15.03.2017 Views

Catenaries, Parabolas and Suspension Bridges

David Griffin, "Catenaries, Parabolas and Suspension Bridges"

David Griffin, "Catenaries, Parabolas and Suspension Bridges"

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

CATENARIES, PARABOLAS AND SUSPENSION BRIDGES<br />

DAVID GRIFFIN<br />

SUSPENSION BRIDGES / D A GRIFFIN


TALK CONTENTS<br />

A Brief, Pictorial History of <strong>Suspension</strong> <strong>Bridges</strong>.<br />

‣ Famous Examples<br />

‣ Problems <strong>and</strong> Solutions.<br />

Galileo<br />

‣ The Equations for the Chain Curve of a <strong>Suspension</strong> Bridge.<br />

‣ The Equation for a Hanging Chain. Parabola or Catenary?<br />

The Catenary <strong>and</strong> Jakob Bernoulli’s Challenge.<br />

‣ Leibniz<br />

‣ Hugens<br />

‣ Bernoulli<br />

The Methods for Deriving the Equation for the Catenary.<br />

‣Calculus.<br />

‣Differential Equation.<br />

‣The Calculus of Variations.<br />

The Relationship Between the Parabola <strong>and</strong> the Catenary.<br />

The Inverted Parabola.<br />

‣Arch <strong>Bridges</strong><br />

The Inverted Catenary.<br />

‣Arches<br />

‣Can <strong>Catenaries</strong> Help You to Cycle with Square Wheels?<br />

SUSPENSION BRIDGES / D A GRIFFIN


A “Suspended-deck <strong>Suspension</strong> Bridge”<br />

SUSPENSION BRIDGES / D A GRIFFIN


The remains of the Maya Bridge at Yaxchilan, Mexican/Guatemalan border.<br />

The earliest known suspension-deck suspension bridge. 100m in three spans. 7 th Century.<br />

SUSPENSION BRIDGES / D A GRIFFIN


Faust Vrančić<br />

In 1595 the Croation bishop Faust Vrančić designed a<br />

suspension bridge, but it was never constructed.<br />

SUSPENSION BRIDGES / D A GRIFFIN


James Creek <strong>Suspension</strong> Bridge, Pennsylvania.<br />

James Finlay, 1801.<br />

Bridge demolished 1833.<br />

The first modern suspension bridge.<br />

It used wrought-iron cables.<br />

SUSPENSION BRIDGES / D A GRIFFIN


Union Bridge, River Tweed, 1820.<br />

The oldest suspension bridge still<br />

carrying traffic.<br />

Dryburgh Bridge, River Tweed.<br />

Opened1817. Collapsed 1818.<br />

SUSPENSION BRIDGES / D A GRIFFIN


The Menai <strong>Suspension</strong> Bridge<br />

Thomas Telford, Completed 1826<br />

SUSPENSION BRIDGES / D A GRIFFIN


The Clifton <strong>Suspension</strong> Bridge<br />

I K Brunel, Completed1864.<br />

SUSPENSION BRIDGES / D A GRIFFIN


SUSPENSION BRIDGES / D A GRIFFIN


Two cables<br />

support one<br />

deck.<br />

SUSPENSION BRIDGES / D A GRIFFIN


BROOKLYN BRIDGE<br />

John Augustus Roebling,1883.<br />

SUSPENSION BRIDGES / D A GRIFFIN


Four cables, two decks.<br />

SUSPENSION BRIDGES / D A GRIFFIN


A light walkway is suspended between the two decks of the Brooklyn Bridge.<br />

SUSPENSION BRIDGES / D A GRIFFIN


The Golden Gate <strong>Suspension</strong> Bridge<br />

Irving Morrow, Charle Alton Ellis, Leon Moissieff, 1937.<br />

SUSPENSION BRIDGES / D A GRIFFIN


PC<br />

LT<br />

Tacoma Narrows Bridge<br />

Leon Moissieff. Opened1940.<br />

SUSPENSION BRIDGES / D A GRIFFIN


Map<br />

New Tacoma Narrows Bridge (Background: Mt Rainier)<br />

Charles E Andrew <strong>and</strong> Dexter R Smith,1950<br />

SUSPENSION BRIDGES / D A GRIFFIN


A second bridge at Tacoma Narrows was built in 2007.<br />

SUSPENSION BRIDGES / D A GRIFFIN


The Severn Bridge<br />

William Brown, 1966<br />

SUSPENSION BRIDGES / D A GRIFFIN


Brown designed the Severn Bridge to avoid<br />

the problems of the Tacoma Bridge. It has<br />

a slender, aerodynamic deck.<br />

SUSPENSION BRIDGES / D A GRIFFIN


The Humber Bridge<br />

John Hyatt, Douglas Strachan <strong>and</strong> others, 1981.<br />

SUSPENSION BRIDGES / D A GRIFFIN


THE TOP TEN SUSPENSION BRIDGES<br />

<strong>Suspension</strong> bridge are typically ranked by the length of their main span.<br />

