01.05.2017 Views

4569846498

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Modelling and analysis of suspension systems 219<br />

We can now apply the triangle law of vector addition to equate the expression<br />

for {A DH } 1 in equation (4.196) with {A D } 1 in equation (4.181) and<br />

{A H } 1 in equation (4.193):<br />

{A DH } 1 {A D } 1 {A H } 1 (4.197)<br />

⎡128.<br />

269⎤<br />

⎡ 44 4z<br />

514<br />

⎢<br />

1.<br />

121<br />

⎥ ⎢<br />

144 <br />

⎢ ⎥ ⎢ 4z<br />

51 4<br />

⎣⎢<br />

45.<br />

535 ⎦⎥<br />

⎢<br />

⎣<br />

144 y 44<br />

⎤<br />

⎥ 2<br />

⎥<br />

mm/s<br />

⎦⎥<br />

(4.198)<br />

Rearranging (4.198) yields the next three equations required to solve the<br />

analysis:<br />

Equation 4 3346f 3 51 4y 44 4z 8 5y 228 5z 32.229 (4.199)<br />

Equation 5 1840f 3 51 4x 144 4z 8 5x 1539.678 (4.200)<br />

Equation 6 54 970f 3 44 4x 144 4y 228 5x 73.753 (4.201)<br />

We can now proceed to set up the next set of three equations working from<br />

point G to point P and using the triangle law of vector addition:<br />

{A PG } 1 {A P } 1 {A G } 1 (4.202)<br />

Determining an expression for the relative acceleration {A PG } 1 of point P<br />

relative to point G using values for { 4 } 1 and {V PG } 1 found from the earlier<br />

velocity analysis gives<br />

{A PG } 1 { 4 } 1 {V PG } 1 { 4 } 1 {R PG } 1 (4.203)<br />

⎡A<br />

⎢<br />

⎢<br />

A<br />

⎣⎢<br />

A<br />

PGx<br />

PGy<br />

PGz<br />

y<br />

x<br />

4 4x<br />

⎤ ⎡ 96.030<br />

⎤ ⎡3346<br />

f<br />

⎥<br />

<br />

⎢<br />

⎥ 47 281.651<br />

⎥<br />

<br />

⎢<br />

1840<br />

⎢<br />

⎥ ⎢<br />

f<br />

⎥<br />

⎦ ⎣⎢<br />

1576.804 ⎦⎥<br />

⎣⎢<br />

54 970 f<br />

3<br />

3<br />

3<br />

⎡9.<br />

602<br />

10 ⎤ ⎡228 z 8<br />

⎢<br />

⎥<br />

45 743.<br />

094 <br />

⎢<br />

⎢<br />

⎥ ⎢<br />

85x<br />

⎢<br />

⎣<br />

1605.<br />

022 ⎥<br />

⎦ ⎣⎢<br />

2285x<br />

3<br />

⎤ ⎡ 0 1.446 10<br />

0.<br />

945<br />

⎥ ⎢<br />

<br />

⎥<br />

⎢1. 446 10 0 8.<br />

774 10<br />

⎦⎥<br />

⎢<br />

3<br />

⎣<br />

0. 945 8.<br />

774 10<br />

0<br />

3 3<br />

3<br />

⎤<br />

⎥<br />

⎥<br />

⎦⎥<br />

5 5y<br />

⎤ ⎡166.468⎤<br />

⎥ ⎢<br />

⎥ 1.535<br />

⎥<br />

⎢ ⎥<br />

⎥<br />

⎦ ⎣⎢<br />

7.150⎦⎥<br />

⎡ 0<br />

⎢<br />

⎢ <br />

⎢<br />

⎣<br />

<br />

<br />

4z<br />

4y<br />

4z<br />

4x<br />

<br />

0<br />

4y<br />

4x<br />

<br />

<br />

0<br />

⎤ ⎡ 7<br />

⎤<br />

⎥ ⎢<br />

⎥ 58<br />

⎥<br />

mm/s<br />

⎢ ⎥<br />

2<br />

⎥<br />

⎦ ⎣⎢<br />

176⎦⎥<br />

(4.204)<br />

⎡A<br />

⎢<br />

⎢<br />

A<br />

⎣⎢<br />

A<br />

PGx<br />

PGy<br />

PGz<br />

⎤ ⎡ 6.<br />

755 ⎤ ⎡58 176<br />

⎥ ⎢ ⎥ ⎢<br />

⎥<br />

0.303<br />

<br />

⎢ ⎥ ⎢ 7 176<br />

⎦⎥<br />

⎣⎢<br />

157.326⎦⎥<br />

⎢<br />

⎣<br />

74y<br />

584x<br />

4z<br />

4y<br />

4z<br />

4x<br />

⎤<br />

⎥<br />

⎥ mm/s<br />

⎥<br />

⎦<br />

(4.205)<br />

We already have an expression for {A G } 1 in equation (4.177) and we can<br />

define the vector {A P } 1 in terms of the known vertical acceleration component<br />

A Pz and the unknown components A Px and A Py :<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!