4569846498

01.05.2017 Views

Modelling and analysis of suspension systems 237 where {V G2 } 1 {V G2E } 1 { 2 } 1 {R G2E } 1 (4.316) ⎡V ⎢ ⎢ V ⎣⎢ V therefore ⎡A ⎢ ⎢ A ⎣⎢ A G2x G2y G2z G2x G2y G2z ⎤ ⎡0 0 0 ⎤ ⎡115⎤ ⎡ 0 ⎤ ⎥ ⎢ ⎥ ⎢ ⎥ 0 0 12.266 155 ⎥ ⎢ 61.33 ⎥ mm/s ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎦⎥ ⎣⎢ 0 12.266 0 ⎦⎥ ⎣⎢ 5 ⎦⎥ ⎣⎢ 1901.23⎦⎥ ⎤ ⎡0 0 0 ⎤ ⎡ 0.0 ⎤ ⎥ ⎥ ⎢ 0 0 12.266 ⎥ ⎢ 61.33 ⎥ ⎢ ⎥ ⎢ ⎥ ⎦⎥ ⎣⎢ 0 12. 266 0 ⎦⎥ ⎣⎢ 1901.23⎦⎥ ⎡0 0 0 ⎤ ⎡115⎤ ⎢ 0 0 10. 642 ⎥ ⎢ 155 ⎥ mm/s ⎢ ⎥ ⎢ ⎥ 2 ⎣⎢ 0 10.642 0 ⎦⎥ ⎣⎢ 5 ⎦⎥ (4.317) (4.318) ⎡A ⎢ ⎢ A ⎣⎢ A (4.319) Before progressing further it is important to refer back to Chapter 3 and state that Newton’s second law is only applicable for a consistent set of units. In effect this means either converting from millimetres to metres before carrying out the dynamic analysis or incorporating a units consistency factor UCF in the equations of motion: ∑ (4.320) Since our current dimensions for length are in mm and we need to work in SI our UCF value here is 1000. So converting {A G2 } 1 to m/s 2 gives ⎡AG2 x⎤ ⎡ 0 ⎤ ⎢ A ⎥ ⎢ G2y⎥ ⎢ 23.373 ⎥ m/s (4.321) ⎢ ⎥ 2 ⎣⎢ AG2 z⎦⎥ ⎣⎢ 0.869 ⎦⎥ We also need to define a vector {g} 1 for gravitational acceleration which for the reference frame O 1 used here would be ⎡gx ⎤ ⎡ 0 ⎤ ⎢ ⎢ g ⎥ y ⎥ ⎢ 0 ⎥ m/s ⎢ ⎥ 2 ⎣⎢ gz ⎦⎥ ⎣⎢ 9.81⎦⎥ For Body 2 summing forces and applying Newton’s second law gives ∑ G2x G2y G2z ⎤ ⎡ 0 ⎤ ⎥ ⎥ ⎢ 23 372.797 ⎥ mm/s ⎢ ⎥ 2 ⎦⎥ ⎣⎢ 869.336 ⎦⎥ { F } 2 1 m { AG } UCF 2 2 1 { F 2 } m 2 { A G } 1 2 1 (4.322) (4.323)

238 Multibody Systems Approach to Vehicle Dynamics {F E21 } 1 {F F21 } 1 {F G24 } 1 m 2 {g} 1 m 2 {A G2 } 1 (4.324) ⎡F ⎢ ⎢ F ⎣⎢ F E21x E21y E21z ⎤ ⎡FF21x⎤ ⎡FG24x⎤ ⎡ 0 ⎤ ⎡ 0 ⎤ ⎥ ⎢ F ⎥ ⎢ ⎥ F21y F ⎥ ⎢ ⎥ ⎢ G24y⎥ 3.5 ⎢ 0 ⎥ 3.5 ⎢ 23.373 ⎥ N ⎢ ⎥ ⎢ ⎥ ⎦⎥ ⎣⎢ FF21z⎦⎥ ⎣⎢ FG24z⎦⎥ ⎣⎢ 9.81⎦⎥ ⎣⎢ 0.869 ⎦⎥ (4.325) The summation of forces in (4.325) leads to the first set of three equations: Equation 1 F E21x F F21x F G24x 0 (4.326) Equation 2 F E21y F F21y F G24y 81.806 (4.327) Equation 3 F E21z F F21z F G24z 31.294 (4.328) For the rotational equations it is convenient to refer the vectors to the reference frame O 2 fixed in and rotating with Body 2. The rotational equations of motion for Body 2 may be written as Euler’s equations of motion in vector form as ∑ { M } I ] } ] I ] } (4.329) G2 [ 12 2 2 2{ 2 1 2[ 2 1 2[ 2 2 2{ 2 1 2 Before progressing the angular velocity vector { 2 } 1 and angular acceleration vector { 2 } 1 need to be transformed from reference frame O 1 to O 2 to give { 2 } 1/2 and { 2 } 1/2 . By inspection it can be seen from Figure 4.77 that the transformation is trivial and that due to the wishbone geometry and constraints 2x and 2x in frame O 1 simply become 2z and 2z when referenced to frame O 2 . The process of vector transformation described in Chapter 2 will, however, be applied to illustrate the process for more general geometries. In this case we have only two rotations to account for, the first being 90 degrees about the z-axis followed by a 90 degrees rotation about the x-axis. Thus for the angular velocity vector we have: { } 2 1 2 { } 2 1 2 ⎡ ⎢ ⎢ ⎣⎢ ⎡ ⎢ ⎢ ⎣⎢ 2x2 2y2 2z2 2x2 2y2 2z2 ⎤ ⎡1 0 0 ⎤ ⎡ cos sin 0⎤ ⎡2 x1⎤ ⎥ ⎢ 0 cos sin ⎥ ⎢ sin cos 0 ⎥ ⎢ ⎥ ⎥ 1 rad/s ⎢ ⎥ ⎢ ⎥ ⎢ 2y ⎥ ⎦⎥ ⎣⎢ 0 sin cos ⎦⎥ ⎣⎢ 0 0 1⎦⎥ ⎣⎢ 2z1⎦⎥ (4.330) ⎤ ⎡1 0 0⎤ ⎡ 0 1 0⎤ ⎡12.266⎤ ⎡ 0 ⎤ ⎥ ⎥ ⎢ 0 0 1 ⎥ ⎢ 1 0 0 ⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ rad/s ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎦⎥ ⎣⎢ 0 1 0⎦⎥ ⎣⎢ 0 0 1⎦⎥ ⎣⎢ 0 ⎦⎥ ⎣⎢ 12.266⎦⎥ (4.331) The transformation of the angular acceleration vector takes place in a similar manner so that we have: { 2 } T 1/2 [0 0 12.266] rad/s { 2 } T 1/2 [0 0 10.642] rad/s 2

