4569846498

01.05.2017 Views

Modelling and analysis of suspension systems 207 We can now apply the triangle law of vector addition to equate the expression for {V DG } 1 in equation (4.114) with {V D } 1 in equation (4.112) and {V G } 1 in equation (4.109): {V DG } 1 {V D } 1 {V G } 1 (4.115) ⎡ 314z 2164y⎤ ⎢ ⎥ ⎢194z 2164x⎥ ⎢ ⎣ 194y31 ⎥ 4x ⎦ (4.116) Rearranging (4.116) yields the first three equations required to solve the analysis: Equation 1 3346f 3 216 4y 31 4z 0 (4.117) Equation 2 2070f 2 1840f 3 216 4x 19 4z 0 (4.118) Equation 3 63 250f 2 54 970f 3 31 4x 19 4y 0 (4.119) We can now proceed to set up the next set of three equations working from point H to point D and using the triangle law of vector addition: {V DH } 1 {V D } 1 {V H } 1 (4.120) Determine an expression for the velocity {V H } 1 at point H: {V H } 1 {V HJ } 1 { 5 } 1 {R HJ } 1 (4.121) ⎡V ⎢ ⎢ V ⎣⎢ V ⎤ ⎥ ⎥ mm/s (4.122) ⎦⎥ We already have an expression for {V D } 1 in equation (4.112) and can determine an expression for the relative velocity {V DH } 1 of point D relative to point H using {V DH } 1 { 4 } 1 {R DH } 1 (4.123) ⎡V ⎢ ⎢ V ⎣⎢ V Hx Hy Hz DHx DHy DHz ⎡3346 f3⎤ ⎡ 0 ⎤ ⎢ 1840 f ⎥ 3 ⎢ 2070 f ⎥ ⎢ ⎥ ⎢ 2 ⎥ mm/s ⎣⎢ 54 970 f3⎦⎥ ⎣⎢ 63 250 f2 ⎦⎥ ⎤ ⎡ 0 5z 5y ⎤ ⎡ 0 ⎤ ⎡228 8 ⎥ ⎢ ⎥ ⎥ ⎢ ⎢ ⎥ ⎢ 5z 0 5x⎥ 228 ⎢ ⎥ ⎢ 8 5x ⎦⎥ ⎢ ⎥ ⎣ 5y 5x 0 ⎦ ⎣⎢ 8 ⎦⎥ ⎣⎢ 228 5x 5z 5y ⎤ ⎡ 0 4z 4y ⎤ ⎡144 ⎤ ⎡ 44 51 ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ 4z 0 4x⎥ 44 ⎢ ⎥ ⎢ 144 51 ⎦⎥ ⎢ ⎥ ⎣ y x 0 ⎦ ⎣⎢ 51⎦⎥ ⎢ 4 4 ⎣ 144 44 4z 4y 4z 4x 4y 4x ⎤ ⎥ ⎥ mm/s ⎥ ⎦ (4.124) We can now apply the triangle law of vector addition to equate the expression for {V DH } 1 in equation (4.124) with {V D } 1 in equation (4.112) and {V H } 1 in equation (4.122): {V DH } 1 {V D } 1 {V H } 1 (4.125) ⎡ 44 z 51 ⎢ ⎢ 144 z 51 ⎢ ⎣ 144 y 44 4 4y 4 4x 4 4x ⎤ ⎡3346 f ⎥ ⎢ ⎥ ⎢ 1840 f ⎥ ⎦ ⎣⎢ 54 970 f 3 3 3 ⎤ ⎡228 z 8 ⎥ ⎢ ⎥ ⎢ 85x ⎦⎥ ⎣⎢ 2285x 5 5y ⎤ ⎥ ⎥ mm/s ⎦⎥ (4.126)