Akashi-Kaikyo Bridge (Japan) 1991 m 1998<br />

Xihoumen Bridge (China) 1650 m 2007<br />

Great Belt Bridge (Denmark) 1624 m 1998<br />

Runyang Bridge (China) 1490 m 2005<br />

Humber Bridge (Engl<strong>and</strong>) 1410 m 1981<br />

(The longest span from 1981 until 1998.)<br />

Jiangyin <strong>Suspension</strong> Bridge (China) 1385 m 1997<br />

Tsing Ma Bridge (Hong Kong), 1377 m 1997<br />

(Longest span with both road <strong>and</strong> metro.)<br />

Verrazano-Narrows Bridge (USA) 1298 m 1964<br />

(The longest span from 1964 until 1981.)<br />

Golden Gate Bridge (USA) 1280 m 1937<br />

(The longest span from 1937 until 1964.)<br />

Yangluo Bridge (China) 1280 m 2007<br />

SUSPENSION BRIDGES / D A GRIFFIN


Millenium Bridge 2000<br />

Arup, Foster <strong>and</strong> Partners<br />

PC<br />

LT<br />

Synchronous Lateral Excitation<br />

http://www2.eng.cam.ac.uk/~den/ICSV9_06.htm<br />

SUSPENSION BRIDGES / D A GRIFFIN


Dampers on Millenium Bridge to prevent synchronous lateral excitation.<br />

SUSPENSION BRIDGES / D A GRIFFIN


The first person to study the physics <strong>and</strong> mathematics of the<br />

suspension bridge was Galileo.<br />

Galileo Galilei<br />

1564 - 1642<br />

SUSPENSION BRIDGES / D A GRIFFIN


SUSPENSION BRIDGES / D A GRIFFIN


SUSPENSION BRIDGE: FORCES<br />

Cable<br />

y<br />

Tension at P.<br />

T<br />

P<br />

θ<br />

Tension at O.<br />

T o<br />

0<br />

Section of cable between O <strong>and</strong> P.<br />

P has horizontal coordinate x.<br />

Deck<br />

Weight of red<br />

section of deck.<br />

W<br />

Section of deck supported by<br />

cables segment OP. Length = x.<br />

SUSPENSION BRIDGES / D A GRIFFIN


y<br />

y<br />

T<br />

T<br />

T<br />

T o<br />

0<br />

P<br />

θ<br />

P<br />

θ<br />

x<br />

T o<br />

W<br />

x<br />

W<br />

The three forces T 0<br />

, T <strong>and</strong> W are in equilibrium.<br />

T<br />

W<br />

They form a triangle of forces with tanθ = W / T o<br />

.<br />

θ<br />

T is tangential to the chain at P.<br />

T o<br />

SUSPENSION BRIDGES / D A GRIFFIN


y<br />

y<br />

T<br />

T<br />

T<br />

W<br />

T o<br />

0<br />

P<br />

θ<br />

P<br />

θ<br />

x<br />

θ<br />

T o<br />

W<br />

x<br />

δy<br />

θ<br />

The triangle of forces is similar to the differential<br />

triangle at P.<br />

They both have gradient tanθ = W / T o<br />

.<br />

δx<br />

SUSPENSION BRIDGES / D A GRIFFIN


δy<br />

T<br />

W<br />

θ<br />

θ<br />

Gradient<br />

y<br />

<br />

x<br />

δx<br />

Gradient <br />

W<br />

T O<br />

T o<br />

y <br />

x<br />

W<br />

T O<br />

x = horizontal distance from the point O.<br />

W xg<br />

mass / length<br />

y<br />

xg<br />

<br />

x<br />

T O<br />

g<br />

k <br />

T O<br />

y kx<br />

x<br />

In the limit:<br />

dy <br />

dx<br />

kx<br />

μ has the dimensions of mass/length: m.l -1<br />

g has the dimensions of acceleration: l.t -2<br />

T o<br />

has the dimensions of force: m.l.t -2<br />

Thus k has the dimensions of length -1 : l -1<br />

SUSPENSION BRIDGES / D A GRIFFIN


THE EQUATION FOR THE CHAIN-CURVE OF A SUSPENSION BRIDGE<br />

dy <br />

<br />

dx<br />

kx<br />

2<br />

kx<br />

y kx. dx<br />

y C 2<br />

Since y = 0 when x = 0 C must = 0<br />

2<br />

kx<br />

y <br />

2<br />

A Parabola<br />

k has the dimensions of length -1 .<br />

x has the dimensions of length.<br />

Thus:<br />

y has the dimensions of length.<br />

SUSPENSION BRIDGES / D A GRIFFIN


Tension in the Cable<br />

T<br />

μxg<br />

θ<br />

T o<br />

T<br />

<br />

2 2 2<br />

g<br />

x <br />

T O<br />

The tension in the cable is greatest at the towers.<br />

The tension in the cable is a minimum at the lowest point <strong>and</strong> = T o<br />