Modelling and analysis of suspension systems 237<br />

where<br />

{V G2 } 1 {V G2E } 1 { 2 } 1 {R G2E } 1 (4.316)<br />

⎡V<br />

⎢<br />

⎢<br />

V<br />

⎣⎢<br />

V<br />

therefore<br />

⎡A<br />

⎢<br />

⎢<br />

A<br />

⎣⎢<br />

A<br />

G2x<br />

G2y<br />

G2z<br />

G2x<br />

G2y<br />

G2z<br />

⎤ ⎡0 0 0 ⎤ ⎡115⎤<br />

⎡ 0 ⎤<br />

⎥ ⎢<br />

⎥ ⎢<br />

⎥<br />

0 0 12.266<br />

155<br />

⎥<br />

<br />

⎢<br />

61.33<br />

⎥<br />

mm/s<br />

⎢<br />

⎥ ⎢ ⎥ ⎢ ⎥<br />

⎦⎥<br />

⎣⎢<br />

0 12.266 0 ⎦⎥<br />

⎣⎢<br />

5<br />

⎦⎥<br />

⎣⎢<br />

1901.23⎦⎥<br />

⎤ ⎡0<br />

0 0 ⎤ ⎡ 0.0 ⎤<br />

⎥<br />

⎥<br />

<br />

⎢<br />

0 0 12.266<br />

⎥ ⎢<br />

61.33<br />

⎥<br />

⎢<br />

⎥ ⎢ ⎥<br />

⎦⎥<br />

⎣⎢<br />

0 12.<br />

266 0 ⎦⎥<br />

⎣⎢<br />

1901.23⎦⎥<br />

⎡0<br />

0 0 ⎤ ⎡115⎤<br />

<br />

⎢<br />

0 0 10.<br />

642<br />

⎥ ⎢<br />

155<br />

⎥<br />

mm/s<br />

⎢<br />

⎥ ⎢ ⎥<br />

2<br />

⎣⎢<br />

0 10.642<br />

0 ⎦⎥<br />

⎣⎢<br />

5<br />

⎦⎥<br />

(4.317)<br />

(4.318)<br />

⎡A<br />

⎢<br />

⎢<br />

A<br />

⎣⎢<br />

A<br />

(4.319)<br />

Before progressing further it is important to refer back to Chapter 3 and<br />

state that Newton’s second law is only applicable for a consistent set of<br />

units. In effect this means either converting from millimetres to metres<br />

before carrying out the dynamic analysis or incorporating a units consistency<br />

factor UCF in the equations of motion:<br />

∑<br />

(4.320)<br />

Since our current dimensions for length are in mm and we need to work in<br />

SI our UCF value here is 1000. So converting {A G2 } 1 to m/s 2 gives<br />

⎡AG2<br />

x⎤<br />

⎡ 0 ⎤<br />

⎢<br />

A<br />

⎥<br />

⎢ G2y⎥<br />

<br />

⎢<br />

23.373<br />

⎥<br />

m/s (4.321)<br />

⎢ ⎥<br />

2<br />

⎣⎢<br />

AG2<br />

z⎦⎥<br />

⎣⎢<br />

0.869<br />

⎦⎥<br />

We also need to define a vector {g} 1 for gravitational acceleration which<br />

for the reference frame O 1 used here would be<br />

⎡gx<br />

⎤ ⎡ 0 ⎤<br />

⎢<br />

⎢<br />

g<br />

⎥<br />

y ⎥<br />

<br />

⎢<br />

0<br />

⎥<br />

m/s<br />

⎢ ⎥<br />

2<br />

⎣⎢<br />

gz<br />

⎦⎥<br />

⎣⎢<br />

9.81⎦⎥<br />

For Body 2 summing forces and applying Newton’s second law gives<br />

∑<br />

G2x<br />

G2y<br />

G2z<br />

⎤ ⎡ 0 ⎤<br />

⎥<br />

⎥<br />

<br />

⎢<br />

23 372.797<br />

⎥<br />

mm/s<br />

⎢<br />

⎥<br />

2<br />

⎦⎥<br />

⎣⎢<br />

869.336<br />

⎦⎥<br />

{ F } <br />

2 1<br />

m { AG<br />

}<br />

UCF<br />

2 2 1<br />

{ F 2 } m 2 { A G }<br />

1 2 1<br />

(4.322)<br />

(4.323)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!