01.05.2017 Views

4569846498

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

222 Multibody Systems Approach to Vehicle Dynamics<br />

⎡A<br />

⎢<br />

⎢<br />

A<br />

⎣⎢<br />

A<br />

Cx<br />

Cy<br />

Cz<br />

⎤ ⎡ 372.<br />

059 ⎤ ⎡ 161.445 ⎤ ⎡ 210.<br />

614 ⎤<br />

⎥ ⎢<br />

⎥ ⎢<br />

⎥<br />

27 893.260 583.<br />

447<br />

⎥<br />

<br />

⎢<br />

28<br />

476.707<br />

⎥<br />

mm/s<br />

⎢<br />

⎥ ⎢ ⎥ ⎢<br />

⎥<br />

2<br />

⎦⎥<br />

⎣⎢<br />

6109.169 ⎦⎥<br />

⎣⎢<br />

2653.<br />

479⎦⎥<br />

⎣⎢<br />

3455.<br />

690 ⎦⎥<br />

(4.220)<br />

⎡A<br />

⎢<br />

⎢<br />

A<br />

⎣⎢<br />

A<br />

Gx<br />

Gy<br />

Gz<br />

{A D } 1 {A DA } 1 { 3 } 1 {V D } 1 { 3 } 1 {R DA } 1 (4.221)<br />

⎡A<br />

⎢<br />

⎢<br />

A<br />

⎣⎢<br />

A<br />

(4.223)<br />

{A G } 1 {A GE } 1 { 2 } 1 {V G } 1 { 2 } 1 {R GE } 1 (4.224)<br />

⎤ ⎡ 0 ⎤ ⎡0 0 0 ⎤ ⎡115⎤<br />

⎡ 0 ⎤<br />

⎥ ⎢<br />

⎥ ⎢<br />

⎥<br />

41<br />

375.058 0 0 11.<br />

791<br />

⎥ ⎢<br />

275<br />

⎥<br />

<br />

⎢<br />

41<br />

481.177<br />

⎥<br />

mm/s<br />

⎢<br />

⎥ ⎢<br />

⎥ ⎢ ⎥ ⎢<br />

⎥<br />

2<br />

⎦⎥<br />

⎣⎢<br />

1354.093 ⎦⎥<br />

⎣⎢<br />

0 11. 791 0 ⎦⎥<br />

⎣⎢<br />

9<br />

⎦⎥<br />

⎣⎢<br />

1888.<br />

432 ⎦⎥<br />

(4.225)<br />

{A H } 1 {A HJ } 1 { 5 } 1 {V H } 1 { 5 } 1 {R HJ } 1 (4.226)<br />

⎡A<br />

⎢<br />

⎢<br />

A<br />

⎣⎢<br />

A<br />

Dx<br />

Dy<br />

Dz<br />

Hx<br />

Hy<br />

Hz<br />

⎤ ⎡ 96. 030 ⎤ ⎡ 0 1.<br />

145 0 ⎤ ⎡115<br />

⎥ ⎢<br />

⎥ ⎢<br />

⎥<br />

⎥<br />

47<br />

281.651 1. 145 0 18.<br />

819<br />

⎢<br />

239<br />

⎢<br />

⎥ ⎢<br />

⎥ ⎢<br />

⎦⎥<br />

⎣⎢<br />

1576.804 ⎦⎥<br />

⎣⎢<br />

0 18.<br />

819 0 ⎦⎥<br />

⎣⎢<br />

15<br />

⎡ 177.<br />

625 ⎤<br />

<br />

⎢<br />

47<br />

432.261<br />

⎥<br />

mm/s<br />

⎢<br />

⎥<br />

2<br />

⎣⎢<br />

2920.<br />

973 ⎦⎥<br />

3<br />

⎤ ⎡9. 602 10 ⎤ ⎡ 0 1. 843 0.<br />

06466⎤<br />

⎡ 0 ⎤<br />

⎥ ⎢<br />

⎥ ⎢<br />

⎥ ⎢<br />

⎥<br />

<br />

⎥<br />

⎢45<br />

743.094 ⎥ 1. 843 0 23.<br />

361 229<br />

⎢<br />

⎥ ⎢ ⎥<br />

⎦⎥<br />

⎢<br />

⎥<br />

⎣<br />

1605.022<br />

⎦ ⎣⎢<br />

0. 06466 23.<br />

361 0 ⎦⎥<br />

⎣⎢<br />

9<br />

⎦⎥<br />

⎡ 422.<br />

619 ⎤<br />

<br />

⎢<br />

45<br />

953.343<br />

⎥<br />

mm/s<br />

⎢<br />

⎥<br />

2<br />

⎣⎢<br />

3744.<br />

647 ⎦⎥<br />

(4.227)<br />

The acceleration vector {A P } 1 is already available from the initial bump<br />

analysis and the solution of equation (4.215). In summary the acceleration<br />

vectors for the moving points are as follows:<br />

{A C } T 1 [210.614 28 476.707 3455.690] mm/s 2<br />

{A D } T 1 [177.625 47 432.261 2920.973] mm/s 2<br />

{A G } T 1 [0.0 41 481.177 1888.432] mm/s 2<br />

{A H } T 1 [422.619 45 953.343 3744.647] mm/s 2<br />

{A P } T 1 [558.211 36 163.671 0.0] mm/s 2<br />

Having found the acceleration {A C } 1 at the bottom of the damper unit we<br />

can now proceed to carry out a separate analysis of the unit to find the components<br />

of acceleration acting between Bodies 6 and 7.<br />

As with the velocity analysis, this phase of the acceleration analysis<br />

can be facilitated by the modelling of three coincident points, C 3 on Body 3,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!