4569846498

01.05.2017 Views

Modelling and analysis of suspension systems 223 C 6 on Body 6 and C 7 on Body 7, all located at point C. Note that we already have ⎡ 210. 614 ⎤ { AC3} 1{ AC7} 1 { AC} 1 ⎢ 28 476.707 ⎥ mm/s ⎢ ⎥ ⎣⎢ 3455.690 ⎦⎥ We can also calculate the acceleration {A C6 } 1 from (4.228) {A C6 } 1 {A C6I } 1 { 6 } 1 {V C6I } 1 { 6 } 1 {R CI } 1 (4.229) where {V C6I } 1 {V C6 } 1 {V C6C7 } 1 {V C7 } 1 (4.230) 2 ⎡ 13. 628 ⎤ ⎡120. 555⎤ ⎡ 134. 183 ⎤ { V C6I } ⎢ 41. 045 ⎥ ⎢ 435. 157 ⎥ ⎢ 476. 202 ⎥ mm/s ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣⎢ 1988. 378⎦⎥ ⎣⎢ 1979. 499 ⎦⎥ ⎣⎢ 3967. 877⎦⎥ therefore {A C6 } 1 is given by ⎡A ⎢ ⎢ A ⎣⎢ A C6x C6y C6z ⎤ ⎡ 0 1. 159 0. 245 ⎤ ⎡ 134. 183 ⎤ ⎥ ⎢ ⎥ ⎢ ⎥ 1. 159 0 0. 904 476. 202 ⎥ ⎢ ⎥ ⎢ ⎥ ⎦⎥ ⎣⎢ 0. 245 0. 904 0 ⎦⎥ ⎣⎢ 3967. 877⎦⎥ ⎡ 0 ⎢ ⎢ ⎢ ⎣ 6z 6y 6z 6x 0 6y 6x 0 ⎤ ⎡ 3 ⎤ ⎥ ⎢ ⎥ 9 ⎥ mm/s ⎢ ⎥ 2 ⎥ ⎦ ⎣⎢ 436⎦⎥ (4.231) (4.232) ⎡A ⎢ ⎢ A ⎣⎢ A C6x C6y C6z ⎤ ⎡420. 212⎤ ⎡96z 436 ⎥ ⎢ ⎥ ⎢ ⎥ 3742. 479 z 436 ⎢ ⎥ ⎢36 ⎦⎥ ⎣⎢ 463. 361⎦⎥ ⎢ ⎣ 3 6y 9 (4.233) If we now consider the relative acceleration vector {A C6C7 } 1 we can see that this involves the relative acceleration between points on two bodies where relative rotation and sliding occurs. Referring back to Chapter 2 we can now identify the four components of acceleration associated with the combined rotation and sliding motion as the centripetal acceleration {A p C6C7} 1 , the transverse acceleration {A t C6C7} 1 , the Coriolis acceleration {A c C6C7} 1 and the sliding acceleration{A s C6C7} 1 : {A p C6C7} 1 { 6 } 1 {{ 6 } 1 {R C6C7 } 1 } (4.234) {A t C6C7} 1 { 6 } 1 {R C6C7 } 1 (4.235) {A c C6C7} 1 2{ 6 } 1 {V s } 1 (4.236) {A s C6C7} 1 |A s C6C7| {l CI } 1 (4.237) Since the C 6 and C 7 are coincident points it follows that {A p C6C7} 1 and {A t C6C7} 1 are zero. It also follows that the sliding velocity {V s } 1 is equal to 6y 6x 6x ⎤ ⎥ ⎥ mm/s ⎥ ⎦ 2

224 Multibody Systems Approach to Vehicle Dynamics {V C6C7 } 1 . We can also introduce a scale factor A s to simplify the sliding acceleration calculation giving {A c C6C7} 1 2{ 6 } 1 {V C6C7 } 1 (4.238) {A s C6C7} 1 A s {R CI } 1 (4.239) Combining these components of acceleration gives {A C6C7 } 1 as {A C6C7 } 1 2{ 6 } 1 {V C6C7 } 1 A s {R CI } 1 (4.240) ⎡A ⎢ ⎢ A ⎣⎢ A C6C7x C6C7y C6C7z ⎡A ⎢ ⎢ A ⎣⎢ A C6C7x C6C7y C6C7z ⎤ ⎡ 0 1.159 0.245 ⎤ ⎡ 13.682 ⎤ ⎡ 3 ⎤ ⎥ 2 ⎥ 2 ⎢ 1.159 0 0.904 ⎥ ⎢ 41.045 ⎥ A ⎢ s 9 ⎥ mm/s ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎦⎥ ⎣⎢ 0.245 0.904 0 ⎦⎥ ⎣⎢ 1988.378⎦⎥ ⎣⎢ 436⎦⎥ (4.241) (4.242) Applying the triangle law of vector addition yields {A C6C7 } 1 {A C6 } 1 {A C7 } 1 (4.243) ⎡879.162⎤ ⎢ 3626.702 ⎥ ⎢ ⎥ ⎣⎢ 80.457 ⎦⎥ ⎤ ⎡879.162⎤ ⎡ 3 ⎤ ⎥ ⎥ ⎢ 3626.702 ⎥ A ⎢ s 9 ⎥ mm/s ⎢ ⎥ ⎢ ⎥ ⎦⎥ ⎣⎢ 80.457 ⎦⎥ ⎣⎢ 436⎦⎥ ⎡ 3 ⎤ ⎡420.212⎤ ⎡9 436 ⎢ 9 ⎥ ⎢ 3742.479 ⎥ ⎢ 3 436 ⎢ ⎥ ⎢ ⎥ ⎢ z ⎣⎢ 436⎦⎥ ⎣⎢ 463.361⎦⎥ ⎢ ⎣ 3 y 9 6z 6y A s 6 6x ⎡ 210.614 ⎤ ⎢ 28 476.707 ⎥ mm/s ⎢ ⎥ 2 ⎣⎢ 3455.690 ⎦⎥ 6 6x (4.244) Rearranging (4.244) yields three equations that can be used to solve this part of the analysis: Equation 1 3A s 436 6y 9 6z 669.564 (4.245) Equation 2 9A s 436 6x 3 6z 28 592.484 (4.246) Equation 3 436A s 9 6x 3 6y 3838.594 (4.247) This leaves us with four unknowns, 6x , 6y , 6z and A s , but only three equations. We can use the same approach here as used in the preceding velocity analysis. Since the spin degree of freedom of Body 6 about the axis C–I has no bearing on the overall solution we can again use the vector dot product to enforce perpendicularity of { 6 } 1 to {R CI } 1 . This will yield the fourth equation as follows: { 6 } 1 • {R CI } 1 0 (4.248) 2 ⎤ ⎥ ⎥ ⎥ ⎦ ⎡ 3 ⎤ [ 6 6 6 ] ⎢ 9 ⎥ x y z 0 mm/s ⎢ ⎥ ⎣⎢ 436⎦⎥ (4.249)