.<br />

SUSPENSION BRIDGES / D A GRIFFIN


Other Applications of <strong>Suspension</strong>-bridge Technology<br />

BRASSIERES:<br />

An Engineering Miracle<br />

From Science <strong>and</strong> Mechanics, February, 1964<br />

By Edward Nanas<br />

“There is more to brassiere design than meets the eye. In many respects, the challenge of<br />

enclosing <strong>and</strong> supporting a semi-solid mass of variable volume <strong>and</strong> shape, plus its adjacent<br />

mirror image - together they equal the female bosom - involves a design effort comparable to that<br />

of building a bridge or a cantilevered skyscraper. “<br />

http://www.firstpr.com.au/show-<strong>and</strong>-tell/corsetry-1/nanas/engineer.html<br />

SUSPENSION BRIDGES / D A GRIFFIN


THE CATENARY<br />

Catenary, Alysoid, Chainette.<br />

SUSPENSION BRIDGES / D A GRIFFIN


SUSPENSION BRIDGES / D A GRIFFIN


A spider’s web: multiple catenaries.<br />

SUSPENSION BRIDGES / D A GRIFFIN


“Simple suspension bridges”<br />

or rope bridges are catenaries,<br />

not parabolas.<br />

Söderskär Bridge, Finl<strong>and</strong>.<br />

SUSPENSION BRIDGES / D A GRIFFIN


GALILEO AND THE CATENARY<br />

Galileo believed that a catenary had the equation of a parabola.<br />

He had studied the parabola in various contexts <strong>and</strong> was the first<br />

to state that a projectile would follow the path of a parabola.<br />

In 1669 a posthumous publication by Joachim Jungius proved that<br />

the function describing a catenary could not be algebraic <strong>and</strong> could<br />

not therefore be a parabola.<br />

Joachim Jungius<br />

1587 – 1657.<br />

SUSPENSION BRIDGES / D A GRIFFIN


THE JAKOB BERNOULLI CHALLENGE.<br />

In 1690 Jakob Bernoulli issued a challenge to Leibniz, Christiaan Huygens<br />

<strong>and</strong> Johann Bernoulli to derived the equation for the catenary.<br />

The solutions were presented in 1691.<br />

Gottfried Leibniz<br />

Christiaan Huygens<br />

Johann Bernoulli<br />

Newton also solved the<br />

problem: anonymously.<br />

The Age of Big Hair.<br />

Jakob Bernoulli<br />

SUSPENSION BRIDGES / D A GRIFFIN


The Bernoulli Family Tree<br />

Several generations of<br />

mathematical geniuses.<br />

Jakob<br />

Johann (I)<br />

Daniel<br />

Nicolaus (II)<br />

Johann (II)<br />

Johann (III)<br />

Nicolaus (III)<br />

SUSPENSION BRIDGES / D A GRIFFIN


Jakob Bernoulli<br />

(1654-1705)<br />

First studied to be a minister.<br />

Studied at Basel University.<br />

‣ Received degree in theology.<br />

‣ Fascinated by mathematics.<br />

Furthered the calculus he had<br />

learned from Leibniz.<br />

Studied catenaries.<br />

Worked on the design of bridges.<br />

Studied the brachistochrone<br />

problem with Johann.<br />

Was a professor at Basel until<br />

his death.<br />

SUSPENSION BRIDGES / D A GRIFFIN


THE SOLUTIONS TO THE BERNOULLI CHALLENGE.<br />

Leibniz used calculus, but did not show his method.<br />

Johann Bernoulli used the calculus of variations.<br />

‣This involves finding the shape which minimizes<br />

the potential energy of the system.<br />

Huygens used a complicated geometric proof.<br />

A solution using differential equations can also used.<br />

In 1691, when the derivation of the equation for the catenary was<br />

published, the Jesuit priest Ignace Gaston Paradies published a<br />

text-book on forces <strong>and</strong> geometry which included the derivation of<br />

the equations for the suspension-bridge cable <strong>and</strong> the catenary.<br />

