01.05.2017 Views

4569846498

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Modelling and analysis of suspension systems 223<br />

C 6 on Body 6 and C 7 on Body 7, all located at point C. Note that we<br />

already have<br />

⎡ 210.<br />

614 ⎤<br />

{ AC3}<br />

1{ AC7} 1 { AC} 1 <br />

⎢<br />

28<br />

476.707<br />

⎥<br />

mm/s<br />

⎢<br />

⎥<br />

⎣⎢<br />

3455.690 ⎦⎥<br />

We can also calculate the acceleration {A C6 } 1 from<br />

(4.228)<br />

{A C6 } 1 {A C6I } 1 { 6 } 1 {V C6I } 1 { 6 } 1 {R CI } 1 (4.229)<br />

where<br />

{V C6I } 1 {V C6 } 1 {V C6C7 } 1 {V C7 } 1 (4.230)<br />

2<br />

⎡ 13.<br />

628 ⎤ ⎡120.<br />

555⎤<br />

⎡ 134.<br />

183 ⎤<br />

{ V C6I<br />

} <br />

⎢<br />

41.<br />

045<br />

⎥<br />

<br />

⎢<br />

435.<br />

157<br />

⎥<br />

<br />

⎢<br />

476.<br />

202<br />

⎥<br />

mm/s<br />

⎢ ⎥ ⎢ ⎥ ⎢ ⎥<br />

⎣⎢<br />

1988.<br />

378⎦⎥<br />

⎣⎢<br />

1979.<br />

499 ⎦⎥<br />

⎣⎢<br />

3967.<br />

877⎦⎥<br />

therefore {A C6 } 1 is given by<br />

⎡A<br />

⎢<br />

⎢<br />

A<br />

⎣⎢<br />

A<br />

C6x<br />

C6y<br />

C6z<br />

⎤ ⎡ 0 1. 159 0.<br />

245 ⎤ ⎡ 134.<br />

183 ⎤<br />

⎥ ⎢<br />

⎥ ⎢<br />

⎥<br />

1. 159 0 0.<br />

904 476.<br />

202<br />

⎥<br />

⎢<br />

⎥ ⎢ ⎥<br />

⎦⎥<br />

⎣⎢<br />

0. 245 0.<br />

904 0 ⎦⎥<br />

⎣⎢<br />

3967.<br />

877⎦⎥<br />

⎡ 0<br />

⎢<br />

⎢ <br />

⎢<br />

⎣<br />

<br />

<br />

6z<br />

6y<br />

6z<br />

6x<br />

<br />

0<br />

6y<br />

6x<br />

<br />

<br />

0<br />

⎤ ⎡ 3 ⎤<br />

⎥ ⎢<br />

⎥ 9<br />

⎥<br />

mm/s<br />

⎢ ⎥<br />

2<br />

⎥<br />

⎦ ⎣⎢<br />

436⎦⎥<br />

(4.231)<br />

(4.232)<br />

⎡A<br />

⎢<br />

⎢<br />

A<br />

⎣⎢<br />

A<br />

C6x<br />

C6y<br />

C6z<br />

⎤ ⎡420.<br />

212⎤<br />

⎡96z<br />

436<br />

⎥ ⎢ ⎥ ⎢<br />

⎥<br />

3742.<br />

479 z 436<br />

⎢ ⎥ ⎢36<br />

<br />

⎦⎥<br />

⎣⎢<br />

463.<br />

361⎦⎥<br />

⎢<br />

⎣<br />

3 6y<br />

9<br />

(4.233)<br />

If we now consider the relative acceleration vector {A C6C7 } 1 we can see that<br />

this involves the relative acceleration between points on two bodies where<br />

relative rotation and sliding occurs. Referring back to Chapter 2 we can<br />

now identify the four components of acceleration associated with the combined<br />

rotation and sliding motion as the centripetal acceleration {A p C6C7} 1 ,<br />

the transverse acceleration {A t C6C7} 1 , the Coriolis acceleration {A c C6C7} 1<br />

and the sliding acceleration{A s C6C7} 1 :<br />

{A p C6C7} 1 { 6 } 1 {{ 6 } 1 {R C6C7 } 1 } (4.234)<br />

{A t C6C7} 1 { 6 } 1 {R C6C7 } 1 (4.235)<br />

{A c C6C7} 1 2{ 6 } 1 {V s } 1 (4.236)<br />

{A s C6C7} 1 |A s C6C7| {l CI } 1 (4.237)<br />

Since the C 6 and C 7 are coincident points it follows that {A p C6C7} 1 and<br />

{A t C6C7} 1 are zero. It also follows that the sliding velocity {V s } 1 is equal to<br />

6y<br />

6x<br />

6x<br />

⎤<br />

⎥<br />

⎥ mm/s<br />

⎥<br />

⎦<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!