224 Multibody Systems Approach to Vehicle Dynamics<br />

{V C6C7 } 1 . We can also introduce a scale factor A s to simplify the sliding<br />

acceleration calculation giving<br />

{A c C6C7} 1 2{ 6 } 1 {V C6C7 } 1 (4.238)<br />

{A s C6C7} 1 A s {R CI } 1 (4.239)<br />

Combining these components of acceleration gives {A C6C7 } 1 as<br />

{A C6C7 } 1 2{ 6 } 1 {V C6C7 } 1 A s {R CI } 1 (4.240)<br />

⎡A<br />

⎢<br />

⎢<br />

A<br />

⎣⎢<br />

A<br />

C6C7x<br />

C6C7y<br />

C6C7z<br />

⎡A<br />

⎢<br />

⎢<br />

A<br />

⎣⎢<br />

A<br />

C6C7x<br />

C6C7y<br />

C6C7z<br />

⎤ ⎡ 0 1.159 0.245 ⎤ ⎡ 13.682 ⎤ ⎡ 3 ⎤<br />

⎥<br />

2<br />

⎥<br />

2<br />

⎢<br />

1.159 0 0.904<br />

⎥ ⎢<br />

41.045<br />

⎥<br />

A<br />

⎢<br />

s 9<br />

⎥<br />

mm/s<br />

⎢<br />

⎥ ⎢ ⎥ ⎢ ⎥<br />

⎦⎥<br />

⎣⎢<br />

0.245 0.904 0 ⎦⎥<br />

⎣⎢<br />

1988.378⎦⎥<br />

⎣⎢<br />

436⎦⎥<br />

(4.241)<br />

(4.242)<br />

Applying the triangle law of vector addition yields<br />

{A C6C7 } 1 {A C6 } 1 {A C7 } 1 (4.243)<br />

⎡879.162⎤<br />

⎢<br />

3626.702<br />

⎥<br />

<br />

⎢ ⎥<br />

⎣⎢<br />

80.457<br />

⎦⎥<br />

⎤ ⎡879.162⎤<br />

⎡ 3 ⎤<br />

⎥<br />

⎥<br />

<br />

⎢<br />

3626.702<br />

⎥<br />

A<br />

⎢<br />

s 9<br />

⎥<br />

mm/s<br />

⎢ ⎥ ⎢ ⎥<br />

⎦⎥<br />

⎣⎢<br />

80.457<br />

⎦⎥<br />

⎣⎢<br />

436⎦⎥<br />

⎡ 3 ⎤ ⎡420.212⎤<br />

⎡9 436<br />

⎢<br />

9<br />

⎥<br />

<br />

⎢<br />

3742.479<br />

⎥ ⎢<br />

3 436<br />

⎢ ⎥ ⎢ ⎥ ⎢ z<br />

⎣⎢<br />

436⎦⎥<br />

⎣⎢<br />

463.361⎦⎥<br />

⎢<br />

⎣<br />

3 y 9<br />

6z 6y<br />

A s<br />

6 6x<br />

⎡ 210.614<br />

⎤<br />

<br />

⎢<br />

28 476.707<br />

⎥<br />

mm/s<br />

⎢<br />

⎥<br />

2<br />

⎣⎢<br />

3455.690 ⎦⎥<br />

6 6x<br />

(4.244)<br />

Rearranging (4.244) yields three equations that can be used to solve this<br />

part of the analysis:<br />

Equation 1 3A s 436 6y 9 6z 669.564 (4.245)<br />

Equation 2 9A s 436 6x 3 6z 28 592.484 (4.246)<br />

Equation 3 436A s 9 6x 3 6y 3838.594 (4.247)<br />

This leaves us with four unknowns, 6x , 6y , 6z and A s , but only three<br />

equations. We can use the same approach here as used in the preceding<br />

velocity analysis. Since the spin degree of freedom of Body 6 about the<br />

axis C–I has no bearing on the overall solution we can again use the vector<br />

dot product to enforce perpendicularity of { 6 } 1 to {R CI } 1 . This will yield<br />

the fourth equation as follows:<br />

{ 6 } 1 • {R CI } 1 0 (4.248)<br />

2<br />

⎤<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

⎡ 3 ⎤<br />

[ 6 6 6 ]<br />

⎢<br />

9<br />

⎥<br />

x y z 0 mm/s<br />

⎢ ⎥<br />

⎣⎢<br />

436⎦⎥<br />

(4.249)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!