SUSPENSION BRIDGES / D A GRIFFIN


SUSPENSION BRIDGES / D A GRIFFIN


SUSPENSION BRIDGES / D A GRIFFIN


Cable<br />

y<br />

T<br />

Tension at P.<br />

P<br />

θ<br />

Tsinθ<br />

Tension at O.<br />

T o<br />

0<br />

s<br />

Tcosθ<br />

W = μsg<br />

SUSPENSION BRIDGES / D A GRIFFIN


Cable<br />

y<br />

T<br />

Tension at P.<br />

T<br />

P<br />

θ<br />

Tsinθ<br />

Tension at O.<br />

T o<br />

0<br />

s<br />

Tcosθ<br />

T o<br />

W = μsg<br />

µsg<br />

The three forces T 0<br />

, T <strong>and</strong> µsg are in equilibrium.<br />

They form a triangle of forces with tanθ = µsg / T o<br />

.<br />

Since T is tangential to the curve formed by the chain<br />

tanθ is equal to the gradient at the point P.<br />

θ<br />

T<br />

T o<br />

µsg<br />

Gradient = µsg / T o<br />

.<br />

SUSPENSION BRIDGES / D A GRIFFIN


Derivation of the Catenary Equation Method 1<br />

We have shown:<br />

tan <br />

sg<br />

T O<br />

s<br />

<br />

TO<br />

g<br />

tan<br />

Define:<br />

k<br />

<br />

T<br />

O<br />

g<br />

T o<br />

has the dimension of force: m.l.t -2<br />

μ has the dimension of mass/length: m.l -1<br />

g has the dimension of acceleration: l.t -2<br />

Thus:<br />

k has the units of length: l<br />

s k tan<br />

SUSPENSION BRIDGES / D A GRIFFIN


Derivation of the Catenary Equation Method 1<br />

Consider the differential triangle.<br />

In the limit δs approaches the value<br />

of the hypotenuse.<br />

δS<br />

θ<br />

δy<br />

dx<br />

ds<br />

cos<br />

δx<br />

The above triangle is similar to the<br />

triangle of forces.<br />

T<br />

µsg<br />

θ<br />

T o<br />

SUSPENSION BRIDGES / D A GRIFFIN


Derivation of the Catenary Equation Method 1<br />

s k tan<br />

δS<br />

δy<br />

ds <br />

2<br />

k sec <br />

d<br />

(1)<br />

θ<br />

δx<br />

From (1) <strong>and</strong> (2):<br />

dx<br />

<br />

d<br />

dx<br />

ds<br />

<br />

ds<br />

d<br />

dx<br />

ds<br />

cos<br />

(2)<br />

dx<br />

<br />

d<br />

k.sec<br />

2<br />

.cos<br />

<br />

k sec<br />

dx <br />

d<br />

k sec<br />

SUSPENSION BRIDGES / D A GRIFFIN


Derivation of the Catenary Equation Method 1<br />

s k tan<br />

δS<br />

δy<br />

ds <br />

2<br />

k sec <br />

d<br />

(1)<br />

θ<br />

δx<br />

From (1) <strong>and</strong> (2):<br />

dy dy ds<br />

<br />

d ds d<br />

dy<br />

ds<br />

sin<br />

(2)<br />

dy <br />

d<br />

k sec 2 .sin<br />

dy <br />

d<br />

k sec.tan<br />

SUSPENSION BRIDGES / D A GRIFFIN


Derivation of the Catenary Equation Method 1<br />

Deriv<br />

dx <br />

d<br />

k sec<br />

<br />

<br />

x<br />

dx<br />

ksec .<br />

d<br />

Separate variables <strong>and</strong> integrate<br />

y<br />

x k.ln sec<br />

tan<br />

C<br />

T<br />

x<br />

<br />

0,<br />

<br />

0<br />

θ<br />

0 k.ln1<br />

0 C C 0<br />

P<br />

0<br />

x<br />

k. ln sec tan<br />

x<br />

Parametric equation of the catenary (1)<br />

SUSPENSION BRIDGES / D A GRIFFIN


Derivation of the Catenary Equation Method 1<br />

dy <br />

d<br />

k sec.tan<br />

<br />

<br />

y dy k sec.tan.<br />

d<br />

Separate variables <strong>and</strong> integrate<br />

y<br />

<br />

k sec<br />

C<br />

We have not defined where the axis y = 0 is.<br />

Define C = 0.<br />

Thus when θ = 0 y = k.<br />

}<br />

k<br />

x<br />

y <br />

k sec<br />

Parametric equation of the catenary (2)<br />

SUSPENSION BRIDGES / D A GRIFFIN


Derivation of the Catenary Equation Method 1<br />

