01.05.2017 Views

4569846498

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

238 Multibody Systems Approach to Vehicle Dynamics<br />

{F E21 } 1 {F F21 } 1 {F G24 } 1 m 2 {g} 1 m 2 {A G2 } 1 (4.324)<br />

⎡F<br />

⎢<br />

⎢<br />

F<br />

⎣⎢<br />

F<br />

E21x<br />

E21y<br />

E21z<br />

⎤ ⎡FF21x⎤<br />

⎡FG24x⎤<br />

⎡ 0 ⎤ ⎡ 0 ⎤<br />

⎥ ⎢<br />

F<br />

⎥ ⎢<br />

⎥ F21y<br />

F<br />

⎥<br />

<br />

⎢ ⎥<br />

<br />

⎢ G24y⎥<br />

3.5<br />

⎢<br />

0<br />

⎥<br />

3.5<br />

⎢<br />

23.373<br />

⎥<br />

N<br />

⎢ ⎥ ⎢ ⎥<br />

⎦⎥<br />

⎣⎢<br />

FF21z⎦⎥<br />

⎣⎢<br />

FG24z⎦⎥<br />

⎣⎢<br />

9.81⎦⎥<br />

⎣⎢<br />

0.869<br />

⎦⎥<br />

(4.325)<br />

The summation of forces in (4.325) leads to the first set of three equations:<br />

Equation 1 F E21x F F21x F G24x 0 (4.326)<br />

Equation 2 F E21y F F21y F G24y 81.806 (4.327)<br />

Equation 3 F E21z F F21z F G24z 31.294 (4.328)<br />

For the rotational equations it is convenient to refer the vectors to the reference<br />

frame O 2 fixed in and rotating with Body 2. The rotational equations<br />

of motion for Body 2 may be written as Euler’s equations of motion in vector<br />

form as<br />

∑ { M } I ] } ] I ] }<br />

(4.329)<br />

G2 [ 12 2 2 2{ 2 1 2[ 2<br />

1 2[ 2 2 2{<br />

2 1 2<br />

Before progressing the angular velocity vector { 2 } 1 and angular acceleration<br />

vector { 2 } 1 need to be transformed from reference frame O 1 to O 2 to<br />

give { 2 } 1/2 and { 2 } 1/2 . By inspection it can be seen from Figure 4.77 that<br />

the transformation is trivial and that due to the wishbone geometry and<br />

constraints 2x and 2x in frame O 1 simply become 2z and 2z when referenced<br />

to frame O 2 . The process of vector transformation described in<br />

Chapter 2 will, however, be applied to illustrate the process for more general<br />

geometries. In this case we have only two rotations to account for, the<br />

first being 90 degrees about the z-axis followed by a 90 degrees rotation<br />

about the x-axis. Thus for the angular velocity vector we have:<br />

{ }<br />

2 1 2<br />

{ }<br />

2 1 2<br />

⎡<br />

<br />

⎢<br />

⎢<br />

<br />

⎣⎢<br />

<br />

⎡<br />

<br />

⎢<br />

⎢<br />

<br />

⎣⎢<br />

<br />

2x2<br />

2y2<br />

2z2<br />

2x2<br />

2y2<br />

2z2<br />

⎤ ⎡1<br />

0 0 ⎤ ⎡ cos sin 0⎤<br />

⎡2<br />

x1⎤<br />

⎥<br />

<br />

⎢<br />

0 cos sin <br />

⎥ ⎢<br />

sin<br />

cos 0<br />

⎥ ⎢<br />

<br />

⎥<br />

⎥<br />

1 rad/s<br />

⎢<br />

⎥ ⎢<br />

⎥ ⎢ 2y<br />

⎥<br />

⎦⎥<br />

⎣⎢<br />

0 sin cos ⎦⎥<br />

⎣⎢<br />

0 0 1⎦⎥<br />

⎣⎢<br />

2z1⎦⎥<br />

(4.330)<br />

⎤ ⎡1 0 0⎤<br />

⎡ 0 1 0⎤<br />

⎡12.266⎤<br />

⎡ 0 ⎤<br />

⎥<br />

⎥<br />

<br />

⎢<br />

0 0 1<br />

⎥ ⎢<br />

1<br />

0 0<br />

⎥ ⎢<br />

0<br />

⎥<br />

<br />

⎢<br />

0<br />

⎥<br />

rad/s<br />

⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥<br />

⎦⎥<br />

⎣⎢<br />

0 1 0⎦⎥<br />

⎣⎢<br />

0 0 1⎦⎥<br />

⎣⎢<br />

0 ⎦⎥<br />

⎣⎢<br />

12.266⎦⎥<br />

(4.331)<br />

The transformation of the angular acceleration vector takes place in a similar<br />

manner so that we have:<br />

{ 2 } T 1/2 [0 0 12.266] rad/s<br />

{ 2 } T 1/2 [0 0 10.642] rad/s 2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!