎢I I I ⎦⎥ ⎣⎢ 0 0 I3⎦⎥ ⎢ ⎣ I I I 0 xz yz zz 1 xx xy xz xy yy yz xz yz zz ⎤ ⎡T T T ⎥ ⎢ ⎥ ⎢ T T T ⎥ ⎦ ⎣⎢ T T T 11 21 31 12 22 32 13 23 33 ⎤ ⎥ ⎥ ⎦⎥ (2.210)

68 Multibody Systems Approach to Vehicle Dynamics The process used to find the determinant is documented in standard texts dealing with the mathematical manipulation of matrices but for a general three by three square matrix may be summarized as follows: A B C D E F A( EI HF) B( DI GF) C( DH GE) G H I (2.211) The solution of (2.210) leads to a cubic equation in I 1 with three positive real roots, these being the three principal moments of inertia I 1 , I 2 and I 3 . If each of these is substituted in turn into equations that equate all three columns on either side of (2.207) we get I 1 ⎡T ⎢ ⎢ T ⎣⎢ T 11 12 13 ⎤ ⎡I I I ⎥ ⎢ ⎥ ⎢I I I ⎦⎥ ⎢ ⎣ I I I xx xy xz xy yy yz xz yz zz ⎤ ⎡T ⎥ ⎢ ⎥ ⎢ T ⎥ ⎦ ⎣⎢ T 11 12 13 ⎤ ⎥ ⎥ ⎦⎥ (2.212) I 2 ⎡T ⎢ ⎢ T ⎣⎢ T 21 22 23 ⎤ ⎡I I I ⎥ ⎢ ⎥ ⎢I I I ⎦⎥ ⎢ ⎣ I I I xx xy xz xy yy yz xz yz zz ⎤ ⎡T ⎥ ⎢ ⎥ ⎢ T ⎥ ⎦ ⎣⎢ T 21 22 23 ⎤ ⎥ ⎥ ⎦⎥ (2.213) I 3 (2.214) The solution of (2.212) to (2.214) thus yields all the terms in [T 3 ] 2 , the transformation matrix from frame O 3 to O 2 . In summary I 1 , I 2 and I 3 are the eigenvalues of the inertia matrix [I 2 ] 2/3 and are also the principal moments of inertia for Body 2, these being the diagonal terms in the matrix [I 2 ] 2/2 . The three column matrices in (2.212) to (2.214) are the eigenvectors of [I 2 ] 2/3 : ⎡T ⎢ ⎢ T ⎣⎢ T ⎡T ⎢ ⎢ T ⎣⎢ T 11 12 13 ⎤ ⎥ ⎥ ⎦⎥ 31 32 33 ⎤ ⎡I I I ⎥ ⎢ ⎥ ⎢I I I ⎦⎥ ⎢ ⎣ I I I ⎡T ⎢ ⎢ T ⎣⎢ T 21 22 23 xx xy xz xy yy yz xz yz zz ⎤ ⎥ ⎥ ⎦⎥ ⎡T ⎢ ⎢ T ⎣⎢ T 31 32 33 ⎤ ⎥ ⎥ ⎦⎥ ⎤ ⎡T ⎥ ⎢ ⎥ ⎢ T ⎥ ⎦ ⎣⎢ T 31 32 33 ⎤ ⎥ ⎥ ⎦⎥ If each vector is now normalized so that the length of the vector is unity, we get the direction cosines between each of the axes of O 2 , the principal axes of Body 2, and O 3 . We can now consider a practical application of this with regard to vehicle dynamics where the body of a vehicle will generally be the largest and most significant mass in the model. For the vehicle body, Body 2, shown in Figure 2.35 we can take frame O 3 to be positioned at the mass centre and orientated so that the x-axis is along the centre line and pointing to the rear of the vehicle and the z-axis is vertical. The X 3 Z 3 plane is thus a plane of symmetry. It should be noted that in reality this assumption involves some approximation due to the asymmetry of the masses that may be lumped with the vehicle body such as the engine, battery, exhaust system and fuel

Kinematics and dynamics of rigid bodies 67<br />

⎡1<br />

[ T]<br />

T [ T]<br />

<br />

⎢<br />

0<br />

⎢<br />

⎣⎢<br />

0<br />

(2.204)<br />

This allows us to further develop (2.203) to give<br />

[I 2 ] 2/2 { 2 } 1/2 [T 3 ] 2 [I 2 ] 2/3 [T 3 ] T 2[T 3 ] 2 { 2 } 1/3 (2.205)<br />