We now have the two parametric equations for the catenary.<br />

We need to eliminate θ to obtain the cartesian x-y equation.<br />

x<br />

k. ln sec tan<br />

y k sec<br />

(1) (2)<br />

y<br />

From (2): sec (3)<br />

k<br />

2<br />

1<br />

tan sec<br />

2<br />

<br />

tan<br />

<br />

sec<br />

2<br />

1<br />

(4)<br />

From (1), (3) <strong>and</strong> (4):<br />

x<br />

<br />

k.ln<br />

y<br />

k<br />

<br />

<br />

<br />

<br />

y<br />

k<br />

<br />

<br />

<br />

2<br />

1<br />

1<br />

2<br />

Recall the identity: cosh u ln u u 1<br />

SUSPENSION BRIDGES / D A GRIFFIN


Derivation of the Catenary Equation Method 1<br />

2<br />

y y <br />

1<br />

2<br />

x k.ln<br />

1<br />

cosh u ln u u 1<br />

(1)<br />

k k <br />

(2)<br />

From (1) <strong>and</strong> (2):<br />

x<br />

<br />

k cosh<br />

1<br />

<br />

<br />

<br />

y<br />

k<br />

<br />

<br />

<br />

Rearranging <strong>and</strong> taking the<br />

cosh function of both sides<br />

of the equation gives:<br />

<br />

cosh<br />

<br />

x <br />

<br />

k <br />

<br />

y<br />

k<br />

y<br />

<br />

<br />

k cosh<br />

<br />

x <br />

<br />

k <br />

If x has the dimensions of length:<br />

‣ x/k is dimensionless.<br />

‣ y has the dimensions of length.<br />

Jungius was correct. The catenary is not described<br />

by an algebraic function; <strong>and</strong> is thus not a parabola.<br />

SUSPENSION BRIDGES / D A GRIFFIN


The Derivation of the Catenary by Differential Equations.<br />

We have previously shown:<br />

δS<br />

θ<br />

δx<br />

δy<br />

From (1) <strong>and</strong> (2):<br />

s k tan<br />

(1)<br />

dy<br />

tan (2)<br />

dx<br />

dy<br />

s k.<br />

dx<br />

2<br />

ds d y k. dx<br />

2<br />

dx<br />

SUSPENSION BRIDGES / D A GRIFFIN


The Derivation of the Catenary by Differential Equations.<br />

δS<br />

θ<br />

δx<br />

δy<br />

ds 2 dx 2<br />

dy 2<br />

ds<br />

dx<br />

<br />

dy <br />

1<br />

<br />

dx <br />

2<br />

(1)<br />

We have just shown:<br />

ds <br />

dx<br />

k<br />

2<br />

d y<br />

. dx<br />

2<br />

(2)<br />

From (1) <strong>and</strong> (2):<br />

2<br />

d y dy <br />

k. 1<br />

2<br />

<br />

dx dx <br />

2<br />

SUSPENSION BRIDGES / D A GRIFFIN


SUSPENSION BRIDGES / D A GRIFFIN


The Derivation of the Catenary by Differential Equations.<br />

2<br />

d y dy <br />

k. 1<br />

2<br />

<br />

dx dx <br />

2<br />

(1)<br />

Let:<br />

y'<br />

<br />

dy<br />

dx<br />

(2)<br />

From (1) <strong>and</strong> (2):<br />

<br />

<br />

dy'<br />

k. 1<br />

y<br />

dx<br />

' 2<br />

Separate variables<br />

2 dx<br />

d y'<br />

<br />

1<br />

y'<br />

.<br />

k<br />

dx<br />

k<br />

<br />

d<br />

1<br />

y'<br />

<br />

y'<br />

2<br />

<br />

dx<br />

k<br />

<br />

<br />

d<br />

1<br />

y'<br />

<br />

y'<br />

<br />

2<br />

SUSPENSION BRIDGES / D A GRIFFIN


dx<br />

k<br />

<br />

<br />

d<br />

1<br />

y'<br />

<br />

y'<br />

<br />

2<br />

(1)<br />

Recall the st<strong>and</strong>ard integral: <br />

du 1<br />

1<br />

u<br />

2<br />

sinh<br />

u<br />

(2)<br />

<br />

From (1) <strong>and</strong> (2): y'<br />

C<br />

x<br />

k<br />

sinh 1 When x 0 y' 0<br />

<br />

Thus: C 0<br />

Take sinh function of both sides:<br />

x<br />

k<br />

<br />

<br />

sinh 1 y'<br />

<br />

x <br />

sinh<br />

y'<br />

k <br />

<br />

dy<br />

dx<br />

x <br />

sinh<br />

<br />

k <br />

Separate the variables<br />