208 Multibody Systems Approach to Vehicle Dynamics Rearranging (4.126) yields the next three equations required to solve the analysis: Equation 4 3346f 3 51 4y 44 4z 8 5y 228 5z 0 (4.127) Equation 5 1840f 3 51 4x 144 4z 8 5x 0 (4.128) Equation 6 54 970f 3 44 4x 144 4y 228 5x 0 (4.129) We can now proceed to set up the next set of three equations working from point G to point P and using the triangle law of vector addition: {V PG } 1 {V P } 1 {V G } 1 (4.130) Determine an expression for the relative velocity {V PG } 1 of point P relative to point G: {V PG } 1 { 4 } 1 {R PG } 1 (4.131) ⎡V ⎢ ⎢ V ⎣⎢ V PGx PGy PGz ⎤ ⎥ ⎥ mm/s ⎥ ⎦ (4.132) We already have an expression for {V G } 1 in equation (4.109) and we can define the vector {V P } 1 in terms of the known vertical velocity component V Pz and the unknown components V Px and V Py : { V } P ⎤ ⎡ 0 ⎥ ⎢ ⎥ ⎢ ⎦⎥ ⎢ ⎣ 1 ⎡ VPx ⎤ ⎢ V ⎥ ⎢ Py mm/s ⎥ ⎣⎢ 3366⎦⎥ 4z 4y 4z 4x 0 4y 4x (4.133) We can now apply the triangle law of vector addition to equate the expression for {V PG } 1 in equation (4.132) with {V P } 1 in equation (4.133) and {V G } 1 in equation (4.109): {V PG } 1 {V P } 1 {V G } 1 (4.134) ⎡5 84z 1764y⎤ ⎡ VPx ⎤ ⎡ 0 ⎢ ⎥ 7 4 1764 ⎢ z x V ⎥ ⎢ ⎢ ⎥ Py 2070 f ⎢ ⎥ ⎢ ⎢ ⎣ 7 4y 58 ⎥ 4x ⎦ ⎣⎢ 3366⎦⎥ ⎣⎢ 63 250 f 0 ⎤ ⎡ 7 ⎤ ⎡58 176 ⎥ ⎢ ⎥ ⎢ ⎥ 58 ⎢ ⎥ ⎢ 7 176 ⎥ ⎦ ⎣⎢ 176⎦⎥ ⎢ ⎣ 7 4y 584x (4.135) Rearranging (4.135) yields the next set of three equations required to solve the analysis: Equation 7 176 4y 58 4z V Px 0 (4.136a) Equation 8 2070f 2 176 4x 7 4z V Py 0 (4.136b) Equation 9 63 250f 2 58 4x 7 4y 3366 (4.136c) This leaves us with nine equations and 10 unknowns. The last equation is obtained by constraining the rotation of the tie rod (Body 5) to prevent spin 2 2 ⎤ ⎥ ⎥ mm/s ⎦⎥ 4z 4y 4z 4x

Modelling and analysis of suspension systems 207<br />

We can now apply the triangle law of vector addition to equate the expression<br />

for {V DG } 1 in equation (4.114) with {V D } 1 in equation (4.112) and<br />

{V G } 1 in equation (4.109):<br />

{V DG } 1 {V D } 1 {V G } 1 (4.115)<br />

⎡ 314z<br />

2164y⎤<br />

⎢<br />

⎥<br />

⎢194z<br />

2164x⎥<br />

⎢<br />

⎣<br />

194y31<br />

⎥<br />

4x<br />

⎦<br />

(4.116)<br />

Rearranging (4.116) yields the first three equations required to solve the<br />

analysis:<br />

Equation 1 3346f 3 216 4y 31 4z 0 (4.117)<br />

Equation 2 2070f 2 1840f 3 216 4x 19 4z 0 (4.118)<br />

Equation 3 63 250f 2 54 970f 3 31 4x 19 4y 0 (4.119)<br />

We can now proceed to set up the next set of three equations working from<br />

point H to point D and using the triangle law of vector addition:<br />

{V DH } 1 {V D } 1 {V H } 1 (4.120)<br />

Determine an expression for the velocity {V H } 1 at point H:<br />

{V H } 1 {V HJ } 1 { 5 } 1 {R HJ } 1 (4.121)<br />

⎡V<br />

⎢<br />

⎢<br />

V<br />

⎣⎢<br />

V<br />

⎤<br />

⎥<br />

⎥<br />

mm/s (4.122)<br />

⎦⎥<br />

We already have an expression for {V D } 1 in equation (4.112) and can determine<br />