Since we also know that { 2 } 1/2 [T 3 ] 2 { 2 } 1/3 we can therefore write<br />

[I 2 ] 2/2 [T 3 ] 2 [I 2 ] 2/3 [T 3 ] T 2 (2.206)<br />

In this case we require a transformation matrix [T 3 ] 2 which is orthogonal<br />

and will lead to a diagonal matrix [I 2 ] 2/2 . If we now take (2.206) and premultiply<br />

by [T 3 ] T 2 we get<br />

[T 3 ] T 2[I 2 ] 2/2 [I 2 ] 2/3 [T 3 ] T 2<br />

⎡T T T<br />

⎢<br />

⎢<br />

T T T<br />

⎣⎢<br />

T T T<br />

11 21 31<br />

12 22 32<br />

13 23 33<br />

0 0⎤<br />

1 0<br />

⎥<br />

⎥<br />

0 1⎦⎥<br />

⎡T11I1 T21I2 T31I3<br />

⎤<br />

⎢<br />

T I T I T I<br />

⎥<br />

⎢ 12 1 22 2 32 3⎥<br />

⎣⎢<br />

T13I1 T23I2 T33I3⎦⎥<br />

⎡IxxT11 IxyT12 IxzT13 IxxT21 IxyT22 IxzT23 IxxT31 IxyT32 IxzT33⎤<br />

⎢<br />

⎥<br />

⎢IxyT11 IyyT12<br />

IxzT13 IxyT21 IyyT22 IyzT23 IxyT31 IyyT32 IyzT33⎥<br />

⎢ I T I T I T I T I T I T I T I T I T ⎥<br />

⎣ xz 11 yz 12 zz 13 xz 21 yz 22 zz 23 xz 31 yz 32 zz 33 ⎦<br />

(2.207)<br />

Equating the first columns from the matrices on either side of (2.207) leads<br />

to the eigenvalue equation in (2.208):<br />

⎡T11⎤<br />

⎡Ixx Ixy Ixz<br />

⎤ ⎡T11⎤<br />

I<br />

⎢<br />

T<br />

⎥ ⎢<br />

⎥<br />

1 ⎢ 12 ⎥<br />

I I I<br />

⎢<br />

T<br />

⎥<br />

⎢ xy yy yz ⎥ ⎢ 12 ⎥<br />

(2.208)<br />

⎣⎢<br />

T13⎦⎥<br />

⎢I I I ⎥<br />

⎣ xz yz zz ⎦ ⎣⎢<br />

T13⎦⎥<br />

This equation can be rearranged to give<br />

⎡Ixx I1<br />

Ixy Ixz<br />

⎤ ⎡T11⎤<br />

⎡0⎤<br />

⎢<br />

⎥<br />

⎢ Ixy Iyy I1<br />

I<br />

⎢<br />

yz ⎥ ⎢<br />

T<br />

⎥<br />

12 ⎥<br />

<br />

⎢<br />

0<br />

⎥<br />

⎢ ⎥<br />

(2.209)<br />

⎢<br />

⎣<br />

Ixz Iyz Izz I ⎥<br />

1⎦<br />

⎣⎢<br />

T13⎦⎥<br />

⎣⎢<br />

0⎦⎥<br />

For a non-trivial solution to (2.209) we require the determinant of the square<br />

matrix containing I 1 to be zero leading to the characteristic equation:<br />

Ixx I1<br />

Ixy Ixz<br />

Ixy Iyy I1<br />

Iyz<br />

I I I I<br />

⎤ ⎡I1<br />

0 0⎤<br />

⎡I I I<br />

⎥ ⎢<br />

0 I2<br />

0<br />

⎥ ⎢<br />

⎥ ⎢ ⎥<br />

⎢I I I<br />

⎦⎥<br />

⎣⎢<br />

0 0 I3⎦⎥<br />

⎢<br />

⎣<br />

I I I<br />

0<br />

xz yz zz 1<br />

xx xy xz<br />

xy yy yz<br />

xz yz zz<br />

⎤ ⎡T T T<br />

⎥ ⎢<br />

⎥ ⎢<br />

T T T<br />

⎥<br />

⎦ ⎣⎢<br />

T T T<br />

11 21 31<br />

12 22 32<br />

13 23 33<br />

⎤<br />

⎥<br />

⎥<br />

⎦⎥<br />

(2.210)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!