y<br />

<br />

<br />

k cosh<br />

<br />

x<br />

k<br />

<br />

<br />

<br />

C<br />

x<br />

dy . dx<br />

k<br />

<br />

sinh<br />

<br />

<br />

Once again we can define the<br />

coordinate axes so that C = 0.<br />

y<br />

<br />

<br />

k cosh<br />

<br />

x <br />

<br />

k <br />

SUSPENSION BRIDGES / D A GRIFFIN


The Relationship Between<br />

the Parabola <strong>and</strong> the Catenary<br />

SUSPENSION BRIDGES / D A GRIFFIN


Online function plotter: http://www.mathe-fa.de/en#anchor<br />

A Comparison of a Parabola <strong>and</strong> a Catenary<br />

SUSPENSION BRIDGES / D A GRIFFIN<br />

y<br />

x <br />

2.cosh <br />

2<br />

2<br />

<br />

y <br />

x<br />

2<br />

2


The Relationship Between the Parabola <strong>and</strong> the Catenary.<br />

The MacLaurin Series for a Catenary<br />

k cosh<br />

x<br />

k<br />

cosh<br />

x<br />

k<br />

<br />

0<br />

k<br />

2n<br />

2n<br />

x<br />

.(2n)!<br />

2 4 6<br />

cosh x x x x<br />

1<br />

........<br />

2 4 6<br />

k k .2! k .4! k .6! k<br />

2<br />

2 4 6<br />

cosh x x x x<br />

k k(1<br />

........<br />

2 4 6<br />

k k .2! k .4! k .6! k<br />

2<br />

2n<br />

x<br />

........<br />

.(2n)!<br />

n<br />

2n<br />

x<br />

........)<br />

.(2n)!<br />

2 4 6<br />

2n<br />

cosh x x x x x<br />

k k ........ ........)<br />

3 5<br />

2n<br />

k k.2!<br />

k .4! k .6! k<br />

1 .(2n)!<br />

n<br />

k cosh<br />

x<br />

k<br />

2<br />

x<br />

2 k<br />

k<br />

If k is >1 the catenary can be approximated<br />

by a parabolic function for small values of x.<br />

SUSPENSION BRIDGES / D A GRIFFIN


If k is >1 the catenary can be approximated by a parabolic function for small values of x.<br />

(k = 2)<br />

x <br />

y 2.cosh <br />

2 <br />

y <br />

2<br />

x<br />

4<br />

2<br />

SUSPENSION BRIDGES / D A GRIFFIN


The Relationship Between the Parabola <strong>and</strong> the Catenary<br />

If the parabola y = x 2 is rolled along the x-axis the locus<br />

of its focus is the catenary:<br />

1<br />

y cosh 4x<br />

4<br />

SUSPENSION BRIDGES / D A GRIFFIN


The Construction of the Brooklyn Bridge<br />

Parabola <strong>and</strong> Catenary<br />

During the construction of the Brooklyn Bridge<br />

it was possible at one stage to contrast a laden<br />

<strong>and</strong> an un-laden cable: a parabola <strong>and</strong> a catenary.<br />

SUSPENSION BRIDGES / D A GRIFFIN


SUSPENSION BRIDGES / D A GRIFFIN


SUSPENSION BRIDGES / D A GRIFFIN


SUSPENSION BRIDGES / D A GRIFFIN


SUSPENSION BRIDGES / D A GRIFFIN


SUSPENSION BRIDGES / D A GRIFFIN


SUSPENSION BRIDGES / D A GRIFFIN


Inverted <strong>Parabolas</strong> <strong>and</strong> <strong>Catenaries</strong><br />

Arch <strong>Bridges</strong><br />

Free-st<strong>and</strong>ing Arches<br />

SUSPENSION BRIDGES / D A GRIFFIN


The New River Gorge Bridge, Virginia.<br />

A supported-deck bridge.<br />

SUSPENSION BRIDGES / D A GRIFFIN


The Tyne Bridge<br />

A compression-arch suspended-deck bridge<br />

SUSPENSION BRIDGES / D A GRIFFIN


SUPPORTED ARCH BRIDGE<br />

The forces acting on a section of the arch are compressive.<br />

An analysis of the triangle of forces leads once again to a parabola.<br />

The arch is rigid. I does not assume the shape of an inverted parabola.<br />

It should be constructed as an inverted parabola if it is to have a uniform<br />

deck supported at regular intervals.<br />

The triangle of forces acting on a segment is analogous to that for a suspension bridge.<br />

