01.05.2017 Views

4569846498

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Modelling and analysis of suspension systems 233<br />

⎡230⎤<br />

[ FF21xFF21yFF21<br />

z]<br />

⎢<br />

0<br />

⎥<br />

0 N mm<br />

⎢ ⎥<br />

⎣⎢<br />

0 ⎦⎥<br />

(4.306)<br />

230F F21x 0 (4.307)<br />

For this particular suspension system the line E–F is parallel to the model<br />

x-axis yielding the trivial result F F21x being equal to zero. In this case we<br />

can therefore ignore F F21x in the following matrix solution of the system<br />

equations.<br />

The axis A–B for the upper wishbone is not parallel to a model axis and<br />

therefore applying the vector dot product to ensure that {F B31 } 1 is perpendicular<br />

to the line A–B yields the final equation needed to solve the remaining<br />

19 unknowns:<br />

{F B31 } 1 • {R AB } 1 0 (4.308)<br />

⎡230⎤<br />

[ F F F ]<br />

⎢<br />

(4.309)<br />

B31x B31y B31<br />

z 0<br />

⎥<br />

0 N mm<br />

⎢ ⎥<br />

⎣⎢<br />

14 ⎦⎥<br />

Equation 19 230F B31x 14F B31z 0 (4.310)<br />

The 19 equations can now be set up in matrix form ready for solution:<br />

⎡ 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 ⎤ ⎡FA31x⎤<br />

⎡ 0 ⎤<br />

⎢<br />

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0<br />

⎥ ⎢F<br />

⎥ ⎢<br />

⎢<br />

⎥ A31y<br />

0<br />

⎥<br />

⎢ ⎥ ⎢ ⎥<br />

⎢ 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 ⎥ ⎢ FA31z<br />

⎥ ⎢ 0 ⎥<br />

⎢<br />

⎥ ⎢ ⎥ ⎢ ⎥<br />

⎢<br />

0 0 0 0 0 0 0 0 0 0 9 275 9 275<br />

0 0 0 0 0<br />

⎥ ⎢<br />

FB31x⎥<br />

⎢<br />

0<br />

⎥<br />

⎢ 0 0 0 0 0 0 0 0 0 9 0 115 0 115 0 0 0 0 0 ⎥ ⎢F<br />

⎥ ⎢ B31y<br />

0 ⎥<br />

⎢<br />

⎥ ⎢ ⎥ ⎢ ⎥<br />

⎢ 0 0 0 0 0 0 0 0 0 275 115 0 115 0 0 0 0 0 0 ⎥ ⎢ FB31z⎥<br />

⎢ 0 ⎥<br />

⎢ 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 3 ⎥ ⎢F<br />

⎥ ⎢<br />

D34x<br />

0 ⎥<br />

⎢<br />

⎥ ⎢ ⎥ ⎢ ⎥<br />

⎢ 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 9<br />

⎥ ⎢FD34y⎥<br />

⎢ 0 ⎥<br />

⎢<br />

0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 436<br />

⎥ ⎢<br />

F<br />

⎥ ⎢<br />

⎢<br />

⎥ D34z<br />

0<br />

⎥<br />

⎢ ⎥ ⎢ ⎥<br />

⎢ 0 15 239 0 1 239 0 0 0 0 0 0 0 0 0 0 0 0 42 521⎥<br />

⎢FE21x⎥⎢<br />

0 ⎥<br />

⎢<br />

⎥ ⎢ ⎥ ⎢ ⎥<br />

⎢ 15 0 115 1 0 115 0 0 0 0 0 0 0 0 0 0 0 0 69<br />

⎥ ⎢FE21y⎥<br />

⎢ 0 ⎥<br />

⎢239 115 0 239 115 0 0 0 0 0 0 0 0 0 0 0 0 0 294 ⎥ ⎢ F ⎥ ⎢ E21z<br />

0 ⎥<br />

⎢<br />

⎥ ⎢ ⎥ ⎢ ⎥<br />

⎢ 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 ⎥ ⎢FF21y⎥<br />

⎢ 0 ⎥<br />

⎢ 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 228 0 ⎥ ⎢ F ⎥ ⎢<br />

F21z<br />

0 ⎥<br />

⎢<br />

⎥ ⎢ ⎥ ⎢ ⎥<br />

⎢ 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1<br />

8 0 ⎥ ⎢FG21x⎥<br />

⎢ 10 000 ⎥<br />

⎢<br />

0 0 0 0 0 0 0 216 31 0 0 0 0 0 0 0 0 60 276 0<br />

⎥ ⎢<br />

F<br />

⎥ ⎢<br />

⎢<br />

⎥ ⎢ G24y⎥<br />

580 000<br />

⎥<br />

⎢ ⎥<br />

⎢ 0 0 0 0 0 0 216 0 19 0 0 0 0 0 0 0 0 1304 0 ⎥ ⎢FG24z⎥<br />

⎢ 70 000 ⎥<br />

⎢<br />

⎥ ⎢ ⎥ ⎢ ⎥<br />

⎢ 0 0 0 0 0 0 31 19 0 0 0 0 0 0 0 0 0 37 164 0 ⎥ ⎢ fS1<br />

⎥ ⎢ 0 ⎥<br />

⎣<br />

⎢ 0 0 0 230 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 ⎦<br />

⎥<br />

⎣<br />

⎢ fS2<br />

⎦<br />

⎥<br />

⎣<br />

⎢ 0 ⎦<br />

⎥<br />

(4.311)<br />

Examination of the square matrix in (4.311) indicates a large number of<br />

zero terms, hence the matrix is referred to as sparse. As discussed in<br />

Chapter 3 this is a typical characteristic of the matrices generated in MBS<br />

and is one of the reasons why fast and efficient matrix inversion techniques<br />

can be deployed. The overall result is that MBS programs appear to solve<br />

quite complex engineering problems with a much lower requirement for<br />

computational effort than comparable other CAE methods such as non-linear

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!