01.05.2017 Views

4569846498

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

352 Multibody Systems Approach to Vehicle Dynamics<br />

Figure 6.28 shows typical specific heat capacity versus temperature characteristics<br />

for different brake rotor materials. Brake rotor temperature, T, can<br />

be calculated using the expression:<br />

TT0<br />

<br />

BT thAc ( TTenv)<br />

mc<br />

(6.14)<br />

where<br />

T 0 initial brake rotor temperature (K)<br />

brake rotor spin velocity (rads second 1 )<br />

t time (seconds)<br />

h brake rotor convection coefficient (Wm 2 K 1 )<br />

A c convective area of brake disc (m 2 )<br />

T env environmental temperature (K)<br />

m mass of brake rotor (kg)<br />

c specific heat capacity of brake rotor (J kg 1 K 1 )<br />

B T<br />

Brake<br />

pad<br />

<br />

Brake<br />

disc<br />

R d<br />

F R<br />

A<br />

F N<br />

P<br />

Brake<br />

piston<br />

Fig. 6.27<br />

800<br />

700<br />

600<br />

c (J/kg/deg C)<br />

500<br />

400<br />

300<br />

200<br />

Braking mechanism<br />

Cast iron<br />

Stainless<br />

Alu MMC<br />

Carbon<br />

100<br />

0<br />

0 100 200 300 400 500 600 700 800<br />

Temperature, deg C<br />

Fig. 6.28 Specific heat capacity, c, versus temperature, T (Farr, 1999)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!