y<br />

W<br />

C O<br />

x<br />

C O<br />

θ<br />

C<br />

W = μxg<br />

C<br />

SUSPENSION BRIDGES / D A GRIFFIN


THE INVERTED CATENARY<br />

The inverted catenary is the ideal curve for<br />

an arch which supports only its own weight.<br />

It is the minimum energy structure.<br />

The forces are primarily of compression.<br />

SUSPENSION BRIDGES / D A GRIFFIN


.<br />

St Louis Gateway Arch,<br />

Eero Saarinen, Completed 1965.<br />

SUSPENSION BRIDGES / D A GRIFFIN


St Louis Gateway Arch<br />

SUSPENSION BRIDGES / D A GRIFFIN


This formula is inscribed on the arch.<br />

Thus when x = 0 <strong>and</strong> y is at a maximum<br />

y = 630 ft.<br />

This also gives a separation of 630 ft<br />

for the bases.<br />

SUSPENSION BRIDGES / D A GRIFFIN


SUSPENSION BRIDGES / D A GRIFFIN


Taq–i-Kisra, Ctesiphon, Mesopotamia / Irak<br />

SUSPENSION BRIDGES / D A GRIFFIN


Casa Milà, Barcelona.<br />

Antoni Gaudí<br />

SUSPENSION BRIDGES / D A GRIFFIN


Casa Milà, Barcelona.<br />

Antoni Gaudí<br />

SUSPENSION BRIDGES / D A GRIFFIN


Casa Milà, Barcelona.<br />

Antoni Gaudí<br />

SUSPENSION BRIDGES / D A GRIFFIN


Can you ride<br />

a cycle with<br />

square wheels?<br />

http://www.maa.org/mathl<strong>and</strong>/mathtrek_04_05_04.html<br />

SUSPENSION BRIDGES / D A GRIFFIN


For the rolling square the shape of the road is a series<br />

of inverted, truncated catenary curves.<br />

PC<br />

LT<br />

SUSPENSION BRIDGES / D A GRIFFIN


For regular n-sided polygonal wheels the curve of the road<br />

is made from inverted catenaries with the equation:<br />

y = - Rcot(/n).cosh(x/A)<br />

SUSPENSION BRIDGES / D A GRIFFIN


In practice a triangular wheel would get stuck.<br />

The vertices puncture the road.<br />

Road<br />

“Spoke”<br />

Bottom of triangular wheel<br />

SUSPENSION BRIDGES / D A GRIFFIN


www.exploratorium.edu/texnet/exhibits/motion/square.../square_cbk.pdf<br />

SUSPENSION BRIDGES / D A GRIFFIN


Proving that the locus of the centre of a square as it<br />

rolls over an inverted catenaries is a straight line.<br />

There are several, diverse proofs. Some are long <strong>and</strong> complicated.<br />

www.maa.org/pubs/mathmag.html<br />

(General study on “roads” <strong>and</strong> non-circular “wheels”.)<br />

www.macalester.edu/mathcs/documents/catenaries.pdf<br />

(Uses two coordinate systems: polar <strong>and</strong> cartesian.)<br />

http://www.maplesoft.com/applications/view.aspx?SID=6322<br />

(Method using several differential equations.)<br />

http://www.snc.edu/math/squarewheelbike.html<br />

Follow hypertext link on the website mathematics.<br />

(Uses st<strong>and</strong>ard geometry <strong>and</strong> calculus: but long.)<br />

