01.05.2017 Views

4569846498

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Modelling and analysis of suspension systems 203<br />

I<br />

A<br />

E<br />

C<br />

F<br />

B<br />

C<br />

Z 1<br />

X Y 1<br />

1<br />

O 1<br />

Fig. 4.67<br />

Body 2<br />

J<br />

Body 3<br />

D<br />

Body 5<br />

G<br />

Body 4<br />

H<br />

K<br />

L<br />

P<br />

POINT X (mm) Y (mm) Z (mm)<br />

A 103<br />

B 127<br />

C 12<br />

D 12<br />

E 122<br />

F 108<br />

G 7<br />

H 156<br />

I 15<br />

J 156<br />

P 0<br />

K 0<br />

L 0<br />

Double wishbone suspension example geometry data<br />

350 142<br />

350 128<br />

491 104<br />

589 127<br />

345 80<br />

345 80<br />

620 89<br />

545<br />

500 540<br />

317 186<br />

678 265<br />

600 0<br />

678 0<br />

178<br />

15 m/s<br />

P<br />

z<br />

a<br />

x<br />

P<br />

L 350 mm<br />

a 12.5 mm<br />

Fig. 4.68<br />

L<br />

Road input definition for velocity analysis<br />

simplified by ignoring the compliance in the tyre and the profile of the road<br />

hump is taken as a sine function.<br />

The local x–z axis taken to reference the geometry of the road hump is<br />

located at a point where the vertical velocity V Pz of the contact point P<br />

reaches a maximum with a corresponding vertical acceleration A Pz equal to<br />

zero. The profile of the road hump can be defined using<br />

x<br />

z<br />

asin ⎛ 2 ⎞<br />

(4.96)<br />

⎝ L ⎠

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!