an expression for the relative velocity {V DH } 1 of point D relative to<br />

point H using<br />

{V DH } 1 { 4 } 1 {R DH } 1 (4.123)<br />

⎡V<br />

⎢<br />

⎢<br />

V<br />

⎣⎢<br />

V<br />

Hx<br />

Hy<br />

Hz<br />

DHx<br />

DHy<br />

DHz<br />

⎡3346 f3⎤<br />

⎡ 0 ⎤<br />

<br />

⎢<br />

1840 f<br />

⎥<br />

3 <br />

⎢<br />

2070 f<br />

⎥<br />

⎢ ⎥ ⎢ 2<br />

⎥<br />

mm/s<br />

⎣⎢<br />

54 970 f3⎦⎥<br />

⎣⎢<br />

63 250 f2<br />

⎦⎥<br />

⎤ ⎡ 0 5z<br />

5y<br />

⎤ ⎡ 0 ⎤ ⎡228 8<br />

⎥ ⎢<br />

⎥<br />

⎥<br />

<br />

⎢<br />

⎢ <br />

⎥ ⎢<br />

5z<br />

0 5x⎥<br />

228 <br />

⎢ ⎥ ⎢<br />

8<br />

5x<br />

⎦⎥<br />

⎢<br />

⎥<br />

⎣<br />

5y<br />

5x<br />

0<br />

⎦ ⎣⎢<br />

8<br />

⎦⎥<br />

⎣⎢<br />

228<br />

5x<br />

5z<br />

5y<br />

⎤ ⎡ 0 4z<br />

4y<br />

⎤ ⎡144<br />

⎤ ⎡ 44 51<br />

⎥ ⎢<br />

⎥ ⎢ ⎥ ⎢<br />

⎥<br />

⎢ 4z<br />

0 4x⎥<br />

44 <br />

⎢ ⎥ ⎢ 144 51<br />

⎦⎥<br />

⎢<br />

⎥<br />

⎣<br />

y x 0<br />

⎦ ⎣⎢<br />

51⎦⎥<br />

⎢<br />

4 4<br />

<br />

⎣<br />

144 44<br />

4z<br />

4y<br />

4z<br />

4x<br />

4y<br />

4x<br />

⎤<br />

⎥<br />

⎥ mm/s<br />

⎥<br />

⎦<br />

(4.124)<br />

We can now apply the triangle law of vector addition to equate the expression<br />

for {V DH } 1 in equation (4.124) with {V D } 1 in equation (4.112) and<br />

{V H } 1 in equation (4.122):<br />

{V DH } 1 {V D } 1 {V H } 1 (4.125)<br />

⎡ 44 z 51<br />

⎢<br />

⎢ 144 z 51<br />

⎢<br />

⎣<br />

144 y 44<br />

4 4y<br />

4 4x<br />

4 4x<br />

⎤ ⎡3346<br />

f<br />

⎥<br />

<br />

⎢<br />

⎥ ⎢<br />

1840 f<br />

⎥<br />

⎦ ⎣⎢<br />

54 970 f<br />

3<br />

3<br />

3<br />

⎤ ⎡228 z 8<br />

⎥<br />

<br />

⎢<br />

⎥ ⎢<br />

85x<br />

⎦⎥<br />

⎣⎢<br />

2285x<br />

5 5y<br />

⎤<br />

⎥<br />

⎥<br />

mm/s<br />

⎦⎥<br />

(4.126)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!