See: Wikipedia page on Roulette (curve).<br />

(Generates the catenary road as a roulette in the complex plane.)<br />

SUSPENSION BRIDGES / D A GRIFFIN


Consider the square resting<br />

on a vertex <strong>and</strong> symmetrically<br />

poised between two of the<br />

humps.<br />

We want the centre of the<br />

circle to remain on the line<br />

y = a√2 as the square rolls<br />

along the road.<br />

y<br />

2a<br />

Y = a√2<br />

a√2<br />

Road, y = f(x)<br />

x<br />

SUSPENSION BRIDGES / D A GRIFFIN


y<br />

2a<br />

C<br />

θ<br />

y = a√2<br />

B<br />

θ<br />

Road, y = f(x)<br />

A<br />

x<br />

SUSPENSION BRIDGES / D A GRIFFIN


a.sec y a<br />

2<br />

y<br />

dy<br />

dx<br />

<br />

tan<br />

2a<br />

C<br />

θ<br />

y = a√2<br />

a.secθ<br />

a<br />

B<br />

θ<br />

Road, y = f(x)<br />

Appendix<br />

y<br />

A<br />

SUSPENSION BRIDGES / D A GRIFFIN<br />

x


a.sec y a<br />

2<br />

dy<br />

dx<br />

tan<br />

2 2<br />

1tan sec<br />

<br />

sec 2 <br />

2<br />

y<br />

a<br />

(1)<br />

dy<br />

2<br />

1<br />

sec<br />

<br />

dx<br />

<br />

(2)<br />

Let:<br />

u sec<br />

(3)<br />

From (1) <strong>and</strong> (3):<br />

u <br />

2 <br />

y<br />

a<br />

From (2) <strong>and</strong> (3):<br />

dy<br />

<br />

1<br />

<br />

dx<br />

<br />

2<br />

u<br />

2<br />

(4)<br />

dy<br />

dx <br />

u<br />

2<br />

1<br />

SUSPENSION BRIDGES / D A GRIFFIN


dy 2<br />

u 1<br />

dx u 2 <br />

y<br />

a<br />

du du dy<br />

<br />

dx dy dx<br />

du<br />

dy<br />

1<br />

<br />

a<br />

du<br />

dx<br />

1<br />

a<br />

2<br />

<br />

u<br />

1<br />

Separate variables.<br />

1<br />

dx <br />

a<br />

u<br />

du<br />

2<br />

1<br />

SUSPENSION BRIDGES / D A GRIFFIN


1<br />

dx <br />

a<br />

u<br />

du<br />

2<br />

1<br />

<br />

1<br />

dx <br />

a<br />

<br />

u<br />

du<br />

2<br />

1<br />

x<br />

a<br />

x <br />

u C<br />

<br />

a <br />

1<br />

C<br />

cosh<br />

u<br />

cosh<br />

u <br />

2 <br />

y<br />

a<br />

Take cosh function of both sides.<br />

x<br />

y a 2 a.cosh<br />

<br />

C<br />

<br />

a <br />

y x<br />

2 coshC<br />

<br />

a a<br />

When x = 0 y = f(x) = 0. Therefore:<br />

0 <br />

0a 2 a.coshC<br />

<br />

a <br />

<br />

2 cosh C<br />

<br />

C cosh 2<br />

1<br />

<br />

<br />

ya a<br />

<br />

a <br />

1<br />

2 cosh cosh 2 x<br />

<br />

The equation of the road.<br />

SUSPENSION BRIDGES / D A GRIFFIN


Plots of the Inverted Catenary “Road” <strong>and</strong> Related Functions.<br />

1<br />

x <br />

y a 2 acoshcosh 2 <br />

<br />

a <br />

Road equation<br />

y cosh( x)<br />

y <br />

y<br />

<br />

1<br />

cosh cosh 2<br />

<br />

x<br />

1<br />

2 cosh cosh 2 <br />

(Road equationtion with a = 1)<br />

<br />

x<br />

<br />

SUSPENSION BRIDGES / D A GRIFFIN


1<br />

y a 2 acoshcosh 2<br />

<br />

x <br />

<br />

a <br />

Solve for y = 0 <strong>and</strong> dy/dx = 0<br />

y<br />

(Values when a = 1)<br />

<br />

1<br />

a.cosh 2, a 2 a<br />

<br />

(0.8814, 0.4142)<br />

<br />

1<br />

2.cosh a 2,0<br />

<br />

(1.7627, 0)<br />

(0,0)<br />

x<br />

SUSPENSION BRIDGES / D A GRIFFIN


PC<br />

PC<br />

LT<br />

LT<br />

SUSPENSION BRIDGES / D A GRIFFIN


APPENDIX 1<br />

Proof that the Arc Length of the Inverted <strong>Catenaries</strong> is<br />

Equal to the Length of a Side of the Square: i.e. 2a.<br />

dx<br />

<br />

s <br />

1 . dy<br />

dy<br />

<br />

2<br />

dy<br />

tan<br />

dx<br />

dx<br />

cot<br />

dy<br />

(1) (2) (3)<br />

<br />

2<br />

From (1) <strong>and</strong> (3): s 1cot . dy<br />

cos .<br />

s ec dy<br />

(4)<br />

a.sec y a<br />

2<br />

y a 2 asec<br />

dy<br />

a sec .tan<br />

d <br />

(5)<br />

From (4) <strong>and</strong> (5):<br />

s a.cos ec .sec .tan .<br />

d<br />

2<br />

s a.sec .<br />

d<br />

<br />

<br />

SUSPENSION BRIDGES / D A GRIFFIN


y<br />

2a<br />

a√2<br />

45 o 45 o 135 o<br />

x<br />

SUSPENSION BRIDGES / D A GRIFFIN


2<br />

s a.sec .<br />

d<br />

<br />

<br />

2<br />

2<br />

s a.sec .<br />

d<br />

<br />

<br />

1<br />

<br />

2<br />

s a tan<br />

C <br />

1<br />

1 45 o<br />

2 135 o<br />

tan 45 1<br />

tan135 1<br />

s a1 1 2a<br />

<br />

<br />

SUSPENSION BRIDGES / D A GRIFFIN


APPENDIX 2<br />

TNB<br />

SUSPENSION BRIDGES / D A GRIFFIN


APPENDIX 3<br />

Conversion of FLV (e.g. Youtube) files to downloadable files (e.g. MP4).<br />

SUSPENSION BRIDGES / D A GRIFFIN


APPENDIX 4<br />

http://www.mathe-fa.de/en<br />

SUSPENSION BRIDGES / D A GRIFFIN


APPENDIX 5<br />

1 2<br />

cosh x ln x x 1<br />

e<br />

cosh x <br />

e<br />

sinh x <br />

x<br />

x<br />

e<br />

2<br />

e<br />

2<br />

x<br />

x<br />

cosh x sinh x e<br />

x<br />

2 2<br />

cosh x sinh x 1<br />

y<br />

cosh<br />

1<br />

x<br />

x<br />

cosh<br />

y<br />

cosh<br />

y<br />

sinh y e<br />

y<br />

2 2<br />

cosh y<br />

sinh y 1<br />

y<br />

2<br />

e cosh y cosh y1<br />

e x x<br />

y<br />

2<br />

<br />

1<br />

y x x <br />

2<br />

ln 1<br />

1 2<br />

cosh x ln x x 1<br />

SUSPENSION BRIDGES / D A GRIFFIN

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!